JPH02172933A - Method for fluorinating 1-chloro-2,2,2-trifluoroethane - Google Patents

Method for fluorinating 1-chloro-2,2,2-trifluoroethane

Info

Publication number
JPH02172933A
JPH02172933A JP63323668A JP32366888A JPH02172933A JP H02172933 A JPH02172933 A JP H02172933A JP 63323668 A JP63323668 A JP 63323668A JP 32366888 A JP32366888 A JP 32366888A JP H02172933 A JPH02172933 A JP H02172933A
Authority
JP
Japan
Prior art keywords
catalyst
trifluoroethane
chloro
reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323668A
Other languages
Japanese (ja)
Inventor
Shinsuke Morikawa
森川 真介
Shunichi Samejima
鮫島 俊一
Masaru Yoshitake
優 吉武
Shin Tatematsu
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63323668A priority Critical patent/JPH02172933A/en
Publication of JPH02172933A publication Critical patent/JPH02172933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject substance which is a substitute for substance destroying the ozonosphere with good catalyst longevity and high efficiency by reacting 1-chloro-2,2,2-trifluoroethane with hydrogen fluoride using a specific compound oxide or halide containing chromium as a catalyst. CONSTITUTION:1-Chloro-2,2,2-trifluoroethane which is a raw material is reacted with hydrogen fluorine in an amount of normally a stoichiometric amount to 3 equiv. in the vapor phase using a fluorinating catalyst consisting of a halide or oxide containing at least one element selected from the group of Al, Mg, Ca, Sr, Fe, Ni, Co and Mn and Cr at 200-550 deg.C, especially preferably 250-400 deg.C for 0.1-300sec, especially preferably 5-30sec to afford the objective compound. Furthermore, oxygen or chlorine in an amount of 0.1-10% based on the aforementioned raw material may coexist to carry out the above-mentioned reaction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1.1.1.2−テトラフルオロエタン(R−
134a)の製造方法に関するものである。R−134
aは、オゾン層を破壊する疑いのあるジクロロジフルオ
ロエタン(R−12つの代替品として冷媒等への使用が
検討されている。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to 1.1.1.2-tetrafluoroethane (R-
134a). R-134
a is dichlorodifluoroethane (R-12), which is suspected of destroying the ozone layer, and its use as a refrigerant is being considered as a substitute for R-12.

[従来の技術及び問題点コ 従来より、1−クロロ−2,2,2−トリフルオロエタ
ン(R−133a)の気相フッ素化反応に、酸化クロム
、フッ化クロムなどが触媒として有効であることが知ら
れている0例えば、米国特許第4129603号明細書
、西ドイツ特許29322934号などを参照、しかる
に従来の触媒には、触媒寿命が短いという厨久性での難
点、および反応活性が低いという難点がある。このフッ
素化反応は平衡反応であり、その平衡は原糸に片寄って
いる。
[Prior art and problems] Conventionally, chromium oxide, chromium fluoride, etc. have been effective as catalysts in the gas phase fluorination reaction of 1-chloro-2,2,2-trifluoroethane (R-133a). For example, see U.S. Pat. No. 4,129,603, West German Patent No. 2,932,934, etc. However, conventional catalysts have problems with durability such as short catalyst life and low reaction activity. There are some difficulties. This fluorination reaction is an equilibrium reaction, and the equilibrium is biased towards the filament.

CFsCH2C1+HF;’CFsCH2F+HC1こ
の平衡を生成系へ移動させるためには、反応温度を高く
すること、また供給HF/R−133aモル比を高くす
ることが必要である。しかし反応温度が高いと触媒寿命
が短くなること、HF/R−133a供給比率を高くす
ると単位体積当りのR−134a収率が低下し実用触媒
として問題が生じるたぬzれらの方策は必ずしも効果的
ではない。
CFsCH2C1+HF;'CFsCH2F+HC1 In order to shift this equilibrium to the production system, it is necessary to increase the reaction temperature and the feed HF/R-133a molar ratio. However, if the reaction temperature is high, the catalyst life will be shortened, and if the HF/R-133a supply ratio is increased, the R-134a yield per unit volume will decrease, causing problems as a practical catalyst. Not effective.

