JPS58106511A - Focusing detecting optical system - Google Patents

Focusing detecting optical system

Info

Publication number
JPS58106511A
JPS58106511A JP20583081A JP20583081A JPS58106511A JP S58106511 A JPS58106511 A JP S58106511A JP 20583081 A JP20583081 A JP 20583081A JP 20583081 A JP20583081 A JP 20583081A JP S58106511 A JPS58106511 A JP S58106511A
Authority
JP
Japan
Prior art keywords
image
lens
optical system
field lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20583081A
Other languages
Japanese (ja)
Inventor
Susumu Matsumura
進 松村
Takashi Suzuki
隆史 鈴木
Keiji Otaka
圭史 大高
Kenji Suzuki
謙二 鈴木
Kenichi Kaita
健一 戒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20583081A priority Critical patent/JPS58106511A/en
Publication of JPS58106511A publication Critical patent/JPS58106511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To make a focusing optical system small-sized in an image shifting system which has used a secondary image-forming system, by providing a relay image-forming system for reducing an image on a prearranged image-forming surface and forming an image on a photoelectric element train. CONSTITUTION:On a prearranged image-forming surface of a photographic lens, or its conjugate position, a field lens 13 is provided, and luminous fluxes la, lb from the photographic lens pass through an opening 11 of a mask plate 12 and form an image on the field lens 13, the luminous fluxes which have passed through the field lens 13 are reflected by a prism 14, advance to secondary image-forming lenses 16a, 16b from the opening of the second mask plate 15, also are reflected by a prism 17, and form an image on CCD line sensors 18a, 18b. The secondary image-forming lenses 16a, 16b reduce an image in the slit 11 of the prearranged image-forming surface, to about 1/2 and form an image on the line sensors 18a, 18b, therefore, as for the licenser, the shortest one in its length can be used.

Description

【発明の詳細な説明】 本発明は、−眼レフレックスカメラ等に於いて撮影レン
ズによる結像光束を用いた合焦検知用光学系に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system for detecting focus using an imaging light beam from a photographing lens in a -eye reflex camera or the like.

従来この種の合焦状態検出装置は大きく分けて、結像光
束のボケを検知する方式、特殊光学系によって二像のズ
レを検知する方式が知られている。後者の像ズレ検知方
式ではフィルム面等の予定結像面と共役な面にできる像
をリレー結像系でセンサに導き像のズレを検出する所謂
二次結像方式が、例えば特開昭55−118019号公
報、特開昭55−124112号公報、特開昭55−1
5533.1号公報等で種々提案されている。然しなか
ら前者のボケ検知方式に較べると、二次結像方式を用い
た像ズレ検知方式は光学系全体の大きさが大となり、−
眼しフレ・ンクスカメラのような空間利用効率の高いカ
メラに組込まれたものは未だに実現していない。
Conventionally, this type of focus state detection device is broadly classified into two types: a method that detects blurring of an imaging light beam, and a method that detects a shift between two images using a special optical system. In the latter image shift detection method, a so-called secondary imaging method in which an image formed on a plane conjugate to a planned image formation plane such as a film surface is guided to a sensor by a relay imaging system and image shift is detected is used, for example, as disclosed in Japanese Patent Laid-Open No. 55 -118019, JP 55-124112, JP 55-1
Various proposals have been made, such as in Publication No. 5533.1. However, compared to the former blur detection method, the image shift detection method using the secondary imaging method requires a larger overall optical system, and -
It has not yet been possible to incorporate this into a camera with high space utilization efficiency, such as an eye-flex camera.

第1図に示す装置は特開昭55−155308号公報に
開示された合焦検知用光学系であり、センサーパッケー
ジを含めた光分割器は全体が10mmX 10 mmX
 5 mm程度の空間内に収納されている。この光学系
では、図示しない結像レンズからの結像光束ρ(光軸上
の光線のみを示す)は、一部がハーフミラ−若しくは微
小部分が透過面であるクイックリターンミラー1を透過
し、サブミラー2によって下方に偏向され光分割素子3
に入射する。この光分割素子3により結像光束ρは3分
割され、相互に光路長差を持ちつつ3木のCCDライン
センサ4a、4b、4Cに入射する。ここで中央のライ
ンセンサ4bは予定結像面、即ちフィルム面に共役の位
置にある。従ってラインセンサ4aは予定結像面の前方
、ラインセンサ4Cは後方と、結像光束夕中の光軸方向
の異なった3つの位置で像を受光し、それぞれの位置で
の像のボケ具合をイメージセンサを用いて比較処理し合
焦位置を捜すわけである。
The device shown in Fig. 1 is a focus detection optical system disclosed in Japanese Patent Application Laid-Open No. 55-155308, and the entire light splitter including the sensor package is 10 mm x 10 mm x
It is housed within a space of approximately 5 mm. In this optical system, an imaging light beam ρ (only the rays on the optical axis are shown) from an imaging lens (not shown) passes through a quick return mirror 1 whose part is a half mirror or a minute part is a transmission surface, and then passes through a submirror. 2 and is deflected downward by the light splitting element 3
incident on . This light splitting element 3 divides the imaging light beam ρ into three parts, which enter three CCD line sensors 4a, 4b, and 4C while having a mutual optical path length difference. Here, the central line sensor 4b is located at a position conjugate to the intended imaging plane, that is, the film plane. Therefore, the line sensor 4a receives images at three different positions in the optical axis direction of the imaging light beam, in front of the planned image plane, and the line sensor 4C at the rear, and evaluates the degree of blurring of the image at each position. The image sensor is used to perform comparison processing and find the in-focus position.

