JPH01243009A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPH01243009A
JPH01243009A JP7049588A JP7049588A JPH01243009A JP H01243009 A JPH01243009 A JP H01243009A JP 7049588 A JP7049588 A JP 7049588A JP 7049588 A JP7049588 A JP 7049588A JP H01243009 A JPH01243009 A JP H01243009A
Authority
JP
Japan
Prior art keywords
lens
image
field
sensor
focus detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7049588A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
謙二 鈴木
Akira Ishizaki
明 石崎
Keiji Otaka
圭史 大高
Takashi Koyama
剛史 小山
Yasuo Suda
康夫 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7049588A priority Critical patent/JPH01243009A/en
Publication of JPH01243009A publication Critical patent/JPH01243009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To accomplish accurate focus detection by providing a cylindrical lens having a prescribed form on the surface of a light receiving means and imparting the refracting power of secondary image forming lenses. CONSTITUTION:The cylindrical lens 15 is arranged to turn its curvature toward a second direction orthogonal to a first direction in which sensor trains 14A and 14B line up. Thus, an image is formed in an area wherein the curvature of the cylindrical lens 15 exists; it is arranged in front of the light receiving means 14 ahead of the secondary image forming lenses 12A and 12B. In this case, each element of openings 16A and 16B of a diaphragm 16 is set such that the secondary image forming lens 12 and the cylindrical lens 15 cam form an image in an area in the width direction of the sensor trains 14A and 14B. Therefore, accurate focus detection is accomplished by reducing adverse effects of several types of aberration occurred in the width direction of the sensor trains: they are color aberration, distortion aberration, etc., and are generated by the secondary image forming system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な焦点検
出装置に関し、特に撮影レンズの瞳を複数の領域、例え
ば2つの領域に分割し、各領域を通過する光束を用いて
2つの被写体像に関する光量分布を形成し、これら2つ
の光量分布の相対的な位置関係を求めることにより、撮
影レンズの合焦状態を検出する焦点検出装置に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a focus detection device suitable for photographic cameras, video cameras, etc., and in particular, a focus detection device that divides the pupil of a photographic lens into a plurality of regions, for example, two regions, Relates to a focus detection device that detects the in-focus state of a photographic lens by forming a light intensity distribution for two subject images using the light flux passing through each area and determining the relative positional relationship between these two light intensity distributions. It is.

(従来の技術) 従来より写真用カメラ等に用いられている焦点調節装置
の一つのタイプとして、焦点検出用の光学系によって撮
影レンズの射出瞳を2つに分割し、各射出瞳領域を通過
した光束が形成する2つの被写体像を、光電変換素子列
(例えば、CCD等のセンサ列)で受光し、その出力か
ら撮影レンズの焦点状態を検出し、その検出結果に基づ
いて撮影レンズを駆動する、所謂像ずれ検出方法が良く
知られている。
(Prior art) As one type of focus adjustment device conventionally used in photographic cameras, the exit pupil of the photographic lens is divided into two by an optical system for focus detection, and a device passes through each exit pupil region. The two subject images formed by the light flux are received by a photoelectric conversion element array (for example, a sensor array such as a CCD), the focal state of the photographing lens is detected from the output, and the photographing lens is driven based on the detection result. A so-called image shift detection method is well known.

第5図は従来のこの種の焦点検出装置の光学系の概略図
である。同図において焦点検出されるべき撮影レンズL
NSと光軸と同じくしてフィールドレンズFLDが配置
される。その後方の光軸に関して対称な位置に2個の2
次結像しンズFCLA、FCLBが配置される。更にそ
の後方にセンサ列SAA、SABが配置される。2次結
像しンズFCLA、FCLBの近傍には絞りDIA。
FIG. 5 is a schematic diagram of an optical system of a conventional focus detection device of this type. In the figure, the photographing lens L whose focus should be detected
A field lens FLD is arranged in the same direction as the NS and the optical axis. Behind it, two 2
Next, imaging lenses FCLA and FCLB are arranged. Furthermore, sensor arrays SAA and SAB are arranged behind it. An aperture DIA is located near the secondary imaging lenses FCLA and FCLB.

DIBが設けられる。フィールドレンズFLDは撮影レ
ンズLNSの射出瞳を2個の2次結像しンズFCLA、
FCLBの瞳面にほぼ結像する。その結果、2次結像し
ンズFCLA、FCLBにそれぞれ入射する光線束は撮
影レンズLNSの射出瞳面上において各2次結像レンズ
FCLA。
A DIB is provided. The field lens FLD focuses the exit pupil of the photographing lens LNS into two secondary imaging lenses FCLA,
The image is almost formed on the pupil plane of FCLB. As a result, the ray bundles incident on the secondary imaging lenses FCLA and FCLB are each incident on the exit pupil plane of the photographing lens LNS.

FCLBに対応する互いに重なり合うことのない等面積
の領域から射出されたものとなる。フィールドレンズF
LDの近傍に形成された空中像が2次結像しンズFCL
A、FCLBによりセンサ列SAA、SABの面上に再
結像されると、光軸方向の空中像位置の変位に基づいて
、hンサ列SAA、SAB上の2像はその位置を変える
ことになる。従って、センサ列上の2像の相対位置の変
位(ずれ)量を検出すれば、撮影レンズLNSの焦点状
態を知ることができる。
They are emitted from areas of equal area that do not overlap with each other and correspond to FCLB. Field lens F
Aerial image formed near LD is secondary image lens FCL
A. When re-imaged on the surfaces of sensor arrays SAA and SAB by FCLB, the two images on sensor arrays SAA and SAB change their positions based on the displacement of the aerial image position in the optical axis direction. Become. Therefore, by detecting the amount of displacement (shift) in the relative positions of the two images on the sensor array, it is possible to know the focal state of the photographic lens LNS.