〔問題点を解決するための手段] 本発明者は、気相フッ素化に作用する触媒成分としてク
ロムを用いた系について戸々の検討を重ねた結果、Cr
とともにAI、  Mg、  Ca、  Ba、Sr、
  Fe、Ni、Co、およびMnからなる群から選ば
れる少なくとも1種の元素を含むハロゲン化物または酸
化物からなるフッ素化触媒が有効であることを見いだj
7た。
[Means for Solving the Problems] As a result of repeated studies on systems using chromium as a catalyst component that acts on gas phase fluorination, the inventor found that Cr
Along with AI, Mg, Ca, Ba, Sr,
It has been discovered that a fluorination catalyst consisting of a halide or oxide containing at least one element selected from the group consisting of Fe, Ni, Co, and Mn is effective.
7.

すなわち本発明はフッ素化に作用する触媒成分としてC
rとともに、Al、Mg、  Ca、Ba、Sr、  
Fe、  Ni、Co、およびMnからなる群から選ば
れる少なくとも1種の元素を含むハロゲン化#@または
酸化物触媒の存在下、 1−クロロ−2゜22−トリフ
ルオロエタン(R−133a>を気相フッ素化する方法
を新規に提供するものである。
That is, the present invention uses C as a catalyst component that acts on fluorination.
Along with r, Al, Mg, Ca, Ba, Sr,
In the presence of a halogenated #@ or oxide catalyst containing at least one element selected from the group consisting of Fe, Ni, Co, and Mn, 1-chloro-2゜22-trifluoroethane (R-133a> The present invention provides a new method for vapor phase fluorination.

本発明方法によれば、酸化クロム単独に比して、耐久性
が著しく向上する。さらに活性の点でも優れている9例
えば、酸化クロム触媒では、反応温度が比較的低い場合
には)・ン素化活性が不十分であり、高温にすると結晶
化が進行して触媒耐久性が著しく低下する。これに対し
て、本発明においては、比I咬的低い温度でも高活性を
維持することが可能である。また、耐久性についても酸
化クロム単独では2週間程度の分合であるのに対して、
本発明においては弁台が6ケ月以上と大幅に改善される
。さらに、従来の350から400℃程度の反応温度よ
りも低い、300から350°C程度の温度でも、比較
的高いフッ素化活性が得られる。
According to the method of the present invention, durability is significantly improved compared to using chromium oxide alone. Furthermore, chromium oxide catalysts are superior in terms of activity.9 For example, when the reaction temperature is relatively low, the chromium oxidation activity is insufficient, and when the reaction temperature is raised, crystallization progresses and the catalyst durability deteriorates. Significantly decreased. In contrast, in the present invention, high activity can be maintained even at relatively low temperatures. In addition, regarding durability, chromium oxide alone only lasts about two weeks.
In the present invention, the valve stand is significantly improved to last more than 6 months. Furthermore, relatively high fluorination activity can be obtained even at a temperature of about 300 to 350°C, which is lower than the conventional reaction temperature of about 350 to 400°C.

以下、反応の詳細について説明する。The details of the reaction will be explained below.

本発明におけるフッ素化触媒としては、Crとともに、
Al、Mg、  Ca、Ba、  Sr、  Fe、N
i、Co、およびMnからなる群から遷ばれる少なくと
も1種の元素を含むハロゲン化物または酸化物が使用で
きる。上記のあらゆる触媒は、反応に供せられる前にフ
ッ化水素やR−11,R−113など、少なくともフッ
素原子を1個含むハロゲン化メタン、ハロゲン化エタン
等により活性化しておくことが望ましい。
As the fluorination catalyst in the present invention, together with Cr,
Al, Mg, Ca, Ba, Sr, Fe, N
Halides or oxides containing at least one element from the group consisting of i, Co, and Mn can be used. All of the above catalysts are preferably activated with hydrogen fluoride, R-11, R-113, halogenated methane, halogenated ethane, etc. containing at least one fluorine atom, before being subjected to the reaction.