このような合焦検出用光学系を一眼レフレックスカメラ
に組込む場合に、最も設置し易い場所はクイックリター
ンミラーボックスの下方である。
When incorporating such a focus detection optical system into a single-lens reflex camera, the easiest place to install it is below the quick return mirror box.

ボケ検知方式に於いては、予定焦点面及びその前後2点
で像情報を検出するため、光軸に沿った光路長が多少長
くなるが、長くなる分については光軸を横方向に偏向す
ればよい。例えば第2図は特開昭55−118019号
公報に示された二次結像方式を用いた像ズレ検知方式で
ある。撮影レンズ6を通過した光束ρの一部は、クイッ
クリターンミラー1を通過しサブミラー2で下方に反射
され、フィールドレンズ7を通り反射ミラー8で横方向
に偏向される。偏向された光束夕は一対のリレーレンズ
9を通過して光電素子10に到達することになる。この
ように二次結像方式では少なくとも2段の結像光学系を
必要とするため、通常の方式を用いていた。のではなか
なか小型化が困難である。
In the blur detection method, since image information is detected at the planned focal plane and two points before and after it, the optical path length along the optical axis becomes somewhat longer, but the longer optical axis must be deflected laterally. Bye. For example, FIG. 2 shows an image shift detection method using a secondary imaging method disclosed in Japanese Unexamined Patent Publication No. 55-118019. A part of the light beam ρ that has passed through the photographing lens 6 passes through the quick return mirror 1 and is reflected downward by the submirror 2, passes through the field lens 7, and is laterally deflected by the reflection mirror 8. The deflected light flux passes through a pair of relay lenses 9 and reaches a photoelectric element 10. As described above, since the secondary imaging method requires at least two stages of imaging optical systems, a normal method has been used. Therefore, miniaturization is quite difficult.

本発明の目的は、二次結像方式を用いた像ズレ方式に於
ける合焦用光学系を小型化し、精度を犠牲にすることな
くより短いラインセンサを用いて、カメラの実装に容易
な合焦検知用光学系を提供することにあり、その要旨は
、撮影レンズの予定結像面又は予定結像面に共役な位置
にフィールドレンズを設け、該フィールドレンズ上又は
その近傍にできる像を、少なくとも一対のリレー結像系
によって光電素子列上に導き、2系列の光電素子列の出
力信号より合焦状態を判定する合焦装置に於いて、前記
リレー結像系は、予定結像面上の像を縮小して前記光電
素子列上に結像することを特徴とするものである。
The purpose of the present invention is to miniaturize the focusing optical system in the image shift method using the secondary imaging method, use a shorter line sensor without sacrificing accuracy, and simplify the implementation of the camera. The purpose is to provide an optical system for focus detection, the gist of which is to provide a field lens at a predetermined image formation plane of a photographing lens or a position conjugate to the predetermined image formation plane, and to detect an image formed on or near the field lens. , in a focusing device that is guided onto a photoelectric element array by at least one pair of relay imaging systems and determines the in-focus state from the output signals of the two series of photoelectric element arrays, the relay imaging system is configured to This method is characterized in that the above image is reduced in size and formed on the photoelectric element array.

本発明を第3図以下に図示の実施例に基づいて詳細に説
明する。
The present invention will be explained in detail based on the embodiment shown in FIG. 3 and below.

概して像ズレ検知方式に於いて、全系の長さを小さくす
るためには二次結像系に縮小系か拡大系かを選択するこ
とになる。然し拡大系を用いた場合に、必要となるライ
ンセンサの長さが大きくなり、コンパクトな系としては
不適当である。又、全系の長さを一定に保持したまま、
拡大系にすることはカメラへの実装に不都合が生じる。
In general, in image shift detection systems, in order to reduce the length of the entire system, either a reduction system or an expansion system is selected as the secondary imaging system. However, when a magnifying system is used, the required length of the line sensor increases, making it unsuitable as a compact system. Also, while keeping the length of the entire system constant,
Using an enlargement system causes problems in mounting on the camera.