第6図は第5図においてセンサ列SAA。FIG. 6 shows the sensor array SAA in FIG. 5.

SAB上に形成された2像の充電変換出力の例を示す。An example of charging conversion output of two images formed on the SAB is shown.

センサ列SAAの出力像信号をA(i)。The output image signal of the sensor array SAA is A(i).

センサ列SABの出力信号をB(i)とする。Let B(i) be the output signal of the sensor array SAB.

尚、センサの画素数は5〜10個程度以上用いられてい
る。
Note that the number of pixels of the sensor used is about 5 to 10 or more.

第6図において像信号A(i)、B(i)から像ずれ量
PRを検出する信号処理方法としては例えば特開昭58
−142306号公報、特開昭59−107313号公
報、特開昭60−101513号公報、あるいは特願昭
61−160824号などが本出願人により開示されて
いる。これらで開示されている方法により2像の像ずれ
量に基づいて撮影レンズの焦点調節を行うことによって
撮影レンズを合焦させている。
In FIG. 6, as a signal processing method for detecting the image shift amount PR from the image signals A(i) and B(i), for example, Japanese Patent Laid-Open No. 58
The present applicant has disclosed such methods as JP-A-142306, JP-A-59-107313, JP-A-60-101513, and Japanese Patent Application No. 61-160824. The methods disclosed in these documents focus the photographic lens by adjusting the focus of the photographic lens based on the amount of image shift between the two images.

この種の焦点検出装置は一般に比較的大きなデフォーカ
スまで検出でき、かつデフォーカス量を定量的に演算で
きる等のメリットがある為、−眼レフカメラに多用され
ている。しかしながら、−方では2次結像系の調整が煩
雑になりやすい4と、2次結像系の収差を良好に補正す
るのが難しいこと、測距点画角を大きく採った測距点多
点化が難しいこと等の問題点があった。
This type of focus detection device generally has the advantage of being able to detect even a relatively large defocus and being able to quantitatively calculate the amount of defocus, so it is often used in reflex cameras. However, in the - direction, the adjustment of the secondary imaging system tends to be complicated, and it is difficult to properly correct the aberrations of the secondary imaging system, and there are many focusing points with a large angle of view. There were problems such as difficulty in optimizing the system.

特に各要素の組立上の調整においては2個の光電センサ
列SAA、SABがフィールドレンズFLDの置かれた
予定結像面(フィルム等細面)上で被写体面上の同じ位
置を見る様に調整することが重要となっている。
In particular, when adjusting the assembly of each element, adjust so that the two photoelectric sensor arrays SAA and SAB view the same position on the subject plane on the intended imaging plane (a thin surface such as a film) where the field lens FLD is placed. This has become important.

第7図は第5図におけるフィールドレンズFLD以降の
各要素の斜視図である。同図においては正しく各要素が
組立てられた状態では、光電センサ列SAAを2次結像
しンズFCLAで逆方向に投影したときの光学像ZAと
光電センサ列SABを2次結像しンズFCLBで逆方向
に投映した光学像ZBとは完全に重なる。
7 is a perspective view of each element after the field lens FLD in FIG. 5. FIG. In the figure, when each element is correctly assembled, the optical image ZA when projected in the opposite direction by the photoelectric sensor array SAA is formed into a secondary image by the lens FCLA, and the photoelectric sensor array SAB is formed into a secondary image by the lens FCLB. It completely overlaps with the optical image ZB projected in the opposite direction.

しかしながら、例えば一体成型された2次結像しンズF
CLA、FCLBか例えば全体として矢印32に様に中
心軸31の回りに回転する成分を持っていたり、同様に
光電センサ例SSA、SSBのチップが回転成分33を
持っていたりすると、図示の様にフィールドレンズFL
D上で光学像ZAとZBは位置がずれてきてしまう。こ
のときのずれに対する許容値は一般に極めて小さく例え
ば光電センサ列の幅の17100程度におさえる必要が
ある。
However, for example, an integrally molded secondary imaging lens F
For example, if the CLA or FCLB as a whole has a component that rotates around the central axis 31 as shown by an arrow 32, or if the photoelectric sensor chips SSA and SSB have a rotating component 33, as shown in the figure. field lens FL
The positions of the optical images ZA and ZB on D will shift. In general, the allowable value for the deviation at this time needs to be kept to a very small value, for example, about 17,100 times the width of the photoelectric sensor array.

一般に光電センサ列SAA、SABの幅は100μmの
オーダーに設定されているのでセンサ面換算で1μmの
オーダーの精度が要求される。現実の射出成型の精度、
センサチップやモールド光学部品の据え付は精度は、こ
れより大幅に悪いので事実上調整が必須となっている。
Generally, the width of the photoelectric sensor arrays SAA and SAB is set on the order of 100 μm, so accuracy on the order of 1 μm in terms of sensor surface is required. Accuracy of real injection molding,
The accuracy of installing sensor chips and molded optical components is much worse than this, so adjustments are practically required.