反応温度は気相中常圧もしくは加圧下で、200℃〜5
50℃、特に好ましくは、250℃〜400°Cの温度
範囲で行なうことが適当である0反応源度が高すぎると
触蝉寿命が短くなり、反応温度が低すぎるとR−134
a収量が低下する。
The reaction temperature is 200°C to 5°C in the gas phase at normal pressure or under increased pressure.
It is appropriate to conduct the reaction at a temperature range of 50°C, particularly preferably from 250°C to 400°C. If the reaction temperature is too high, the lifespan of the cicada will be shortened, and if the reaction temperature is too low, R-134
a Yield decreases.

接触時間は、通常0.1〜300秒、特に好ましくは5
〜30秒である。
The contact time is usually 0.1 to 300 seconds, particularly preferably 5 seconds.
~30 seconds.

フッ化水素とR−133aの割合は大幅に変動させ得る
。しかしながら通常、化学量論量から3等量のフッ化水
素を使用して塩素原子を置換する。
The proportions of hydrogen fluoride and R-133a can vary widely. However, stoichiometric to 3 equivalents of hydrogen fluoride are usually used to replace the chlorine atoms.

出発物質の全モル数に対して、化学量論量よりかなり多
い量、例えば5モルまたはそれ以上のフッ化水素を使用
し得る。この場合R−133aの平衡反応率は向上する
が、単位体積あたりの収量は低下する。
Significantly more than stoichiometric amounts of hydrogen fluoride may be used, for example 5 moles or more, based on the total number of moles of starting materials. In this case, the equilibrium reaction rate of R-133a improves, but the yield per unit volume decreases.

また酸素または塩素をR−133aに対して0゜1〜1
0%共存させて反応を行なうこともできる。
Also, add oxygen or chlorine to R-133a at 0°1 to 1
The reaction can also be carried out with 0% coexistence.

[実施例〕 以下、本発明の実施例を示す。[Example〕 Examples of the present invention will be shown below.

調製例1 1100gの特級試薬A I < N Ox) 3 ・
9 H2O,125gのCr (NOx) 3・9H2
0、および40gのMg(NO3)p・6H20を2.
5リツトルの水に溶解し、これと28%の水酸化アンモ
ニウムの水溶液2000gを攪拌しながら、加熱した4
リツトルの水に添加して水酸化物の沈殿を得た。
Preparation example 1 1100 g of special grade reagent A I < N Ox) 3 ・
9 H2O, 125g Cr (NOx) 3.9H2
0, and 40 g of Mg(NO3)p.6H20 2.
It was dissolved in 5 liters of water and heated while stirring this and 2000 g of a 28% ammonium hydroxide aqueous solution.
Addition to a liter of water resulted in a hydroxide precipitate.

これを炉別し、純水による洗浄、および乾燥を行なった
後、450℃で5時間焼成して酸化物の粉末を得た。こ
れを打錠成型機を用いて直径5mm、高さ5mmの円筒
状に成型した。こうして得た触媒を反応前にフッ化水素
/窒素の混合ガス気流中、250〜350°Cでフッ素
化した後、さらにトリクロロフルオロメタン/フッ化水
素混合ガス気流中、250〜300℃で塩素化フッ素化
して、活性化した。
This was separated into a furnace, washed with pure water, and dried, and then fired at 450° C. for 5 hours to obtain an oxide powder. This was molded into a cylindrical shape with a diameter of 5 mm and a height of 5 mm using a tablet molding machine. The catalyst thus obtained is fluorinated at 250 to 350°C in a hydrogen fluoride/nitrogen mixed gas stream before the reaction, and then chlorinated at 250 to 300°C in a trichlorofluoromethane/hydrogen fluoride mixed gas stream. Fluorinated and activated.

調製例2〜4 Mg (NO3)2・6H20のかわりに、それぞれB
a(NO3>2の40g、Sr (NO3)2の50g
、Ca (N Osン ・4HzOの40gを用し)る
他は、調製例1と同様にして触媒を調製した。
Preparation Examples 2 to 4 Instead of Mg (NO3)2 and 6H20, B
a (40g of NO3>2, 50g of Sr (NO3)2
A catalyst was prepared in the same manner as in Preparation Example 1, except that 40 g of , Ca (N Osn .4HzO) was used.