第3図は等倍結像二次結像系を用いた合焦検出光学系の
展開図であって、Aは撮影レンズの瞳位置、Bは予定結
像面、Cは二次結像レンズが置かれる平面、Dはライン
センサ面の位置である。二次結像系の全長a+bを一定
として、0面に置く二次結像レンズを拡大系とするとa
<bでなければならない。するとB面に置かれたフィー
ルドレンズによるA面にある撮影レンズの瞳の像が、C
面上のそれよりも小さくなる。つまりフィールドレンズ
による瞳の結像倍率が小さくなり、そのために二次結像
レンズの組立て位置精度がより厳しいものを要求される
ことになる。又、二次結像レンズの光軸のズレ量Δがよ
り小さくなり、二次結像レンズの加工が困難となる。従
って本発明は二次結像系を縮小系にすることにより、小
型の光学系を実現するものである。
Fig. 3 is a developed view of the focus detection optical system using a 1-magnification secondary imaging system, where A is the pupil position of the photographing lens, B is the intended imaging plane, and C is the secondary imaging lens. is the plane on which D is placed, and D is the position of the line sensor surface. If the total length a+b of the secondary imaging system is constant, and the secondary imaging lens placed on the 0 plane is an enlargement system, then a
Must be <b. Then, the image of the pupil of the photographic lens on surface A by the field lens placed on surface B becomes C.
smaller than that on the surface. In other words, the imaging magnification of the pupil by the field lens becomes smaller, which requires stricter accuracy in the assembly position of the secondary imaging lens. Furthermore, the amount of deviation Δ of the optical axis of the secondary imaging lens becomes smaller, making it difficult to process the secondary imaging lens. Therefore, the present invention realizes a compact optical system by making the secondary imaging system a reduction system.

第4図は二次結像系の構成図であり、図示しないサブミ
ラーにより下方に反射された結像光束夕の光路に沿って
順次に、スリット11を有する第1のマスク板12、フ
ィールドレンズ13、光路を偏向する第1の三角プリズ
ム14、開口を有する第2のマスク板15、第1.第2
の二次結像レンズ16a、16b、光路を偏向する第2
の三角プリズム17、第1、第2のCCDラインセンサ
18a、18bを有するセンサ基板19が配置されてい
る。第1のマスク板12は予定結像面の近傍に位置し、
スリット11の長さは4mm程度である。光束ρa、β
bは第1のマスク板を介してフィールドレンズ13上に
結像され、このフィールドレンズ13は二次結像レンズ
16a、16bを撮影レンズの謹上に結像するようにな
っている。フィールドレンズ13を通過した光束は、第
1の三角プリズム14の金属反射面20で反射されて偏
向し、二次結像レンズ16a、16bに於いて光束ρa
、ρbとなって進み、更に第2の三角プリズム17の反
射面21で反射されCCDラインセンサ18a、18b
上に、結像する。尚、二次結像レンズ16a、16bは
予定結像面のスリット11内の像をほぼ1/2に縮小し
てラインセンサ18a、18bに結像するようになって
いる。従って各ラインセンサの長さは、スリット11の
長さを2分割した2mm程度となり、双方併せて4++
u++前後で済み、長さの短いラインセンサを用いるこ
とが可能となる。
FIG. 4 is a configuration diagram of the secondary imaging system, in which a first mask plate 12 having a slit 11, a field lens 13, a first mask plate 12 having a slit 11, a field lens 13, etc. , a first triangular prism 14 that deflects the optical path, a second mask plate 15 having an aperture, and a first triangular prism 14 that deflects the optical path. Second
secondary imaging lenses 16a, 16b, and a second lens for deflecting the optical path.
A sensor board 19 having a triangular prism 17 and first and second CCD line sensors 18a and 18b is arranged. The first mask plate 12 is located near the intended imaging plane,
The length of the slit 11 is about 4 mm. Luminous flux ρa, β
b is imaged onto the field lens 13 via the first mask plate, and this field lens 13 is designed to form images of the secondary imaging lenses 16a and 16b onto the photographing lens. The light beam that has passed through the field lens 13 is reflected and deflected by the metal reflective surface 20 of the first triangular prism 14, and then enters the secondary imaging lenses 16a and 16b into a light beam ρa.
, ρb, and is further reflected by the reflecting surface 21 of the second triangular prism 17 to form the CCD line sensors 18a, 18b.
Form an image on top. The secondary imaging lenses 16a and 16b are designed to reduce the image within the slit 11 on the intended imaging plane to approximately 1/2 and form the image on the line sensors 18a and 18b. Therefore, the length of each line sensor is approximately 2 mm, which is the length of the slit 11 divided into two, and the total length of both is 4++
It only requires around u++, and it becomes possible to use a short line sensor.

