JPH01132538A - Production of tetrafluoroethane - Google Patents

Production of tetrafluoroethane

Info

Publication number
JPH01132538A
JPH01132538A JP62288452A JP28845287A JPH01132538A JP H01132538 A JPH01132538 A JP H01132538A JP 62288452 A JP62288452 A JP 62288452A JP 28845287 A JP28845287 A JP 28845287A JP H01132538 A JPH01132538 A JP H01132538A
Authority
JP
Japan
Prior art keywords
hydrogen
tetrafluoroethane
haloethane
raw material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288452A
Other languages
Japanese (ja)
Inventor
Shinsuke Morikawa
森川 真介
Masaru Yoshitake
優 吉武
Shin Tatematsu
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62288452A priority Critical patent/JPH01132538A/en
Publication of JPH01132538A publication Critical patent/JPH01132538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by using a catalyst having high initial performance and excellent durability, by reacting a haloethane raw material containing 4-5 fluorine atoms with hydrogen in the presence of a hydrogenating catalyst comprising rhodium. CONSTITUTION:A compound shown by the formula CF2XCFYZ (X is F or Cl; when X is F, Y and Z are Cl, F or H and when one of Y and Z is F, the other is H or Cl; when X is Cl, one of Y and Z is F and the other is Cl or H), especially a compound shown by the formula CClF2CClF2 and/or CCl2FCF3 is reacted with a stoichiometric amount + 4 mol based on 1 mol raw material of hydrogen in the presence of a hydrogenating catalyst comprising rhodium supported on preferably active carbon or alumina carrier preferably 120-450 deg.C to give the aimed compound shown by the CF3CH2F and/or CFH2CHF2 in any of various ratios simply and life of catalyst is prolonged by using the catalyst having excellent corrosion resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテトラフルオロエタンの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing tetrafluoroethane.

[従来の技術及び問題点] 式CF30H2F(R−134a)またはCHF20H
F2(R−134)で表わされるテトラフルオロエタン
の製造方法の一つとして、式CF2XCFYZ(式中、
Xはフッ素または塩素である。Xがフッ素である場合に
は、 Y、Zは塩素、フッ素または水素であり、Y、Z
の一方がフッ素である場合には、Y、Zの他方は水素ま
たは塩素である。Xが塩素である場合には、 Y、Zの
一方はフッ素であり、Y、Zの他方は塩素または水素で
ある。)で表わされる4個または5個のフッ素原子を有
するハロエタン原料を、水素化触媒の存在下で水素と反
応させる製造方法がある。典型的なハロエタン原料は、
1.2−ジクロロ−1,1,2,2−テトラフルオロエ
タン(CHF20HF2)および1,1−ジクロロ−1
,2,2,2−テトラフルオロエタン(CG12FCF
3)の混合物である。この方法においては、ハロエタン
原料から2個の塩素原子、または、塩素および(または
)フッ素原子を除去し、これらを水素で置き換える。こ
のための触媒として、既知の水素化触媒、すなわち、ニ
ッケルまたは周期律表の第Via族の金属、それらの合
金、または、それらの酸化物、および塩のうち、特に塩
酸耐性を有するものの適用が考え返れ、既に、比較的低
コストであるパラジウムを用いる方法が報告されている
(特公昭5B−38131号公報を参照)、シかし1本
選元反応においては、例えば下式に示すように塩化水素
が副生ずるため触媒には耐酸性が必要である。
[Prior art and problems] Formula CF30H2F (R-134a) or CHF20H
As one of the methods for producing tetrafluoroethane represented by F2(R-134), the formula CF2XCFYZ (in the formula,
X is fluorine or chlorine. When X is fluorine, Y and Z are chlorine, fluorine or hydrogen;
When one of Y and Z is fluorine, the other of Y and Z is hydrogen or chlorine. When X is chlorine, one of Y and Z is fluorine, and the other of Y and Z is chlorine or hydrogen. There is a production method in which a haloethane raw material having 4 or 5 fluorine atoms represented by the following formula is reacted with hydrogen in the presence of a hydrogenation catalyst. Typical haloethane raw materials are
1,2-dichloro-1,1,2,2-tetrafluoroethane (CHF20HF2) and 1,1-dichloro-1
,2,2,2-tetrafluoroethane (CG12FCF
3). In this method, two chlorine atoms, or chlorine and/or fluorine atoms, are removed from the haloethane raw material and these are replaced with hydrogen. As catalysts for this purpose, known hydrogenation catalysts such as nickel or metals of group Via of the periodic table, alloys thereof, or oxides and salts thereof, which are especially resistant to hydrochloric acid, can be applied. Thinking back, a method using palladium, which is relatively low cost, has already been reported (see Japanese Patent Publication No. 5B-38131). Since hydrogen is produced as a by-product, the catalyst must have acid resistance.

