JP2541256B2 - Method for producing tetrafluoroethane - Google Patents

Method for producing tetrafluoroethane

Info

Publication number
JP2541256B2
JP2541256B2 JP62327394A JP32739487A JP2541256B2 JP 2541256 B2 JP2541256 B2 JP 2541256B2 JP 62327394 A JP62327394 A JP 62327394A JP 32739487 A JP32739487 A JP 32739487A JP 2541256 B2 JP2541256 B2 JP 2541256B2
Authority
JP
Japan
Prior art keywords
palladium
hydrogen
refractory metal
activated carbon
hydrogenation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62327394A
Other languages
Japanese (ja)
Other versions
JPH01172348A (en
Inventor
真介 森川
優 吉武
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62327394A priority Critical patent/JP2541256B2/en
Publication of JPH01172348A publication Critical patent/JPH01172348A/en
Application granted granted Critical
Publication of JP2541256B2 publication Critical patent/JP2541256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1,1,1,2−テトラフルオロエタン(R−134
a)の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to 1,1,1,2-tetrafluoroethane (R-134
It relates to the manufacturing method of a).

[従来の技術及び問題点] R−134aの製造方法の一つとして、1,1−ジクロロ−
1,2,2,2−テトラフルオロエタン(R−114a)を、水素
化触媒の存在下で水素と反応させる製造方法がある。こ
のための触媒として、既知の水素化触媒、すなわち、ニ
ッケルまたは周期律表の第VIII a族の金属、それらの合
金、または、それらの酸化物、および塩のうち、特に塩
酸耐性を有するものの適用が考えられ、既に、比較的低
コストであるパラジウムを用いる方法が報告されている
(特公昭56−38131号公報を参照)。しかし、本還元反
応においては、例えば下式に示すように塩化水素が副生
するため触媒には耐酸性が必要である。
[Prior Art and Problems] As one of the methods for producing R-134a, 1,1-dichloro-
There is a production method in which 1,2,2,2-tetrafluoroethane (R-114a) is reacted with hydrogen in the presence of a hydrogenation catalyst. Application of known hydrogenation catalysts for this purpose, i.e. nickel or metals of Group VIIIa of the Periodic Table, their alloys or their oxides and salts, especially those which are hydrochloric acid resistant. Therefore, a method using palladium, which is relatively low in cost, has already been reported (see Japanese Patent Publication No. 56-38131). However, in this reduction reaction, for example, hydrogen chloride is by-produced as shown in the following formula, so that the catalyst is required to have acid resistance.

CF3CCl2F+H2→CF3CHClF+HCl CF3CHClF+H2→CF3CH2F+HCl パラジウムは白金族の中では安価であり、水素化能に
おいても優れている。しかし、水素吸蔵能が高く、最
高、原子比で1:1まで水素が吸蔵する。水素の吸蔵量が
多くなると格子の歪も大きくなり、機械的な劣化を受け
易くなる。また、パラジウムは同族の他元素とは異な
り、濃硝酸や沸騰硫酸に溶解するほか、酸素が存在する
場合には、濃塩酸にも溶解するなど、化学的変化を受け
易いという欠点を有する。
CF 3 CCl 2 F + H 2 → CF 3 CHClF + HCl CF 3 CHClF + H 2 → CF 3 CH 2 F + HCl Palladium is inexpensive in the platinum group and has excellent hydrogenation ability. However, it has a high hydrogen storage capacity and stores up to 1: 1 atomic ratio of hydrogen. When the amount of hydrogen stored increases, the strain of the lattice also increases, and it becomes more susceptible to mechanical deterioration. Further, unlike other elements in the same family, palladium has a drawback that it is easily dissolved in concentrated nitric acid or boiling sulfuric acid, and also dissolved in concentrated hydrochloric acid in the presence of oxygen.