又、第8図は従来のフィールドレンズFLDの少なくと
も近傍に存在する予定結像面上に2個の測距視野を示す
視野開口部21.22より成る視野マスクを有する焦点
検出装置の斜視図である。
FIG. 8 is a perspective view of a conventional focus detection device having a field mask consisting of field apertures 21 and 22 showing two distance measurement fields on a predetermined imaging plane existing at least in the vicinity of a conventional field lens FLD. be.

同図において視野開口部21.22のうちどちらの視野
開口部を用いるかは手動、又は自動の手段で選択される
。視野開口部Zlの光学像は2次結像しンズFCLAで
センサ列5AAIへ、又2次結像レンズFCLBでセン
サ列SAB 1上へ各々分離結像されている。同様に視
野開口部Z2の光学像は2次結像しンズFCLAでセン
サ列5AA2上へ2次結像しンズFCLBでセンサ列5
AB2上へ各々分離結像されている。
In the figure, which of the field apertures 21, 22 is to be used is selected manually or automatically. The optical image of the field aperture Zl is separately formed onto the sensor array 5AAI by the secondary imaging lens FCLA, and onto the sensor array SAB 1 by the secondary imaging lens FCLB. Similarly, the optical image of the field aperture Z2 is secondary imaged onto the sensor array 5AA2 by a secondary imaging lens FCLA, and is secondary imaged onto the sensor array 5AA2 by a lens FCLB.
They are each separately imaged onto AB2.

2個の視野開口部21.Z2と4個のセンサ列5AAI
、5ABI、5AA2,5AB2は必ずしも必須の要件
ではないか、全系の中心軸41に対し略対称に配置され
ている。
Two viewing apertures 21. Z2 and 4 sensor rows 5AAI
, 5ABI, 5AA2, and 5AB2 are not necessarily essential requirements, or are arranged approximately symmetrically with respect to the central axis 41 of the entire system.

このような焦点検出装置では2次結像レンズの光学軸4
2ないし43と光学系の中心軸41とを含む面上に視野
マスク、センサ列が配置されていない為、視野マスクの
長平方向(即ち、センサ列の配列方向)と直交する方向
に倍率の色収差が発生してくる。この為、被写体の色分
析により測距視野の位置がその幅方向に変動してしまう
In such a focus detection device, the optical axis 4 of the secondary imaging lens
Since the field mask and the sensor array are not arranged on the plane including 2 to 43 and the central axis 41 of the optical system, chromatic aberration of magnification occurs in the direction perpendicular to the longitudinal direction of the field mask (i.e., the arrangement direction of the sensor array). will occur. For this reason, the position of the distance measurement field of view changes in the width direction due to the color analysis of the object.

又、2次結像レンズの歪曲の為、各センサ列が見る予定
結像面上の視野がゆがんでいる。このゆがみがセンサ列
5AAIと5ABIの対応する位置で等しくないと分離
した2像の見ている場所が異なってくる。
Furthermore, due to the distortion of the secondary imaging lens, the field of view on the intended imaging plane seen by each sensor array is distorted. If this distortion is not equal at the corresponding positions of the sensor arrays 5AAI and 5ABI, the two separated images will look at different locations.

例えば第9図はこのときの様子を示した説明図である。For example, FIG. 9 is an explanatory diagram showing the situation at this time.

同図において、ZAIは2次結像しンズFCLAに依る
センサ列SAA 1の予定結像面への逆投影像、即ちセ
ンサ列5AAIが実際に見ている被写体面上の位置、同
様にZBIはセンサ列5ABIが予定結像面上で見てい
る位置である。
In the same figure, ZAI is the back-projected image of the sensor array SAA 1 onto the intended imaging plane by the secondary imaging lens FCLA, that is, the position on the subject plane actually viewed by the sensor array 5AAI, and similarly, ZBI is the This is the position where the sensor array 5ABI is viewing on the planned imaging plane.

このようなことはセンサ列5AA2と5AB2との間に
おいても同様である。
This also applies to the sensor arrays 5AA2 and 5AB2.

この為、従来ではフィールドレンズ近傍の予定結像面近
傍に配置する視野マスク7の幅を狭くし、更にセンサ列
の幅を広くして視野マスク像を広幅のセンサ列内に余裕
を持って収容する方法を用いている。
For this reason, conventionally, the width of the field mask 7 placed near the planned image formation plane near the field lens is narrowed, and the width of the sensor row is further widened to accommodate the field mask image within the wide sensor row with plenty of room. The method is used.

一般にセンサ列の幅を広く採れば視野マスクの2次結像
系による光学像がゆがんだ場合でも、又、組立誤差や光
学収差のため幅方向に位置変動した場合でも対処できる
。しかしながら充電センサチップ上には光電変換素子以
外に各画素出力を蓄積するキャパシティ、特定の画素出
力を選択的に読み出すゲート、このゲートを駆動するシ
フトレジスタ、蓄積時間を制御する制御回路等多くの回
路要素を集積する為、充電変換素子を自由に大きく、か
つ幅広く設定することは難しい。又、充電変換素子の面
積が増大すれば暗電流が増加しランダムノイズが増える
。この場合の面積増加は光学像の位置変動に対する余裕
であって、入射光量は増加しないからS/N比が劣化し
、焦点検出系の低輝度の動作限界が悪くなる。
Generally, if the width of the sensor array is wide, it can be handled even if the optical image formed by the secondary imaging system of the field mask is distorted, or if the position changes in the width direction due to assembly errors or optical aberrations. However, in addition to the photoelectric conversion element, the charging sensor chip has many other components such as a capacitor for accumulating each pixel output, a gate for selectively reading out a specific pixel output, a shift register for driving this gate, and a control circuit for controlling the accumulation time. Since circuit elements are integrated, it is difficult to freely set the charging conversion element to be large and wide. Furthermore, as the area of the charging conversion element increases, dark current increases and random noise increases. The increase in area in this case is a margin for positional fluctuation of the optical image, and the amount of incident light does not increase, so the S/N ratio deteriorates and the low-luminance operating limit of the focus detection system deteriorates.