調製例5 A I (Now)z・9H20,Cr (NOり 3
・9H20、およびM g (Now) 2・6 H2
O1)かわりに、 Fe  (NO3) 2・91−1
20の600g、Cr(N 03) s ・9 H20
ノ150 g t”用イル他ハ、1ll1例1と同様に
して触媒を調製した。
Preparation example 5 A I (Now)z・9H20, Cr (NOri 3
・9H20, and M g (Now) 2・6 H2
O1) Instead, Fe (NO3) 2・91-1
600g of 20, Cr(N 03) s 9 H20
A catalyst for 150 g t'' was prepared in the same manner as in Example 1.

調製例6 A I (NO3) s・9H20,Cr (Not)
 a・9H20、およびMg (NO3) 2・6H2
0のかわりに、 Cr  (NO3) 3・9H20の
150g、 AI(Not)t・9H20の1300g
を用いる他は、調製例1と同様にして触媒を調製した。
Preparation example 6 A I (NO3) s・9H20, Cr (Not)
a・9H20, and Mg (NO3) 2・6H2
Instead of 0, 150g of Cr (NO3) 3・9H20, 1300g of AI(Not)t・9H20
A catalyst was prepared in the same manner as in Preparation Example 1, except that the following was used.

調製例7 AI (Noりs・9H20、Cr (NOs) 3 
・9H20およびM g (N03) 2 ・6 Hp
Oツカわりに、Cr (NO3) 3・9H20の50
0g、  Mg(N03)?・6H20の160gを用
いる他は、調製例1と同様にして触媒を調製した。
Preparation Example 7 AI (Noris・9H20, Cr (NOs) 3
・9H20 and M g (N03) 2 ・6 Hp
50 of Cr (NO3) 3.9H20 instead of O
0g, Mg(N03)? - A catalyst was prepared in the same manner as in Preparation Example 1, except that 160 g of 6H20 was used.

調製例8 CrCIa・6H20の200gを2リツトルの水に溶
解した。この溶液に、市販のγ−アルミナ1000gを
投入した後乾燥させて水分を除去した。
Preparation Example 8 200 g of CrCIa.6H20 was dissolved in 2 liters of water. To this solution, 1000 g of commercially available γ-alumina was added and dried to remove water.

さらに調製例1と同様の活性化方法により活性化した。Furthermore, activation was performed using the same activation method as in Preparation Example 1.

比較調製例 水酸化クロムを打錠成型機を用いて直径5mm、高さ5
mmの円筒状に成型した。こうして得た触媒を反応前に
フッ化水素/窒素の混合ガス気流中、300〜450℃
でフッ素化して活性化しな。
Comparative Preparation Example Chromium hydroxide was made into tablets with a diameter of 5 mm and a height of 5 mm.
It was molded into a cylindrical shape of mm. The thus obtained catalyst was heated at 300 to 450°C in a hydrogen fluoride/nitrogen mixed gas stream before the reaction.
Activate it by fluoridating it.

実施例1 内径2.54cm、長さ100cmのインコネル600
製U字型反応管に調製例1で示したように調製した触媒
を200m1充填し反応させた。ガス化させた1−クロ
ロ−2,2,2−トリフルオロエタン(R−133a)
を100m1/分で、酸素を2ml/分で、フッ酸を3
00m1/分で供給し、350℃に保持した。酸分を除
去した後のガス組成をガスクロを用いて分析した。その
結果、反応を連続して行い、1週間後の成績はR−13
3a転化率20%、R−134a選択率96%であった
。6力月間同一条件で反応させた後、同様の分析を行な
ったところ、R−133a転化率18%、R−134a
選択率94%の成績を得た。
Example 1 Inconel 600 with an inner diameter of 2.54 cm and a length of 100 cm
A U-shaped reaction tube was filled with 200 ml of the catalyst prepared as shown in Preparation Example 1 and reacted. Gasified 1-chloro-2,2,2-trifluoroethane (R-133a)
at 100 ml/min, oxygen at 2 ml/min, and hydrofluoric acid at 3 ml/min.
00ml/min and maintained at 350°C. The gas composition after acid content was removed was analyzed using gas chromatography. As a result, the reaction was performed continuously, and the result after one week was R-13.
The conversion rate of 3a was 20%, and the selectivity of R-134a was 96%. After reacting under the same conditions for 6 months, similar analysis was performed, and the conversion rate of R-133a was 18%, and the R-134a conversion rate was 18%.
A selection rate of 94% was obtained.