[問題点を解決するための手段] 触媒の特性劣化原因は一般的には、原料、反応中間体
または生成物による吸着阻害、触媒被毒、炭素析出、シ
ンタリング、触媒の化学変化等に分類される。本発明者
の研究によれば、パラジウム触媒は本還元反応において
使用に伴なう触媒粒子の粒成長が著しく、これがパラジ
ウム触媒の寿命の短い原因の一つであることが判った。
したがって、シンタリング抑制はパラジウム触媒の寿命
向上に有効であると判断される。
[Means for Solving Problems] Causes of deterioration of catalyst characteristics are generally classified into adsorption inhibition by raw materials, reaction intermediates or products, catalyst poisoning, carbon deposition, sintering, chemical change of catalyst, etc. To be done. According to the research conducted by the present inventor, it has been found that the palladium catalyst causes remarkable particle growth of the catalyst particles in use in the present reduction reaction, which is one of the causes of the short life of the palladium catalyst.
Therefore, it is judged that the suppression of sintering is effective in improving the life of the palladium catalyst.

金属中の原子移動は通常、摂氏温度で表示した温度
が、その金属の融点の3分の1以上では活発となる。そ
れゆえ、同一温度では高融点金属ほど粒成長を起こし難
いといえる。パラジウムは融点が1552℃であって貴金属
の中では最も低い。したがって、原子の移動が起こり易
く、シンタリングを生じやすい元素といえる。それゆ
え、高融点金属との合金化はシンタリング抑制に効果的
である。高融点金属の中で水素化能、塩酸耐性を有する
ものは特に好ましいが、添加量が少ない場合は、それら
の特性はそれほど重要ではない。すなわち、イリジウム
(2454℃)、ルテニウム(2500℃)、ロジウム(1966
℃)、モリブデン(2610℃)、タングステン(3410
℃)、オスミウム(3000℃)から選ばれるいずれか1つ
または2つ以上の元素とパラジウムとの合金化はシンタ
リング抑制に効果的であることが判った。(括弧内は融
点)。
Atom transfer in a metal is usually active when the temperature expressed in degrees Celsius is at least one third of the melting point of the metal. Therefore, it can be said that the higher the melting point of the metal, the less likely the grain growth will occur at the same temperature. Palladium has a melting point of 1552 ° C and is the lowest of the precious metals. Therefore, it can be said that the element is likely to move atoms and easily cause sintering. Therefore, alloying with a refractory metal is effective in suppressing sintering. Among the high melting point metals, those having hydrogenation ability and hydrochloric acid resistance are particularly preferable, but when the addition amount is small, those characteristics are not so important. That is, iridium (2454 ℃), ruthenium (2500 ℃), rhodium (1966
℃), molybdenum (2610 ℃), tungsten (3410
It was found that alloying palladium with one or more elements selected from osmium (3000 ° C.) and osmium (3000 ° C.) is effective in suppressing sintering. (Melting point in parentheses).

かくして本発明は、上記知見に基づいて完成されたも
のであり、R−114aをイリジウム、ルテニウム、ロジウ
ム、モリブデン、オスミウムおよびタングステンからな
る群から選ばれる少なくとも一種の高融点金属とパラジ
ウムを成分とする水素化触媒の存在下で水素と反応させ
ることを特徴とするR−134gの製造法である。
Thus, the present invention has been completed based on the above findings, and R-114a contains palladium as a component and at least one refractory metal selected from the group consisting of iridium, ruthenium, rhodium, molybdenum, osmium and tungsten. A method for producing R-134g, which comprises reacting with hydrogen in the presence of a hydrogenation catalyst.

本発明における水素化触媒は、イリジウム、ルテニウ
ム、ロジウム、モリブデン、オスミウムおよびタングス
テンからなる群から選ばれる少なくとも一種の高融点金
属とパラジウムを成分とする水素化触媒であり、好まし
くはパラジウムと前記高融点金属からなる合金またはそ
の酸化物からなる水素化触媒である。前記高融点金属の
割合は、好ましくは0.01〜90重量%、より好ましくは0.
1〜30重量%である。
The hydrogenation catalyst in the present invention is a hydrogenation catalyst containing palladium and at least one refractory metal selected from the group consisting of iridium, ruthenium, rhodium, molybdenum, osmium and tungsten, preferably palladium and the high melting point. It is a hydrogenation catalyst composed of an alloy composed of a metal or an oxide thereof. The proportion of the refractory metal is preferably 0.01 to 90% by weight, more preferably 0.
It is 1 to 30% by weight.