CF3CG12F+H2→CFxCHCIF+HCIC
hCHCIF+Hz→CF3CHzF+HCIパラジウ
ムは白金族の中では水素化能においても優れているもの
の、比較的化学的変化を受は易いという欠点を有する。
CF3CG12F+H2→CFxCHCIF+HCIC
hCHCIF+Hz→CF3CHzF+HCIAlthough palladium has excellent hydrogenation ability among the platinum group metals, it has the disadvantage of being relatively susceptible to chemical changes.

[問題点を解決するための手段] したがって、より耐食性の強い触媒を用いることは、触
媒の長寿命化に有効であると考えられる。
[Means for Solving the Problems] Therefore, it is considered that using a catalyst with higher corrosion resistance is effective in extending the life of the catalyst.

ロジウムを水素発生用電極として用いた場合、触媒活性
は高く、非常に低い水素過電圧が得られ、かつ安定であ
る。一方、パラジウム電極の場合、初期活性は高いもの
の、表面吸着水素原子濃度の増大とともに活性が低下し
、水素過電圧は増大する。また、ロジウムは耐食性では
パラジウムよりかなり優れている。触媒の調製法、取扱
いについては他の白金族と同様に行ない得る。したがっ
て、ロジウム触媒は本還元反応系に好適な触媒となり得
ることが見出された。
When rhodium is used as an electrode for hydrogen generation, the catalytic activity is high, a very low hydrogen overvoltage can be obtained, and it is stable. On the other hand, in the case of a palladium electrode, although the initial activity is high, the activity decreases as the surface-adsorbed hydrogen atom concentration increases, and the hydrogen overvoltage increases. Rhodium also has significantly better corrosion resistance than palladium. The catalyst can be prepared and handled in the same manner as for other platinum group metals. Therefore, it has been found that the rhodium catalyst can be a suitable catalyst for the present reduction reaction system.

かくして本発明は、上記知見に基づいて完成されたもの
であり、弐〇F2XGFYZ (式中、Xはフッ素また
は塩素である。Xがフッ素である場合には、 Y、Zは
塩素、フッ素または水素であり、 Y、Zの一方がフッ
素である場合には、Y、Zの他方は水素または塩素であ
る。Xが塩素である場合には、 Y、Zの一方はフッ素
であり、Y、Zの他方は塩素または水素である。)で表
わされる41iまたは5個のフッ素原子を有するハロエ
タン原料を、ロジウムからなる水素化触媒の存在下で水
素と反応させることを特徴とする式CF3 CI2 F
またはCHh CHF2の製造方法を新規に提供するも
のである。
Thus, the present invention has been completed based on the above findings, and is based on the following: 2〇F2XGFYZ (wherein, X is fluorine or chlorine. When When one of Y and Z is fluorine, the other of Y and Z is hydrogen or chlorine. When X is chlorine, one of Y and Z is fluorine; 41i or a haloethane material having 5 fluorine atoms, the other of which is chlorine or hydrogen, is reacted with hydrogen in the presence of a hydrogenation catalyst consisting of rhodium.
Alternatively, the present invention provides a new method for producing CHh CHF2.