第5図は、第4図の二次結像系に関する展開光学系であ
る。第1のマスク板12のスリット11の長さをWl、
第2の二次結像レンズ16aの光軸のフィールドレンズ
13の光軸からの偏位を×2、第2のラインセンサ18
bの中心とフィールドレンズ13の光軸との間の距離を
Xd、第2のラインセンサ18bの長さをWdとすると
、 Wd= (b/a)  *Wi    −* a * 
(1)Xd=X2拳(a+b)/a    z(2)と
なる。ラインセンサ18a、18bとの間の間隙が少な
い方がセンサの利用効率、系のコンパクト性が向上する
ので、Xd= Wd/ 2であれば理想的である。(1
) 、 (2)式からこのときの×2は、X2=b・W
i/(2(a+b))  +1(3)となる。
FIG. 5 is a developed optical system related to the secondary imaging system of FIG. 4. The length of the slit 11 of the first mask plate 12 is Wl,
The deviation of the optical axis of the second secondary imaging lens 16a from the optical axis of the field lens 13 is ×2, and the second line sensor 18
If the distance between the center of b and the optical axis of the field lens 13 is Xd, and the length of the second line sensor 18b is Wd, then Wd= (b/a) *Wi - * a *
(1) Xd=X2 fist(a+b)/az(2). Since the smaller the gap between the line sensors 18a and 18b, the more efficient the sensor is used and the more compact the system is, it is ideal if Xd=Wd/2. (1
), From equation (2), x2 in this case is X2=b・W
i/(2(a+b)) +1(3).

第5図に於いて、Wi=4mm、フィールドレンズ13
と二次結像レンズ16a、16b間の距111aを10
mm、二次結像L/7ズ16a、16bとラインセンサ
18a、18b間の距gbを5mmとすると、X2=0
.667mmとなる。このときの二次結像系の全長はa
+b=15mmとなり、極めてコンパクトな光学系が得
られる。又、二次結像レンズ16a、16bの焦点距離
は3.33mmとな)6・ 特に第4図に示したように、光束ρを三角プリズム14
.17で折曲することにより、カメラの実装上実用的な
サイズが得られる。又、このとき(3)式の条件を満足
すれば、ラインセンサ18aと18bとが間隙なく連結
されたものでよく、実装上極めて好都合となる。第4図
に於いて、開口を有する第2のマスク板15と第1、第
2の二次結像レンズ16a、16bとの関係を、マスク
板15に垂直な方向から見ると第6図に示すようになっ
ている。この第6図に於いて二次結像レンズ18aと1
6bは境界線Sで接している。第2のマスク板15上に
は半円状の開口22a、22bを合せた円形の開口部2
2が設けられである。開口部22の直径dは、この開口
部22を撮影レンズ方向に逆投影した場合に、撮影レン
ズの瞳を十分透過するに足る大きさとしである。ちなみ
に撮影レンズの明るさをF5゜6、第3図に於けるその
射出瞳位置Aから結像面Bまでの距離を70mmとし、
第4図に於けるフィールドレンズ13から第1のマスク
板15までの空気換算光路長を10mmとしたとき、フ
ィールドレンズ13の焦点距離を8.75mmとすれば
、撮影レンズの射出瞳の第2のマスク板15上の像直径
は1.79mmとなるから、マスク板15上の開口部2
2の直径dは1.5+++m程度が好適と計算される。
In Figure 5, Wi = 4mm, field lens 13
and the distance 111a between the secondary imaging lenses 16a and 16b is 10
mm, and if the distance gb between the secondary imaging L/7 lenses 16a, 16b and the line sensors 18a, 18b is 5 mm, then X2=0
.. It becomes 667mm. The total length of the secondary imaging system at this time is a
+b=15 mm, resulting in an extremely compact optical system. In addition, the focal length of the secondary imaging lenses 16a and 16b is 3.33 mm) 6. In particular, as shown in FIG.
.. By bending at 17, a practical size for mounting the camera can be obtained. Further, if the condition of equation (3) is satisfied at this time, the line sensors 18a and 18b may be connected without any gap, which is extremely convenient for mounting. In FIG. 4, the relationship between the second mask plate 15 having an opening and the first and second secondary imaging lenses 16a, 16b is shown in FIG. 6 when viewed from a direction perpendicular to the mask plate 15. It is as shown. In this FIG. 6, the secondary imaging lenses 18a and 1
6b is in contact with the boundary line S. On the second mask plate 15, there is a circular opening 2 formed by combining semicircular openings 22a and 22b.
2 is provided. The diameter d of the aperture 22 is set to be large enough to sufficiently transmit the light through the pupil of the photographic lens when the aperture 22 is back-projected toward the photographic lens. By the way, the brightness of the photographic lens is F5°6, and the distance from the exit pupil position A to the imaging plane B in Fig. 3 is 70 mm.
When the air-equivalent optical path length from the field lens 13 to the first mask plate 15 in FIG. 4 is 10 mm, and the focal length of the field lens 13 is 8.75 mm, the second Since the image diameter on the mask plate 15 is 1.79 mm, the opening 2 on the mask plate 15 is
It is calculated that the diameter d of 2 is preferably about 1.5+++m.