調製法としては、従来からの水素化触媒調製法が適用
可能である。例えば、触媒成分を含む塩の水溶液を担体
に含浸した後、水素などにより還元する方法がある。ま
た、ホウ素水素化物(ボラン、水素化ホウ素ナトリウム
など)、次亜リン酸塩などによる還元も可能である。
As a preparation method, a conventional hydrogenation catalyst preparation method can be applied. For example, there is a method of impregnating a carrier with an aqueous solution of a salt containing a catalyst component and then reducing the carrier with hydrogen or the like. Further, reduction with borohydride (borane, sodium borohydride, etc.), hypophosphite, etc. is also possible.

本発明において、水素化触媒の担体としては、例え
ば、アルミナ、活性炭等が好適である。担持方法は、従
来の貴金属触媒の調製法が適用可能である。なお、使用
に当ってはかかる金属の化合物は少なくとも一部還元す
る。
In the present invention, as the carrier of the hydrogenation catalyst, for example, alumina, activated carbon and the like are suitable. As a supporting method, a conventional method for preparing a noble metal catalyst can be applied. In use, at least a part of the metal compound is reduced.

水素とR−114aの割合は大幅に変動させ得る。しかし
ながら、通常、化学量論量の水素を使用して塩素原子を
水素で置換する。R−114aの全モル数に対して、化学量
論量よりかなり多い量、例えば4モルまたはそれ以上の
水素でも使用し得る。
The ratio of hydrogen to R-114a can vary widely. However, usually a stoichiometric amount of hydrogen is used to replace the chlorine atoms with hydrogen. It is also possible to use considerably more than stoichiometric amounts of hydrogen, for example 4 mol or more, based on the total number of moles of R-114a.

反応圧力については常圧、または常圧以上の圧力が使
用し得る。
Regarding the reaction pressure, normal pressure or a pressure higher than normal pressure can be used.

反応温度は120℃以上が望ましいが、450℃を越えない
温度において気相で行なうことが適当である。
The reaction temperature is preferably 120 ° C or higher, but it is suitable to carry out in the gas phase at a temperature not exceeding 450 ° C.

接触時間は、反応を気相で行なう場合には通常0.1〜3
00秒、特には5〜30秒である。
The contact time is usually 0.1 to 3 when the reaction is carried out in the gas phase.
00 seconds, especially 5 to 30 seconds.

[実施例] 以下に本発明の実施例を示す。[Examples] Examples of the present invention will be shown below.

調製例1 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムと塩化イリジウムをそれぞれ
の金属成分の重量比で90:10の割合で、活性炭の重量に
対し金属成分の全重量で0.5%だけ溶解した水溶液を少
しずつ滴下しイオン成分を活性炭に吸着させた。純水を
用いて洗浄した後、それを150℃で5時間乾燥した。次
に窒素中550℃で4時間乾燥した後、水素を導入し、300
℃に5時間保持して還元した。
Preparation Example 1 Activated carbon was immersed in pure water, and water was impregnated inside the pores. Palladium chloride and iridium chloride were added at a ratio of 90:10 by weight of the respective metal components, and an aqueous solution of 0.5% of the total weight of the metal components was added dropwise to the activated carbon to gradually add the ionic components to the activated carbon. Adsorbed. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C for 4 hours, introducing hydrogen,
The temperature was reduced to 5 ° C. for 5 hours.

調製例2 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムと塩化オスミウムをそれぞれ
の金属成分の重量比で90:10の割合で、活性炭の重量に
対し金属成分の全重量で0.5%だけ溶解した水溶液を少
しずつ滴下しイオン成分を活性炭に吸着させた。純水を
用いて洗浄した後、それを150℃で5時間乾燥した。次
に窒素中550℃で4時間乾燥した後、水素を導入し、300
℃に5時間保持して還元した。
Preparation Example 2 Activated carbon was immersed in pure water, and water was impregnated inside the pores. To this, palladium chloride and osmium chloride were added at a ratio of 90:10 by weight of each metal component, and an aqueous solution of 0.5% of the total weight of the metal components relative to the weight of the activated carbon was dropped little by little to add the ionic components to the activated carbon. Adsorbed. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C for 4 hours, introducing hydrogen,
The temperature was reduced to 5 ° C. for 5 hours.