実施例 2〜8 調製例2〜8で調製した触媒を使用して、反応温度を変
更する他は実施例1と同様の条件で、それぞれ反応を行
なった0反応開始後1週間の時点での反応成績と6力月
後の反応成績をまとめて第1表に示す。
Examples 2 to 8 Using the catalysts prepared in Preparation Examples 2 to 8, the reactions were carried out under the same conditions as in Example 1 except that the reaction temperature was changed. The reaction results and the reaction results after 6 months are summarized in Table 1.

第1表 R133a転化率、R134a選択率 %()内は6力
月後の成績 比較例 内径2.54cm、長さ100cmのインコネル600
製U字型反応管に比較調製例で示したように調製した触
媒を200m1充填し反応させた。ガス化させた1−ク
ロロ−2,2,2−トリフルオロエタン(R−133a
)を100m1/分で、酸素を2ml/分で、フッ酸を
300m1/分で供給し、350℃に保持した。酸分を
除去した後のガス組成をガスクロを用いて分析した。そ
の結果、当初R−133a転化率10%、R−J34a
選択率90%の成績を得たが、1週間連続して同一条件
で反応させた後、同様の分析を行なったところ、R−1
33a転化率7%、R−134a選択率84%の成績と
なり、さらに6力月間反応を継続させたところR−13
3a転化率2%、R−134a選択率74%の成績まで
低下しな。
Table 1 R133a conversion rate, R134a selection rate % () is a comparative example of results after 6 months Inconel 600 with inner diameter 2.54 cm and length 100 cm
A U-shaped reaction tube was filled with 200 ml of the catalyst prepared as shown in the comparative preparation example, and reacted. Gasified 1-chloro-2,2,2-trifluoroethane (R-133a
) was supplied at a rate of 100 ml/min, oxygen was supplied at a rate of 2 ml/min, and hydrofluoric acid was supplied at a rate of 300 ml/min, and the temperature was maintained at 350°C. The gas composition after acid content was removed was analyzed using gas chromatography. As a result, the initial conversion rate of R-133a was 10%, and the R-J34a conversion rate was 10%.
A selectivity rate of 90% was obtained, but when a similar analysis was performed after one week of continuous reaction under the same conditions, R-1
33a conversion rate was 7% and R-134a selectivity was 84%, and when the reaction was continued for 6 months, R-13
The results did not decrease to 2% 3a conversion and 74% R-134a selectivity.

[発明の効果] 本発明は、実施例に示した如く、従来知られているクロ
ム系触媒より触媒寿命が長くかつ高活性が長期間維持で
きるため、1.1.1.2−テトラフルオロエタン(R
−134a)を、高効率で製造し得るという効果を有す
る。
[Effects of the Invention] As shown in the examples, the present invention has a longer catalyst life than conventionally known chromium-based catalysts and can maintain high activity for a long period of time. (R
-134a) can be produced with high efficiency.

Claims (1)

【特許請求の範囲】 1、Al、Mg、Ca、Ba、Sr、Fe、Ni、Co
、およびMnからなる群から選ばれる少なくとも1種の
元素およびCrを含むハロゲン化物または酸化物からな
るフッ素化触媒の存在下、1−クロロ−2,2,2−ト
リフルオロエタンとフッ化水素とを反応せしめることを
特徴とする1−クロロ−2,2,2−トリフルオロエタ
ンのフッ素化方法。 2、フッ素化反応を気相中常圧もしくは加圧下、200
℃〜550℃の温度範囲で行なう特許請求の範囲第1項
に記載のフッ素化方法。
[Claims] 1. Al, Mg, Ca, Ba, Sr, Fe, Ni, Co
, and 1-chloro-2,2,2-trifluoroethane and hydrogen fluoride in the presence of a fluorination catalyst consisting of a halide or oxide containing at least one element selected from the group consisting of Mn and Cr. A method for fluorinating 1-chloro-2,2,2-trifluoroethane, which comprises reacting. 2. The fluorination reaction is carried out in the gas phase at normal pressure or under pressure at 200 °C.
The fluorination method according to claim 1, which is carried out at a temperature range of 550°C to 550°C.
JP63323668A 1988-12-23 1988-12-23 Method for fluorinating 1-chloro-2,2,2-trifluoroethane Pending JPH02172933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323668A JPH02172933A (en) 1988-12-23 1988-12-23 Method for fluorinating 1-chloro-2,2,2-trifluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323668A JPH02172933A (en) 1988-12-23 1988-12-23 Method for fluorinating 1-chloro-2,2,2-trifluoroethane