一般に開口部22の直径dは、dく(撮影レンズの射出
瞳径×フィールドレンズ13の結像倍率)となるが、実
際には一眼レフレックスカメラで用いられるレンズの焦
点距離、及びFナンバーは数多く存在し、この直径dは
最も大きいFナンバーの最も遠い射出瞳の径から求まる
ことか目安となる。ラインセンサ18a、18b面上の
明るさの点からいえば、Fl、4の撮影レンズを用いた
ときに開口22a、22bが形成する開口部22の直径
をF5.6に対応しておくのは余裕があり過ぎるので、
開口部22を可変絞りにしておくことが望ましい。尚、
第6図に於いて2個の対称形の二次結像レンズ16a、
16bに接する境界線Sの長さは、マスク板15上の開
口部22の直径dと同じか或いは更に大きければよい。
Generally, the diameter d of the aperture 22 is d (exit pupil diameter of the photographic lens x imaging magnification of the field lens 13), but in reality, the focal length and F number of the lens used in a single-lens reflex camera are There are many, and the diameter d can be determined from the diameter of the farthest exit pupil with the largest F number. In terms of brightness on the line sensor 18a, 18b surface, it is best to make the diameter of the aperture 22 formed by the apertures 22a, 22b correspond to F5.6 when using Fl, 4 photographing lenses. I have too much leeway, so
It is desirable that the aperture 22 has a variable aperture. still,
In FIG. 6, two symmetrical secondary imaging lenses 16a,
The length of the boundary line S in contact with the mask plate 16b may be equal to or larger than the diameter d of the opening 22 on the mask plate 15.

又、開口部22の形状は半円に内接するような短形の開
口部でもよい。このように開口部22の大きさを撮影レ
ンズの射出瞳に於けるフィールドレンズ13による像よ
りも小S目にする理由は、組立時に二次結像レンズ16
a、16bの境界線S、又は第2のマスク板15上の開
口部22の間の境界線が、撮影レンズの光軸から外れた
場合に第4図の2個のラインセンサ18a、18b上の
像の明るさが異なってくるからである。   、゛ 第4図に於いては、三角プリズム14.17の反射面2
0.21は金属被膜による反射面としたか、クイックリ
ターンミラー1の光透過部とサブミラー2によって結像
光末々の断面図内での広がりをF4程度にすれば、結像
光束ρの最外側の光線が撮影レンズの光軸となす角、即
ちF4の光束の半角は7.1°となる。ここで反射面2
0で光束ρを全反射させるためには、第7図に示すよう
に、第1の三角プリズム14の反則面2oとフィールド
レンズ13の光軸とのなす角θが、全反射角をθtとし
たときに、 θ≦直角−結像光束の半角−全反射角 となればよいので、θを(90’−7,1°−θt)よ
りも小さくすることによって反射面20に反射被膜を設
ける必要がなくなる。ちなみにプリズム14をアクリル
材料で形成した場合、アクリル材料の屈折率nは1.4
9であり、全反射角θtはsinθt = 1 / n
から42.2°となり、θく40.7’であればよく、
第2の三角プリズム17についても同様に反射被膜を設
けない全反射面とすることができる。。
Further, the shape of the opening 22 may be a rectangular opening inscribed in a semicircle. The reason why the size of the aperture 22 is made smaller than the image formed by the field lens 13 at the exit pupil of the photographing lens is because the secondary imaging lens 16 is
When the boundary line S between a and 16b or the boundary line between the opening 22 on the second mask plate 15 deviates from the optical axis of the photographic lens, the line sensors 18a and 18b in FIG. This is because the brightness of the images differs. , ``In Fig. 4, the reflective surface 2 of the triangular prism 14.17
0.21 is the outermost part of the imaging light beam ρ if the reflection surface is made of a metal coating, or if the spread of the imaging light in the cross-sectional view at the end of the quick return mirror 1 and the submirror 2 is set to about F4. The angle that the light ray makes with the optical axis of the photographing lens, that is, the half angle of the light beam at F4 is 7.1°. Here, reflective surface 2
In order to totally reflect the luminous flux ρ at 0, as shown in FIG. When θ≦right angle - half angle of imaging light beam - total reflection angle, it is sufficient that θ is smaller than (90'-7, 1° - θt) to provide a reflective coating on the reflective surface 20. There will be no need. By the way, when the prism 14 is made of acrylic material, the refractive index n of the acrylic material is 1.4.
9, and the total reflection angle θt is sinθt = 1/n
is 42.2°, and it is sufficient if θ is 40.7',
Similarly, the second triangular prism 17 may have a total reflection surface without a reflective coating. .