この為、従来より狭い幅の視野マスクと幅広のセンサ列
との組み合わせは間がか多く、あまり用いられておらず
、調整の手間をかけながらも、狭い幅のセンサ列上に幅
広の視野マスク像を投影している。この場合の視野マス
クは1個のセンサ列上に2重に光学像が形成されない様
にする機能を持つだけで測距視野はセンサ列の受光領域
で決定されている。
For this reason, the combination of a narrower field of view mask and a wider sensor array than before has been difficult to achieve, and is not often used. It is projecting an image. In this case, the field mask only has the function of preventing a double optical image from being formed on one sensor row, and the distance measurement field of view is determined by the light receiving area of the sensor row.

以上のように2次結像光学系を用いた焦点検出系の無調
整化、機能向上のため、上記の問題を解決する新しい技
術が従来より強く望まれている。
As described above, in order to eliminate the need for adjustment and improve the functionality of a focus detection system using a secondary imaging optical system, there has been a strong desire for a new technique that solves the above problems.

(発明が解決しようとする問題点) 本発明は像ずれ方式の焦点検出装置において、所定形状
のシリンドリカルレンズを受光手段面上の配置すると共
に2次結像レンズの屈折力を適切に設定することにより
、視野マスクとセンサ列との位置調整を容易にし、更に
2次結像系の色収差、歪曲収差等のセンサ列の幅方向の
発生する諸収差の悪影響を軽減させた高鯖度な焦点検出
が可能な焦点検出装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention provides an image shift type focus detection device, in which a cylindrical lens of a predetermined shape is arranged on the light receiving means surface, and the refractive power of the secondary imaging lens is appropriately set. This makes it easy to adjust the position between the field mask and the sensor array, and also reduces the negative effects of various aberrations that occur in the width direction of the sensor array, such as chromatic aberration and distortion in the secondary imaging system. The purpose of this invention is to provide a focus detection device that is capable of

(問題点を解決するための手段) 撮影レンズの像面側に配置した光学手段により該撮影レ
ンズの射出瞳を第1方向に沿って複数の異なる領域に分
割し、該複数の領域を通過し、該撮影レンズの予定結像
面近傍に配置した共有の視野マスクを通過した光束を用
いて被写体像に関する複数の光量分布を複数の光電変換
素子列より成る受光手段面上に形成し、該複数の光量分
布の相対的な位置関係を該受光手段により求め、該受光
手段からの出力信号を利用して該撮影レンズの合焦状態
を演算手段により求める焦点検出装置において、該光電
変換素子列の前方に該第1方向と直交する第2方向に曲
率な有するシリンドリカルレンズを配置し、該光学手段
により該視野マスク像を第2方向において該シリンドリ
カルレンズの曲率を形成した領域内に結像するようにし
ていることである。
(Means for solving the problem) The exit pupil of the photographic lens is divided into a plurality of different regions along the first direction by an optical means arranged on the image plane side of the photographic lens, and the exit pupil of the photographic lens is divided into a plurality of different regions. , forming a plurality of light intensity distributions regarding a subject image on a light receiving means surface consisting of a plurality of photoelectric conversion element arrays using a light beam that has passed through a shared field mask disposed near the planned image forming plane of the photographic lens; In the focus detection device, the relative positional relationship of the light quantity distribution of the photoelectric conversion element array is determined by the light receiving means, and the in-focus state of the photographing lens is determined by the calculation means using the output signal from the light receiving means. A cylindrical lens having a curvature in a second direction perpendicular to the first direction is disposed in front, and the optical means focuses the field mask image in the second direction within a region formed by the curvature of the cylindrical lens. This is what we do.

(実施例) 第1図は本発明の第1の実施例の光学系の要部概略図で
ある。同図において11はフィールドレンズであり、不
図示の撮影レンズと光軸13を同じくして配置されてい
る。12は2次結像系であり、光軸13に関して対称な
位置に2個の2次結像レンズ12A、12Bを有してい
る。14は受光手段であり、2つのセンサ列14A、1
4Bを有している。15はシリンドリカルレンズであり
、センサ列14A、14Bの並び方向である第1方向と
直交する第2方向に曲率を向けて配置されている。16
A、16Bは絞りであり、2次結像レンズ12A、12
Bの前方に配置されている。17は視野マスクであり視
野開口部Zを有し、フィールドレンズ11に接触して、
若しくはその近傍に配置されている。
(Embodiment) FIG. 1 is a schematic diagram of a main part of an optical system according to a first embodiment of the present invention. In the figure, reference numeral 11 denotes a field lens, which is placed on the same optical axis 13 as a photographic lens (not shown). A secondary imaging system 12 has two secondary imaging lenses 12A and 12B located symmetrically with respect to the optical axis 13. 14 is a light receiving means, and two sensor rows 14A, 1
It has 4B. A cylindrical lens 15 is arranged with its curvature directed in a second direction orthogonal to the first direction, which is the direction in which the sensor rows 14A and 14B are arranged. 16
A and 16B are apertures, and secondary imaging lenses 12A and 12
It is located in front of B. Reference numeral 17 denotes a field mask having a field aperture Z, in contact with the field lens 11,
or located nearby.