本発明において、ロジウムからなる水素化触媒は、金属
に限らず、酸化物あるいは塩の状態であってもよい、ま
た、担体としては1例えば、アルミナ、活性炭等が好適
である。使用に当ってはかかる金属の化合物は少なくと
も一部還元する。
In the present invention, the hydrogenation catalyst made of rhodium is not limited to a metal, and may be in the form of an oxide or salt, and suitable carriers include, for example, alumina, activated carbon, and the like. In use, such metal compounds are at least partially reduced.

而して、ハロエタン原料としては次のものが挙げられる
Examples of haloethane raw materials include the following.

1.2−ジクロロ−1,1,2,2−テトラフルオロエ
タン(CHF20HF2:R−114)、1.1−ジク
ロロ−1,2,2,2−テトラフルオロエタン(CC1
zFCF3:R−114a)、l−クロロ−1,1,2
,2,2−ペンタフルオロエタン(CHF2CF3:R
−115)、 l−クロロ−1,2,2,2−テトラフルオロエタン(
CC1FCF3:R−124)、 2−クロロ−1,1,2,2−テトラフルオロエタン(
CHF2CGIF2:R−124a)、1.1,2,2
.2−ペンタフルオロエタン(CHF2CF3 :R−
125) ハロエタン原料としては上記化合物の混合物も使用し得
る。特に好ましくはR−114とR−114aの混合物
がよい結果を与える。
1,2-dichloro-1,1,2,2-tetrafluoroethane (CHF20HF2:R-114), 1,1-dichloro-1,2,2,2-tetrafluoroethane (CC1
zFCF3:R-114a), l-chloro-1,1,2
,2,2-pentafluoroethane (CHF2CF3:R
-115), l-chloro-1,2,2,2-tetrafluoroethane (
CC1FCF3:R-124), 2-chloro-1,1,2,2-tetrafluoroethane (
CHF2CGIF2:R-124a), 1.1,2,2
.. 2-pentafluoroethane (CHF2CF3 :R-
125) Mixtures of the above compounds can also be used as haloethane raw materials. Particularly preferred is a mixture of R-114 and R-114a which gives good results.

水素とハロエタン原料の割合は大幅に変動させ得る。し
かしながら1通常、化学量論量の水素を使用してハロゲ
ン原子を除去する。出発物質の全モル数に対して、化学
量論量よりかなり多い量、例えば4モルまたはそれ以上
の水素を使用し得る。
The proportions of hydrogen and haloethane feedstocks can vary widely. However, one typically uses stoichiometric amounts of hydrogen to remove the halogen atoms. Significantly more than stoichiometric amounts of hydrogen can be used, for example 4 moles or more, based on the total number of moles of starting materials.

反応圧力については大気圧、または大気圧を越える圧力
を使用し得る。
As for the reaction pressure, atmospheric pressure or superatmospheric pressure can be used.

反応温度は120℃以上が望ましいが、450℃を越え
ない温度において気相で行なうことが適当である。
The reaction temperature is preferably 120°C or higher, but it is suitable to carry out the reaction in a gas phase at a temperature not exceeding 450°C.

接触時間は、反応を気相で行なう場合には通常0.1〜
300秒、特に5〜30秒である。
The contact time is usually 0.1 to 0.1 when the reaction is carried out in the gas phase.
300 seconds, especially 5 to 30 seconds.