第8図は他の実施例を示しほぼ第4図の実施例と同様で
あるが、第4図に於けるフィールドレンズ13と第1の
三角プリズム14が一体化され、第1のプリズムレンズ
23となっている。このような形状のプリズムレンズ2
3は射出成型によって安価に大量の製造が可能で、しか
も部品点数を少なくすることによって組立調整の工数を
低減でき極めて有効である。
FIG. 8 shows another embodiment, which is almost the same as the embodiment shown in FIG. 4, except that the field lens 13 and the first triangular prism 14 in FIG. It becomes. Prism lens 2 with this shape
3 can be manufactured in large quantities at low cost by injection molding, and by reducing the number of parts, the number of assembly and adjustment steps can be reduced, which is extremely effective.

第9図は更に他の実施例による光学系の断面図であり、
第8図に於ける第1のプリズムレンズ23に加えて、一
対の第1、第2の二次結像レンズ16a、16bと第2
の三角プリズム17とが一体化され第2のプリズムレン
ズ24とされている。尚、二次結像レンズLea、16
bはこのように第2の三角プリズム17と一体化しても
よいが、第1の三角プリズム14の射出面に設けてもよ
く、或いはそのパワーを第1.第2の三角プリズム14
.17に分は持たせてもよい。
FIG. 9 is a cross-sectional view of an optical system according to yet another embodiment,
In addition to the first prism lens 23 in FIG. 8, a pair of first and second secondary imaging lenses 16a, 16b and a second
is integrated with the triangular prism 17 to form the second prism lens 24. In addition, the secondary imaging lens Lea, 16
b may be integrated with the second triangular prism 17 in this way, but may also be provided on the exit surface of the first triangular prism 14, or its power may be transferred to the first triangular prism 17. Second triangular prism 14
.. You may have 17 minutes.

更に第10図に示す実施例では、第9図に於ける第1の
プリズムレンズ23に二次結像レンズ16a、16bを
加えて一体成形され第3のプリズムレンズ25とされて
いる。第2のマスク板15はこのプリズムレンズ25の
背後に置かれ、センサパッケージ26に保持された第1
、第2のラインセンサ18a、18bに赤外線吸収ガラ
ス27を介して光束ρa、ρbが入射するようになって
いる。尚、28はプリズムレンズ25を保持する保持具
である。
Furthermore, in the embodiment shown in FIG. 10, secondary imaging lenses 16a and 16b are added to the first prism lens 23 in FIG. 9 and integrally molded to form a third prism lens 25. The second mask plate 15 is placed behind this prism lens 25 and the first mask plate 15 is held by the sensor package 26.
, the luminous fluxes ρa and ρb are made incident on the second line sensors 18a and 18b via an infrared absorbing glass 27. Note that 28 is a holder that holds the prism lens 25.

上述の各実施例に於いては二次結像系を1/2縮小結像
系としたが、1/2以外の縮小系にすることも勿論可能
である。例えば、組立てが容易でしかも合焦検出能力を
低下させずに光学系の小型化を図るには、二次結像系に
よる縮小率は1/4〜3/4程度が適当であるが、特に
1/2程度が好適である。然し1/mll1!小系(m
>1)としたときラインセンサの各要素センサの幅は、
予定結像面ではm倍になり、像をサンプリングするピッ
チがそれだけ大きくなる。これを防止するためには、相
応するピッチの細かなラインセンサを利用すればよい。
In each of the above embodiments, the secondary imaging system is a 1/2 reduction imaging system, but it is of course possible to use a reduction system other than 1/2. For example, in order to reduce the size of the optical system while being easy to assemble and without reducing the focus detection ability, it is appropriate for the reduction ratio of the secondary imaging system to be about 1/4 to 3/4. Approximately 1/2 is suitable. But 1/ml1! Small type (m
>1), the width of each element sensor of the line sensor is
At the planned imaging plane, the number is multiplied by m, and the pitch at which images are sampled becomes correspondingly larger. In order to prevent this, a line sensor with a correspondingly fine pitch may be used.