本実施例ではフィールドレンズ11と2次結像系12は
光学手段の一部を構成している。フィールドレンズ11
は不図示の撮影レンズの射出瞳近傍に2個の2次結像レ
ンズ12A、12Bの瞳面な逆投影している。
In this embodiment, the field lens 11 and the secondary imaging system 12 constitute part of the optical means. field lens 11
are back-projected onto the pupil planes of the two secondary imaging lenses 12A and 12B near the exit pupil of a photographing lens (not shown).

これにより2次結像レンズ12A、12Bに各々入射す
る光束は撮影レンズの射出瞳面上において、互いに重な
り合うことのない等面積の領域から射出されたものとな
る。そして2次結像系12によりフィールドレンズ11
の近傍に形成した空中像をセンサ列14A、14B面上
に再結像している。
As a result, the light beams incident on the secondary imaging lenses 12A and 12B are emitted from areas of equal area that do not overlap each other on the exit pupil plane of the photographic lens. Then, the field lens 11 is formed by the secondary imaging system 12.
The aerial image formed in the vicinity of is re-imaged onto the sensor rows 14A and 14B.

そしてこのときのセンサ列14A、14B上の2像に関
する相対的光量分布を検出することにより撮影レンズの
焦点状態を求めている。
The focal state of the photographic lens is determined by detecting the relative light amount distribution regarding the two images on the sensor arrays 14A and 14B at this time.

このとき本実施例では視野マスク17の視野開口部2の
幅が2次結像レンズ12A、12Bより受光手段12の
前方に配置したシリンドリカルレンズ15の曲率を有し
た領域内に結像し、又、2次結像レンズとシリンドリカ
ルレンズ15により絞り16の開口部16A、16Bが
各々センサ列14A、14Bの幅方向の領域内に結像す
るように各要素を設定している。この結像関係により視
野マスク開口部Zを通過し、絞り16A、16Bを通過
した光がセンサ受光領域内に到来することが保証される
At this time, in this embodiment, the width of the field aperture 2 of the field mask 17 forms an image within a region having the curvature of the cylindrical lens 15 disposed in front of the light receiving means 12 from the secondary imaging lenses 12A and 12B, and , each element is set so that the apertures 16A and 16B of the diaphragm 16 form images within the widthwise regions of the sensor rows 14A and 14B, respectively, by the secondary imaging lens and the cylindrical lens 15. This imaging relationship ensures that the light that passes through the field mask opening Z and passes through the apertures 16A and 16B reaches the sensor light receiving area.

このときの結像関係の拡大模式図を第2図に示す。第2
図は第1図における2次結像レンズ12Aとセンサ列1
4A側の断面図である。
An enlarged schematic diagram of the imaging relationship at this time is shown in FIG. Second
The figure shows the secondary imaging lens 12A and sensor array 1 in FIG.
FIG. 4A is a cross-sectional view of the 4A side.

同図に示すように本実施例では視野マスク17の視野開
口部Zの幅WMが2次結像レンズ12Aによりシリンド
リカルレンズ15の曲率を形成する部分の幅WLより小
さく結像するように視野開口部Zの幅、2次結像レンズ
12Aの屈折力、そして各要素間の距離等が設定されて
いる。
As shown in the figure, in this embodiment, the field aperture is set such that the width WM of the field aperture Z of the field mask 17 is smaller than the width WL of the portion forming the curvature of the cylindrical lens 15 by the secondary imaging lens 12A. The width of the portion Z, the refractive power of the secondary imaging lens 12A, the distance between each element, etc. are set.

一般には光学収差や組立誤差、部品製造、寸法誤差を考
慮し、シリンドリカルレンズ15における面換算でΔ1
の余裕をみると、2次結像レンズ12Aの倍率をβ2A
とすると (β 2A)  xWM +Δ 1   <   WL
の如く設定するのが良い。
In general, considering optical aberrations, assembly errors, parts manufacturing, and dimensional errors, the surface conversion of the cylindrical lens 15 is Δ1.
Looking at the margin, the magnification of the secondary imaging lens 12A is β2A
Then (β 2A) xWM +Δ 1 < WL
It is better to set it like this.

Δ1としては例えば通例の工程精度において100μm
内外、組立、部品の精度な高めておけば30μm程度に
考慮すれば良い。
For example, Δ1 is 100 μm in normal process accuracy.
If the precision of the inside and outside, assembling, and parts is high, it is sufficient to consider it to be around 30 μm.

又、センサ列14Aの幅方向の受光領域WSがシリンド
リカルレンズ15により2次結像レンズ12Aの瞳面に
逆投影したとき、その逆投影像が瞳開口寸法W2より大
きくなるようにシリンドリカルレンズの屈折力や2次結
像レンズ14Aの屈折力等の光学的な諸要素を設定して
いる。
Further, when the light receiving area WS in the width direction of the sensor row 14A is back-projected onto the pupil plane of the secondary imaging lens 12A by the cylindrical lens 15, the refraction of the cylindrical lens is adjusted so that the back-projected image is larger than the pupil aperture size W2. Various optical elements such as power and refractive power of the secondary imaging lens 14A are set.