得られるテトラフルオロエタンは出発物質の選択により
相当変動する。出発物質が2.2−ジクロロ−1,1,
2,2−テトラフルオロエタンである場合には1,1,
1.2−テトラフルオロエタンCCF3 CI2 F)
が得られ、1,1,2.2−テトラフルオロエタン(C
HFz CHF2 )は殆ど生じない、出発物質が1.
2−ジクロロ−1,1,2,2−テトラフルオロエタン
である場合には、反応生成物は通常テトラフルオロエタ
ンの2種の異性体の混合物からなる。混合物中での2.
2−ジクロロ−1,1,1,2−テトラフルオロエタン
の1.2−ジクロロ−1,1,2,2−テトラフルオロ
エタンに対する割合が増大するにつれて、CF30H2
Fの生成量が増大する。
The tetrafluoroethane obtained varies considerably depending on the choice of starting materials. The starting material is 2,2-dichloro-1,1,
In the case of 2,2-tetrafluoroethane, 1,1,
1.2-Tetrafluoroethane CCF3 CI2 F)
was obtained, and 1,1,2,2-tetrafluoroethane (C
HFz CHF2 ) is hardly produced when the starting material is 1.
In the case of 2-dichloro-1,1,2,2-tetrafluoroethane, the reaction product usually consists of a mixture of the two isomers of tetrafluoroethane. 2. in the mixture.
As the ratio of 2-dichloro-1,1,1,2-tetrafluoroethane to 1,2-dichloro-1,1,2,2-tetrafluoroethane increases, CF30H2
The amount of F produced increases.

本発明は所望の1.1,1.2−テトラフルオロエタン
、1,1,2.2〜テトラフルオロエタンまたはこれら
の混合物を簡単かつ好都合な方法により、種々の割合で
得ることができるという利点を有する製造方法を提供す
るものである。
The present invention has the advantage that the desired 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane or mixtures thereof can be obtained in various proportions in a simple and convenient manner. The present invention provides a manufacturing method having the following.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

調製例 活性炭を純水中に浸漬し、細孔内部まで水を含浸させた
。これに塩化ロジウムを活性炭の重量に対し金属成分の
全重量で0.5zだけ溶解した水溶液を少しずつ滴下し
イオン成分を活性炭に吸着させた。純水を用いて洗浄し
た後、それを150℃で5時間乾燥した0次に窒素中5
50℃で4時間乾燥した後、水素を導入し、5時間、3
00℃に保持して還元した。
Preparation Example Activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which rhodium chloride was dissolved in an amount of 0.5z based on the total weight of the metal components relative to the weight of the activated carbon was added little by little to adsorb the ionic components onto the activated carbon. After washing with pure water, it was dried at 150°C for 5 hours and then washed in nitrogen for 5 hours.
After drying at 50°C for 4 hours, hydrogen was introduced and the mixture was dried for 5 hours for 3 hours.
It was maintained at 00°C and reduced.

実施例1 調製例のようにして調製した触媒を300cc充填した
内径2.54c會、長さ1000厘のインコネル600
製反応管を塩浴炉中に浸漬した。
Example 1 Inconel 600 with an inner diameter of 2.54 cm and a length of 1000 cm filled with 300 cc of the catalyst prepared as in the preparation example.
The prepared reaction tube was immersed in a salt bath furnace.

水素と出発物質(1,1−ジクロロ−1,2,2,2−
テトラフルオロエタンと1.2−ジクロロ−1,1,2
,2−テトラフルオロエタンよりなる0モル比で40:
BO)を2:lのモル比で反応管に導入した。水素、出
発物質の流量はそれぞれ、100cc 7分、50cc
/分とした0反応管出口のガス組成をガスクロを用いて
分析した。その結果を第1表に示す。
Hydrogen and starting material (1,1-dichloro-1,2,2,2-
Tetrafluoroethane and 1,2-dichloro-1,1,2
, 2-tetrafluoroethane in a 0 molar ratio of 40:
BO) was introduced into the reaction tube in a molar ratio of 2:1. The flow rates of hydrogen and starting materials were 100cc 7 minutes and 50cc, respectively.
The gas composition at the outlet of the reaction tube was analyzed using gas chromatography. The results are shown in Table 1.