Publications (1)

Publication Number Publication Date
JPH02172933A true JPH02172933A (en) 1990-07-04

Family

ID=18157275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323668A Pending JPH02172933A (en) 1988-12-23 1988-12-23 Method for fluorinating 1-chloro-2,2,2-trifluoroethane

Country Status (1)

Country Link
JP (1) JPH02172933A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300710A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5300711A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5321170A (en) * 1991-03-20 1994-06-14 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2-tetrafluoroethane
US5569795A (en) * 1993-06-18 1996-10-29 Showa Denko K. K. Fluorination catalyst and fluorination process
US6040486A (en) * 1991-03-20 2000-03-21 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1-trifluoroethane
US6080900A (en) * 1991-05-23 2000-06-27 Daikin Industries Limited Process for fluorinating halogenated hydrocarbon
US10414704B2 (en) * 2010-10-22 2019-09-17 Arkema France Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300710A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5300711A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5321170A (en) * 1991-03-20 1994-06-14 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2-tetrafluoroethane
US6040486A (en) * 1991-03-20 2000-03-21 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1-trifluoroethane
US6080900A (en) * 1991-05-23 2000-06-27 Daikin Industries Limited Process for fluorinating halogenated hydrocarbon
US5569795A (en) * 1993-06-18 1996-10-29 Showa Denko K. K. Fluorination catalyst and fluorination process
US10414704B2 (en) * 2010-10-22 2019-09-17 Arkema France Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane

Similar Documents

Publication Publication Date Title
US5731481A (en) Process for the manufacture of 1,1,1,2-Tetrafluoroethane
KR100336337B1 (en) Fluorination catalyst and fluorination process
AU630807B2 (en) Process for the manufacture of 1,1,1,2-tetra-fluorochloroethane and/or pentafluoroethane
US5919728A (en) Catalyst for the fluorination of halogenated hydrocarbons
KR101944840B1 (en) Use of copper-nickel catalyst for dehalogenation of chlorofluorocompounds
JP2005536539A (en) Process for producing 1,1,1,2,2-pentafluoroethane
US5523498A (en) Process for reducing the fluorine content of hydrofluorocarbons and hydrohalofluorocarbons
MXPA97002783A (en) Catalyst for the fluoration of hydrocarbons halogen
AU700839B2 (en) Process for the manufacture of difluoromethane
JPH02178237A (en) Fluorination of perchloroethylene
JPH02172933A (en) Method for fluorinating 1-chloro-2,2,2-trifluoroethane
AU663816B2 (en) Process for the manufacture of 1,1,1,2-tetrafluoro-2- chloroethane and of pentafluoroethane
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
AU714842B2 (en) Synthesis of difluoromethane
US5571770A (en) Catalyst for fluorination of 1,1,1,-trifluoro-2,2-dichloroethane and method for preparing the same
WO1993025507A1 (en) Vapor phase fluorination process
CA2069126C (en) Process for fluorinating halogenated hydrocarbon
JP2666444B2 (en) Method for fluorinating 1,1,2-trichloro-2,2-difluoroethane
JP2751401B2 (en) Method for producing 1,1-dichloro-1,2,2,2-tetrafluoroethane
JPH06506232A (en) Method for producing 2-chloro-1,1,1-trifluoroethane
JP3374426B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP3261165B2 (en) Methylene chloride fluorination method
JP3582798B2 (en) Fluorination catalyst and fluorination method
WO2004045763A1 (en) Porous aluminum fluoride
JPH0217137A (en) Production of trihalogenopropane