一般にはシリンドリカルレンズ15の面頂点とせンサ列
14Aの中心との位置合わせ誤差Δ2を考慮して、シリ
ンドリカル系の逆投影倍率をβCとしたとき (βC)X (WS−Δ2)  >  W2の如く設定
するのが良い。
In general, taking into account the alignment error Δ2 between the surface vertex of the cylindrical lens 15 and the center of the sensor array 14A, the back projection magnification of the cylindrical system is set as βC: (βC)X (WS-Δ2) > W2. It's good to do that.

Δ2としては例えば通例の工程精度において100μm
内外、組立、部品の精度を高めておけば30μm内外に
考慮すれば良い。シリンドリカルレンズ面頂点とセンサ
列幅中心との一致が管理されていればもう少しマージン
を削減できる。
For example, Δ2 is 100 μm in normal process accuracy.
If the precision of the inside and outside, assembling, and parts is improved, it is sufficient to consider 30 μm or less. If the alignment between the cylindrical lens surface apex and the center of the sensor row width is controlled, the margin can be reduced a little more.

本実施例では以上の2つの条件を満足させることにより
、視野マスク17の視野開口部Zを通過し、かつ2次結
像レンズ12A、12Bの有効開口部を通過した光束が
全て製造誤差や光学収差等に無関係にセンサ列14A、
14Bに入射するようにしている。
In this embodiment, by satisfying the above two conditions, all the light beams passing through the field aperture Z of the field mask 17 and the effective apertures of the secondary imaging lenses 12A and 12B are free from manufacturing errors and optical The sensor array 14A, regardless of aberrations etc.
14B.

従って、本実施例によれば2個のセンサ列は厳密に被写
体の同じ測距視野を見ることができる。
Therefore, according to this embodiment, the two sensor arrays can see exactly the same distance measurement field of view of the subject.

本実施例においては測距視野は、視野マスク17の視野
開口部Zの形状で規定されるので視野マスク17の視野
開口部Zのエツジ形成は鯖密に゛  行なっている。
In this embodiment, the distance measurement field is defined by the shape of the field aperture Z of the field mask 17, so the edges of the field aperture Z of the field mask 17 are precisely formed.

特に本実施例はフィールドレンズ11の片面を平面とし
、その面上に遮光材料層をエツチングし、これにより矩
形状の視野マスク17の視野開口部Zをパターニングし
て形成している。
In particular, in this embodiment, one side of the field lens 11 is made flat, and a light-shielding material layer is etched on that surface, thereby patterning and forming the field opening Z of the rectangular field mask 17.

第3図は本発明の第2実施例の光学系の斜視図である。FIG. 3 is a perspective view of an optical system according to a second embodiment of the present invention.

本実施例において30は視野マスクであり、測距視野を
示す2つの視野開口部21.22を有し、フィールドレ
ンズ11の近傍に配置されている。視野開口部Zl、2
2のうちどちらの視野開口部を用いるかは手動、又は自
動の手段で選択されている。視野開口部Z1の光学像は
2次結像レンズ12Aでセンサ列14A面上へ、又2次
結像レンズ12Bでセンサ列14B面上へ各々分離結像
されている。同様に視野開口部Z2の光学像は2次結像
レンズ12Aでセンサ列14C面上へ、2次結像レンズ
12Bでセンサ列140面上へ各々分離結像されている
In this embodiment, a field mask 30 has two field apertures 21 and 22 showing distance measurement fields, and is arranged near the field lens 11. Viewing aperture Zl, 2
Which of the two viewing apertures to use is selected manually or automatically. The optical image of the field opening Z1 is separately formed onto the surface of the sensor row 14A by the secondary imaging lens 12A, and onto the surface of the sensor row 14B by the secondary imaging lens 12B. Similarly, the optical image of the field opening Z2 is separately formed onto the surface of the sensor row 14C by the secondary imaging lens 12A, and onto the surface of the sensor row 140 by the secondary imaging lens 12B.

2個の視野開口部21.Z2と4個のセンサ列14A、
14B、14C,14Dは、必ずしも必須の要件ではな
いが、全系の中心軸31に対し略対称に配置されている
Two viewing apertures 21. Z2 and four sensor rows 14A,
14B, 14C, and 14D are arranged approximately symmetrically with respect to the central axis 31 of the entire system, although this is not necessarily an essential requirement.

15A、15Bは各々シリンドリカルレンズであり、各
々センサ列の前方に配置されている。
15A and 15B are cylindrical lenses, each of which is arranged in front of the sensor row.

2つのシリンドリカルレンズ15A、15Bは第1図の
実施例と同様に各々センサ列14A。
The two cylindrical lenses 15A and 15B are each connected to the sensor array 14A, similar to the embodiment shown in FIG.

14B、又はセンサ列14C,14Dの並び方向である
第1方向と直交する第2方向に曲率な向けて配置されて
いる。
14B, or a second direction perpendicular to the first direction, which is the direction in which the sensor rows 14C and 14D are arranged.

本実施例においては、2次結像レンズ12A。In this embodiment, the secondary imaging lens 12A.