第1表 R−114aの250℃における反応率は、反応初期に
おいて99.0%、6ケ月後において6004%であっ
た・ 実施例2 へロエタン原料としてR−114a (純度38.0%
、残部はR−114)を用いる以外は、実施例1と同様
の条件で還元反応を行なった。結果を第2表に示す。
The reaction rate of R-114a in Table 1 at 250°C was 99.0% at the initial stage of the reaction and 6004% after 6 months. Example 2 R-114a (purity 38.0%
, the remainder being R-114), the reduction reaction was carried out under the same conditions as in Example 1. The results are shown in Table 2.

第2表 R−114aの250℃における反応率は、反応初期に
おいて99.1%、6ケ月後では60.5%であった。
The reaction rate of R-114a in Table 2 at 250°C was 99.1% at the initial stage of the reaction and 60.5% after 6 months.

比較例1 触媒として活性炭に0.5%のパラジウムを調製例と同
様に担持したものを用いる以外は、実施例1と同様にし
て還元反応を行なった。結果を第3表に示す。
Comparative Example 1 A reduction reaction was carried out in the same manner as in Example 1, except that activated carbon supported with 0.5% palladium in the same manner as in the Preparation Example was used as a catalyst. The results are shown in Table 3.

第3表 R−114aの250℃における反応率は、反応初期に
おいて98.0%、6ケ月後では32.1%であった。
The reaction rate of R-114a in Table 3 at 250°C was 98.0% at the initial stage of the reaction and 32.1% after 6 months.

[発明の効果] 本発明における還元触媒は、実施例に示すように、初期
性能を向上させるとともに、耐久性の向上においても優
れた特性を有する。
[Effects of the Invention] As shown in Examples, the reduction catalyst of the present invention has excellent properties in improving initial performance and improving durability.

Claims (1)