以上多くの実施例で説明したように本発明に係る合焦検
知用光学系では、従来光学系が太きくなリカメラ組込は
困雌と思われた像ズレ検出方式の合焦検出装置用光学系
について、二次結像系を縮小系にすることにより小型化
が達成し得る。又、レンズとプリズムの一体成形化を図
れば、更に小型化が可能となり、調整も容易でありしか
も安価に提供することかできるようになる。大きさの点
では全体がおよそ巾10mmX幅15mmX厚さ10m
m程度で済み、極めて小型の二次結像方式の合焦検出装
置用光学系が実現できる。
As explained in the many embodiments above, the focus detection optical system according to the present invention is an optical system for a focus detection device using an image shift detection method, which conventionally had a thick optical system and was thought to be difficult to incorporate into a camera. The system can be made smaller by making the secondary imaging system a reduced system. Furthermore, if the lens and prism are integrally molded, it becomes possible to further reduce the size, make adjustment easier, and provide the device at a lower cost. In terms of size, the whole thing is approximately 10mm wide x 15mm wide x 10m thick.
m, and an extremely compact optical system for a secondary imaging type focus detection device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボケ検知方式の要部構成図、第2図は二次結像
方式を用いた像ズレ検知方式の構成図、第3図以下は本
発明に係る合焦検知用光学系の実施例を示すものであり
、第3図は光学系の説明図、第4図は二次結像方式の光
学系の構成図、第5図は光学系の展開光路図、第6図は
開口部と二次結像レンズとの関係の説明図、第7図〜第
1O図は他の実施例の構成図である。 符号11は第1のマスク板、12はスリット、13はフ
ィールドレンズ、14.17は三角プリズム、15は第
2のマスク板、16a、tabは二次結像レンズ、18
a、18bはラインセンサ、19はセンサ基板、22は
開口部、22a、22bは開口、23.24.25はプ
リズムレンズである。 特許出願人   キャノン株式会社 第3図 、r″ iが 特開昭58−106511(6) 、、第6図 冒(4°。 1                  )、15■ 16b 第8図 第10図 79−
Fig. 1 is a block diagram of the main parts of the blur detection method, Fig. 2 is a block diagram of an image shift detection method using a secondary imaging method, and Fig. 3 and subsequent figures are implementations of the focus detection optical system according to the present invention. Figure 3 is an explanatory diagram of the optical system, Figure 4 is a configuration diagram of a secondary imaging system optical system, Figure 5 is a developed optical path diagram of the optical system, and Figure 6 is an aperture. 7 to 10 are diagrams showing the relationship between the lens and the secondary imaging lens, and FIGS. 7 to 1O are configuration diagrams of other embodiments. 11 is a first mask plate, 12 is a slit, 13 is a field lens, 14.17 is a triangular prism, 15 is a second mask plate, 16a and tab are secondary imaging lenses, 18
a and 18b are line sensors, 19 is a sensor substrate, 22 is an aperture, 22a and 22b are apertures, and 23, 24, and 25 are prism lenses. Patent applicant Canon Co., Ltd. Figure 3, r''i is JP-A-58-106511 (6), Figure 6 (4°. 1), 15■ 16b Figure 8, Figure 10, Figure 79-

Claims (1)

【特許請求の範囲】 1、撮影レンズの予定結像面又は予定結像面に共役な位
置にフィールドレンズを設け、該フィールドレンズ上又
はその近傍にできる像を、少なくとも一対のリレー結像
系によって光電素子列上に導き、2系列の光電素子列の
出力信号より合焦状態を判定する合焦装置に於いて、前
記リレー結像系は、予定結像面上の像を縮小して前記光
電素子列上に結像することを特徴とする合焦検知用光学
系。 2、前記フィールドレンズ上に視野制限のスリットを設
け、フィールドレンズ通過後の結像光を三角プリズムに
よって、フィールドレンズの光軸に対してほぼ直角方向
に偏向し、境界が直線状をなす一対の前記リレー結像系
に導くようにした特許請求の範囲第1項記載の合焦検知
用光学系。 3、 リレー結像系の倍率を1/2以下にする特許請求
の範囲第1項記載の合焦検知用光学系。
[Claims] 1. A field lens is provided at the intended imaging plane of the photographing lens or at a position conjugate to the intended imaging plane, and an image formed on or near the field lens is formed by at least one pair of relay imaging systems. In a focusing device that guides the photoelectric element onto an array of photoelectric elements and determines the in-focus state from the output signals of the two series of photoelectric element arrays, the relay imaging system reduces the image on the planned imaging plane and focuses the image on the photoelectric element array. An optical system for focus detection characterized by forming an image on an array of elements. 2. A field-limiting slit is provided on the field lens, and the imaging light after passing through the field lens is deflected by a triangular prism in a direction approximately perpendicular to the optical axis of the field lens, and a pair of straight boundaries are formed. 2. The focus detection optical system according to claim 1, wherein the optical system is adapted to lead to the relay imaging system. 3. The focus detection optical system according to claim 1, wherein the magnification of the relay imaging system is 1/2 or less.
JP20583081A 1981-12-19 1981-12-19 Focusing detecting optical system Pending JPS58106511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20583081A JPS58106511A (en) 1981-12-19 1981-12-19 Focusing detecting optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20583081A JPS58106511A (en) 1981-12-19 1981-12-19 Focusing detecting optical system

Publications (1)

Publication Number Publication Date
JPS58106511A true JPS58106511A (en) 1983-06-24

Family

ID=16513410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20583081A Pending JPS58106511A (en) 1981-12-19 1981-12-19 Focusing detecting optical system

Country Status (1)