12Bの各主光線が光学系の中心軸31と2次結像レン
ズの軸32.33を含む面内にないので、結像主光線の
傾き角と対応した分だけ、シリンドリカルレンズ15A
、15Bの面頂点とセンサ列中心との位置関係なセンサ
列の幅方向にずらしている。
Since each principal ray of the lens 12B is not within the plane that includes the central axis 31 of the optical system and the axes 32 and 33 of the secondary imaging lens, the cylindrical lens 15A has an angle corresponding to the inclination angle of the imaging principal ray.
, 15B are shifted in the width direction of the sensor row based on the positional relationship between the apex of the surface and the center of the sensor row.

又、本実施例では特に測距点を多点化する際にとりわけ
有効である。広い画角に分散する多数の測距点を、例え
ば第8図に示す従来光学系の組み合わせで実施しようと
すると光学系部品は一体成型できるとしても、レンズ面
頂点の位置を1μmオーダーで制御できる射出成形技術
が難しい為、各測距点毎の調整作業が必要になる。この
場合、調整が極めて難しいこと、及び焦点検出光学系の
形状が大きくなるが、本実施例によればこれらの問題点
を解決した焦点検出装置を達成することができる。
Further, this embodiment is particularly effective when increasing the number of distance measurement points. For example, if a large number of distance measurement points distributed over a wide angle of view are attempted to be implemented using the combination of conventional optical systems shown in Figure 8, even if the optical system parts can be integrally molded, the position of the apex of the lens surface cannot be controlled on the order of 1 μm. Because injection molding technology is difficult, adjustment work is required for each distance measurement point. In this case, adjustment is extremely difficult and the shape of the focus detection optical system becomes large; however, according to this embodiment, a focus detection device that solves these problems can be achieved.

第4図は本発明の第3実施例の光学系の概略図である。FIG. 4 is a schematic diagram of an optical system according to a third embodiment of the present invention.

同図において第3図で示した要素と同一要素には同符番
な付している。
In this figure, the same elements as those shown in FIG. 3 are given the same reference numerals.

本実施例は直交した2方向にセンサ配列方向、即ちセン
サ列14A、14Bと14C,14D方向を持つ2点測
距系の一実施例である。
This embodiment is an embodiment of a two-point ranging system having sensor array directions in two orthogonal directions, that is, sensor rows 14A, 14B and 14C, 14D.

本実施例によれば光学収差、部品誤差、組立誤差から来
る問題をすべてセンサ列前方に配置したシリンドリカル
レンズ15A、15Bで吸収できるので、この様な焦点
検出光学系に適用した場合効果が大きい。即ち、誤差の
許容幅が広がるためにフィールドレンズ11.2次結像
レンズ12A、12B、シリンドリカル板41.2系列
のセンサ列ベアを集積した充電素子チップ等を2個の測
距視野に共通して一体成形し、かつ無調整となる。又、
2次結像系の収差にかかわらず1個の測距点で見る2個
の分離光学像は、センサ列幅方向に全く同じ視野を見る
ので2像の相関演算の信頼性は基本的に優れたものとな
る。
According to this embodiment, problems caused by optical aberrations, component errors, and assembly errors can all be absorbed by the cylindrical lenses 15A and 15B placed in front of the sensor row, so it is highly effective when applied to such a focus detection optical system. That is, in order to widen the tolerance for error, the field lens 11, the secondary imaging lenses 12A and 12B, the cylindrical plate 41, and the charging element chip that integrates the sensor array bears of the 2 series, etc., are common to the two distance measurement fields of view. It is integrally molded and requires no adjustment. or,
Regardless of aberrations in the secondary imaging system, the two separated optical images seen at one distance measurement point see exactly the same field of view in the width direction of the sensor row, so the reliability of the correlation calculation between the two images is basically excellent. It becomes something.