【特許請求の範囲】 1、式CF_2XCFYZ(式中、Xはフッ素または塩
素である、Xがフッ素である場合には、Y、Zは塩素、
フッ素または水素であり、Y、Zの一方がフッ素である
場合には、Y、Zの他方は水素または塩素である、Xが
塩素である場合に は、Y、Zの一方はフッ素であり、Y、Zの他方は塩素
または水素である。)で表わされる4個または5個のフ
ッ素原子を有するハロエタン原料を、ロジウムからなる
水素化触媒の存在下で水素と反応させることを特徴とす
る式CF_3CH_2FまたはCHF_2CHF_2で
表わされるテトラフルオロエタンの製造方法。 2、ハロエタン原料が、1,2−ジクロロ−1,1,2
,2−テトラフルオロエタンである特許請求の範囲第1
項記載の製造方法。 3、ハロエタン原料が、1,1−ジクロロ−1,2,2
,2−テトラフルオロエタンである特許請求の範囲第1
項記載の製造方法。 4、ハロエタン原料が、1,2−ジクロロ−1,1,2
,2−テトラフルオロエタンと1,1−ジクロロ−1,
2,2,2テトラフルオロエタンとの混合物である特許
請求の範囲第1項記載の製造方法。 5、ハロエタン原料に対して少なくとも化学量論量の水
素を使用してハロエタン原料中の1個または複数個のハ
ロゲン原子を除去する特許請求の範囲第1項〜第4項の
いずれか一項に記載の製造方法。 6、ハロエタン原料1モルあたり4モルまでの水素を使
用する特許請求の範囲第1項〜第5項のいずれか一項に
記載の製造方法。 7、ロジウムが活性炭担体上に担持されている水素化触
媒を用いる特許請求の範囲第1項〜第6項のいずれか一
項に記載の製造方法。 8、ロジウムがアルミナ担体上に担持されている水素化
触媒を用いる特許請求の範囲第1項〜第6項のいずれか
一項に記載の製造方法。 9、反応を気相中において120℃から450℃の温度
範囲で行なう特許請求の範囲第1項〜第8項のいずれか
一項に記載の製造方法。
[Claims] 1. Formula CF_2XCFYZ (wherein, X is fluorine or chlorine; when X is fluorine, Y and Z are chlorine,
is fluorine or hydrogen; when one of Y and Z is fluorine, the other of Y and Z is hydrogen or chlorine; when X is chlorine, one of Y and Z is fluorine; The other of Y and Z is chlorine or hydrogen. ) A method for producing tetrafluoroethane represented by the formula CF_3CH_2F or CHF_2CHF_2, characterized by reacting a haloethane raw material having 4 or 5 fluorine atoms represented by the formula with hydrogen in the presence of a hydrogenation catalyst made of rhodium. . 2. The haloethane raw material is 1,2-dichloro-1,1,2
, 2-tetrafluoroethane.
Manufacturing method described in section. 3. The haloethane raw material is 1,1-dichloro-1,2,2
, 2-tetrafluoroethane.
Manufacturing method described in section. 4. The haloethane raw material is 1,2-dichloro-1,1,2
, 2-tetrafluoroethane and 1,1-dichloro-1,
The manufacturing method according to claim 1, which is a mixture with 2,2,2-tetrafluoroethane. 5. According to any one of claims 1 to 4, in which one or more halogen atoms in the haloethane raw material are removed using at least a stoichiometric amount of hydrogen with respect to the haloethane raw material. Manufacturing method described. 6. The production method according to any one of claims 1 to 5, wherein up to 4 moles of hydrogen are used per mole of haloethane raw material. 7. The manufacturing method according to any one of claims 1 to 6, which uses a hydrogenation catalyst in which rhodium is supported on an activated carbon carrier. 8. The manufacturing method according to any one of claims 1 to 6, which uses a hydrogenation catalyst in which rhodium is supported on an alumina carrier. 9. The manufacturing method according to any one of claims 1 to 8, wherein the reaction is carried out in a gas phase at a temperature range of 120°C to 450°C.
JP62288452A 1987-11-17 1987-11-17 Production of tetrafluoroethane Pending JPH01132538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288452A JPH01132538A (en) 1987-11-17 1987-11-17 Production of tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288452A JPH01132538A (en) 1987-11-17 1987-11-17 Production of tetrafluoroethane

Publications (1)

Publication Number Publication Date
JPH01132538A true JPH01132538A (en) 1989-05-25

Family

ID=17730391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288452A Pending JPH01132538A (en) 1987-11-17 1987-11-17 Production of tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH01132538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006022A1 (en) * 1993-08-27 1995-03-02 Daikin Industries, Ltd. Process for producing hexafluorocyclobutene and process for producing hexafluorocyclobutane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006022A1 (en) * 1993-08-27 1995-03-02 Daikin Industries, Ltd. Process for producing hexafluorocyclobutene and process for producing hexafluorocyclobutane

Similar Documents

Publication Publication Date Title
US5136113A (en) Catalytic hydrogenolysis
JP3158440B2 (en) Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane
CA1337434C (en) Process for producing 1,1,1,2-tetrafluoroethane
GB1578933A (en) Manufacture of halogenated hydrocarbons
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
US6291729B1 (en) Halofluorocarbon hydrogenolysis
JP2531205B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
US6218587B1 (en) Catalytic hydrogenolysis
JPH01132538A (en) Production of tetrafluoroethane
JPH01132537A (en) Production of tetrafluoroethane
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2636314B2 (en) Method for producing tetrafluoroethane
JPH02172933A (en) Method for fluorinating 1-chloro-2,2,2-trifluoroethane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH02218626A (en) Production of 1,1,1,2-tetrafluoroethane
JP2541256B2 (en) Method for producing tetrafluoroethane
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP3261165B2 (en) Methylene chloride fluorination method
JP2580696B2 (en) Method for producing pentafluoroethane
JP2508807B2 (en) Method for producing R-134a
JPH02129130A (en) Production of r-134a