Country Link
JP (1) JPS58106511A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012140A (en) * 1983-07-01 1985-01-22 セイレイ工業株式会社 Cylindrical rotary sorting hulling machine
JPS6028721U (en) * 1983-08-01 1985-02-26 ミノルタ株式会社 Camera focus detection device
US4526458A (en) * 1983-08-01 1985-07-02 Minolta Camera Kabushiki Kaisha Focus condition detecting device for cameras
US4529287A (en) * 1983-08-09 1985-07-16 Minolta Camera Kabushiki Kaisha Focus condition detection device for cameras
US4552445A (en) * 1983-08-16 1985-11-12 Minolta Camera Kabushiki Kaisha Focus condition detecting device for cameras
US4662735A (en) * 1985-01-16 1987-05-05 Minolta Camera Kabushiki Kaisha Plastic lens elements supporting structure
US4801963A (en) * 1985-12-18 1989-01-31 Canon Kabushiki Kaisha Focus detecting system
US5289226A (en) * 1991-05-15 1994-02-22 Olympus Optical Co., Ltd. Focus detecting device including a diffusion surface disposed on a predetermined image surface
US5321461A (en) * 1991-08-22 1994-06-14 Olympus Optical Co., Ltd. Focus detecting device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device
US5424528A (en) * 1992-10-30 1995-06-13 Olympus Optical Co., Ltd. Focus detecting device having at least three reimaging lenses
US5477303A (en) * 1992-09-11 1995-12-19 Olympus Optical Co., Ltd. Photographic device
US5572011A (en) * 1993-12-28 1996-11-05 Olympus Optical Co., Ltd. Focus detecting method and distance measuring method with a plurality of light fluxes and a contrast operation
US5710667A (en) * 1994-03-29 1998-01-20 Olympus Optical Co., Ltd. Focus detecting optical system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138924A (en) * 1976-05-15 1977-11-19 Konishiroku Photo Ind Co Ltd Focal detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138924A (en) * 1976-05-15 1977-11-19 Konishiroku Photo Ind Co Ltd Focal detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012140A (en) * 1983-07-01 1985-01-22 セイレイ工業株式会社 Cylindrical rotary sorting hulling machine
JPH0516569Y2 (en) * 1983-08-01 1993-04-30
JPS6028721U (en) * 1983-08-01 1985-02-26 ミノルタ株式会社 Camera focus detection device
US4526458A (en) * 1983-08-01 1985-07-02 Minolta Camera Kabushiki Kaisha Focus condition detecting device for cameras
US4529287A (en) * 1983-08-09 1985-07-16 Minolta Camera Kabushiki Kaisha Focus condition detection device for cameras
US4552445A (en) * 1983-08-16 1985-11-12 Minolta Camera Kabushiki Kaisha Focus condition detecting device for cameras
US4662735A (en) * 1985-01-16 1987-05-05 Minolta Camera Kabushiki Kaisha Plastic lens elements supporting structure
US4801963A (en) * 1985-12-18 1989-01-31 Canon Kabushiki Kaisha Focus detecting system
US5289226A (en) * 1991-05-15 1994-02-22 Olympus Optical Co., Ltd. Focus detecting device including a diffusion surface disposed on a predetermined image surface
US5321461A (en) * 1991-08-22 1994-06-14 Olympus Optical Co., Ltd. Focus detecting device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device
US5477303A (en) * 1992-09-11 1995-12-19 Olympus Optical Co., Ltd. Photographic device
US5424528A (en) * 1992-10-30 1995-06-13 Olympus Optical Co., Ltd. Focus detecting device having at least three reimaging lenses
US5572011A (en) * 1993-12-28 1996-11-05 Olympus Optical Co., Ltd. Focus detecting method and distance measuring method with a plurality of light fluxes and a contrast operation
US5710667A (en) * 1994-03-29 1998-01-20 Olympus Optical Co., Ltd. Focus detecting optical system

Similar Documents

Publication Publication Date Title
JP3076122B2 (en) camera
US5397887A (en) Focus detection apparatus having multiple detecting zones
JPS58106511A (en) Focusing detecting optical system
US4941012A (en) Finder optical system for cameras
EP0782026B1 (en) Focus detecting apparatus
US4370551A (en) Focus detecting device
US20050147403A1 (en) Focus detecting apparatus
US5212375A (en) Camera focus detection system using holographic beam splitter
JPH067223B2 (en) Focus detection device
US7689111B2 (en) Optical apparatus
JPS61114217A (en) Photographic optical system
JPH09184971A (en) Camera with external light system automatic focusing function
US4392729A (en) Movable reflecting mirror for single lens reflex camera
US4455065A (en) Optical device
JP3179162B2 (en) Focus detection device
JPS6255769B2 (en)
US6097892A (en) Viewfinder system and optical apparatus having the same
JP4439626B2 (en) Optical equipment
JP4323592B2 (en) Focus detection device
US5289226A (en) Focus detecting device including a diffusion surface disposed on a predetermined image surface
JP3736266B2 (en) Focus detection device
JPH11271848A (en) Finder optical system
JP3045610B2 (en) Single-sided double-sided aspheric lens
JPH01243009A (en) Focus detecting device
US5321461A (en) Focus detecting device