(発明の効果) 本発明によれば像ずれ方式の焦点検出装置において、前
述の如く所定形状のシリンドリカルレンズを受光手段面
上に設けると共に2次結像レンズの屈折力を設定するこ
とにより、各光学要素の位置調整や組立を容易にし、又
、諸収差の発生の少ない高い光学性能の分離光学像が容
易に得られ、更に測距点を大画角で多数採ることが容易
となり高績度な焦点検出が可能な焦点検出装置を達成す
ることができる。
(Effects of the Invention) According to the present invention, in the image shift type focus detection device, each of It makes it easy to adjust the position and assemble the optical elements, and it also makes it easy to obtain separated optical images with high optical performance with less occurrence of various aberrations, and it also makes it easy to take a large number of distance measurement points at a large angle of view, resulting in high-performance focusing. A focus detection device capable of detection can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の光学系の要部概略図、第
2図は第1図の一部分の拡大模式図、第3図、第4図は
各々本発明の第2.第3実施例の光学系の要部概略図、
第5図、第7図、第8図は従来の像ずれ方式の焦点検出
装置の光学系の概略図、第6図は第5図の受光手段から
得られる像ずれ信号の説明図、第9図は第8図に3ける
測距視野の説明図である。 図中、11はフィールドレンズ、12は2次結像系、f
2A、12Bは2次結像レンズ、13は撮影レンズの光
軸、14は受光手段、15゜15A、15Bはシリンド
リカルレンズ、14A、14B、14C,14Dはセン
サ列、16A、16Bは絞り、17は視野マスク、Z。 Zl、Z2は視野開口部である。 特許出願人  キャノン株式会社
FIG. 1 is a schematic diagram of the main parts of the optical system according to the first embodiment of the present invention, FIG. 2 is an enlarged schematic diagram of a portion of FIG. 1, and FIGS. 3 and 4 are respectively the second embodiment of the present invention. A schematic diagram of the main parts of the optical system of the third embodiment,
5, 7, and 8 are schematic diagrams of the optical system of a conventional image shift type focus detection device, FIG. 6 is an explanatory diagram of an image shift signal obtained from the light receiving means in FIG. 5, and FIG. This figure is an explanatory diagram of the distance measurement field of view 3 in FIG. 8. In the figure, 11 is a field lens, 12 is a secondary imaging system, f
2A, 12B are secondary imaging lenses, 13 is an optical axis of a photographing lens, 14 is a light receiving means, 15° 15A, 15B are cylindrical lenses, 14A, 14B, 14C, 14D are sensor rows, 16A, 16B are an aperture, 17 is the visual field mask, Z. Zl and Z2 are field apertures. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)撮影レンズの像面側に配置した光学手段により該
撮影レンズの射出瞳を第1方向に沿って複数の異なる領
域に分割し、該複数の領域を通過し、該撮影レンズの予
定結像面近傍に配置した共有の視野マスクを通過した光
束を用いて被写体像に関する複数の光量分布を複数の光
電変換素子列より成る受光手段面上に形成し、該複数の
光量分布の相対的な位置関係を該受光手段により求め、
該受光手段からの出力信号を利用して該撮影レンズの合
焦状態を演算手段により求める焦点検出装置において、
該光電変換素子列の前方に該第1方向と直交する第2方
向に曲率を有するシリンドリカルレンズを配置し、該光
学手段により該視野マスク像を第2方向において該シリ
ンドリカルレンズの曲率を形成した領域内に結像するよ
うにしていることを特徴とする焦点検出装置。
(1) The exit pupil of the photographic lens is divided into a plurality of different regions along the first direction by an optical means arranged on the image plane side of the photographic lens, and the projected result of the photographic lens is passed through the plurality of regions. A plurality of light intensity distributions related to the subject image are formed on a light receiving means surface consisting of a plurality of photoelectric conversion element arrays using the light flux that has passed through a shared field mask placed near the image plane, and the relative light intensity distributions of the plurality of light intensity distributions are calculated. Determining the positional relationship by the light receiving means,
A focus detection device that uses an output signal from the light receiving means to determine the in-focus state of the photographic lens by means of a calculation means,
A cylindrical lens having a curvature in a second direction perpendicular to the first direction is arranged in front of the photoelectric conversion element array, and the field mask image is formed in the second direction by the optical means in an area where the curvature of the cylindrical lens is formed. A focus detection device characterized in that an image is formed within the center of the image.
JP7049588A 1988-03-24 1988-03-24 Focus detecting device Pending JPH01243009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7049588A JPH01243009A (en) 1988-03-24 1988-03-24 Focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7049588A JPH01243009A (en) 1988-03-24 1988-03-24 Focus detecting device

Publications (1)

Publication Number Publication Date
JPH01243009A true JPH01243009A (en) 1989-09-27

Family

ID=13433161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7049588A Pending JPH01243009A (en) 1988-03-24 1988-03-24 Focus detecting device

Country Status (1)

Country Link
JP (1) JPH01243009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267510A (en) * 1988-09-02 1990-03-07 Canon Inc Focus detector
JP2002341231A (en) * 2001-05-17 2002-11-27 Canon Inc Focus detecting device, focus adjustment quantity detecting device, and image pickup device
JP2009047735A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267510A (en) * 1988-09-02 1990-03-07 Canon Inc Focus detector
JP2002341231A (en) * 2001-05-17 2002-11-27 Canon Inc Focus detecting device, focus adjustment quantity detecting device, and image pickup device
JP2009047735A (en) * 2007-08-13 2009-03-05 Olympus Corp Imaging apparatus and image processing program

Similar Documents

Publication Publication Date Title
US5017005A (en) Focal point detecting optical apparatus
EP0782026B1 (en) Focus detecting apparatus
US4670645A (en) Focus detecting device with shading reduction optical filter
US7676147B2 (en) Focus detection apparatus and optical apparatus
US5109154A (en) Focus detection device having a plurality of means for forming light patterns provided at different distances from the optical axis
JPS6269217A (en) Focus detecting device
JPS63118112A (en) Focus detector
JPS58106511A (en) Focusing detecting optical system
US6643460B2 (en) Camera and focal point detection apparatus
US4878078A (en) Focus detecting device and method of making same
JPH01243009A (en) Focus detecting device
GB2130041A (en) Focus determination device
US4455065A (en) Optical device
US6272291B2 (en) Focus detecting device
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
US5289226A (en) Focus detecting device including a diffusion surface disposed on a predetermined image surface
JP3179162B2 (en) Focus detection device
US8077251B2 (en) Photometry apparatus and camera
JP3359682B2 (en) Focus detection device
JP4323592B2 (en) Focus detection device
JP2600934B2 (en) Projection system for automatic focus detection
US5321461A (en) Focus detecting device
JP2757373B2 (en) Focus detection device
JPH0688938A (en) Focus detector
JPH02101413A (en) Light projecting system for focus detection