調製例3 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムと塩化ルテニウムをそれぞれ
を金属成分の重量比で90:10の割合で、活性炭の重量に
対し金属成分の全重量で0.5%だけ溶解した水溶液を少
しずつ滴下しイオン成分を活性炭に吸着させた。純水を
用いて洗浄した後、それを150℃で5時間乾燥した。次
に窒素中550℃で4時間乾燥した後、水素を導入し、300
℃に5時間保持して還元した。
Preparation Example 3 Activated carbon was immersed in pure water, and water was impregnated inside the pores. To this, palladium chloride and ruthenium chloride were respectively added at a ratio of 90:10 by weight of the metal component, and an aqueous solution prepared by dissolving 0.5% of the total weight of the metal component with respect to the weight of the activated carbon was dropped little by little, and the ionic component was added to the activated carbon. Adsorbed. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C for 4 hours, introducing hydrogen,
The temperature was reduced to 5 ° C. for 5 hours.

調製例4 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムとタングステン酸カリウムを
パラジウム金属成分とタングステン金属成分の重量比で
99:1の割合で、活性炭の重量に対し両金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン成
分を活性炭に吸着させた。純水を用いて洗浄した後、そ
れを150℃で5時間乾燥した。次に窒素中550℃で4時間
乾燥した後、水素を導入し、300℃に5時間保持して還
元した。
Preparation Example 4 Activated carbon was immersed in pure water, and water was impregnated inside the pores. Palladium chloride and potassium tungstate are added to this in a weight ratio of palladium metal component and tungsten metal component.
At a ratio of 99: 1, an aqueous solution in which 0.5% of the total weight of both metal components was dissolved with respect to the weight of activated carbon was dropped little by little to adsorb the ionic component to the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced, and the mixture was held at 300 ° C. for 5 hours to reduce the amount.

調製例5 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムとモリブデン酸カリウムをパ
ラジウム金属成分とモリブデン金属成分の重量比で99:1
の割合で、活性炭の重量に対し両金属成分の全重量で0.
5%だけ溶解した水溶液を少しずつ滴下しイオン成分を
活性炭に吸着させた。純水を用いて洗浄した後、それを
150℃で5時間乾燥した。次に窒素中550℃で4時間乾燥
した後、水素を導入し、300℃に5時間保持して還元し
た。
Preparation Example 5 Activated carbon was immersed in pure water, and water was impregnated inside the pores. Palladium chloride and potassium molybdate were added to this in a weight ratio of the palladium metal component and the molybdenum metal component of 99: 1.
The total weight of both metal components is 0.
An aqueous solution in which only 5% was dissolved was dropped little by little to adsorb the ionic component on the activated carbon. After cleaning with pure water,
It was dried at 150 ° C. for 5 hours. Then, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced, and the mixture was held at 300 ° C. for 5 hours to reduce the amount.

調製例6 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムと塩化ロジウムをそれぞれの
金属成分の重量比で90:10の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中550℃で4時間乾燥した後、水素を導入し、300℃
に5時間保持して還元した。
Preparation Example 6 Activated carbon was immersed in pure water, and water was impregnated inside the pores. Palladium chloride and rhodium chloride were added at a ratio of 90:10 in terms of the weight ratio of the respective metal components, and an aqueous solution prepared by dissolving 0.5% of the total weight of the metal components with respect to the weight of the activated carbon was dropped little by little to make the ionic components active carbon Adsorbed. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C for 4 hours, introducing hydrogen, 300 ° C
It was kept for 5 hours and reduced.

比較調製例 活性炭を純水中に浸漬し、細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.5%だけ溶解した水溶液を少しずつ滴下
しイオン成分を活性炭に吸着させた。純水を用いて洗浄
した後、それを150℃で5時間乾燥した。次に窒素中550
℃で4時間乾燥した後、水素を導入し、300℃に5時間
保持して還元した。
Comparative Preparation Example Activated carbon was immersed in pure water, and water was impregnated inside the pores. An aqueous solution in which 0.5% of the total weight of the metal components was dissolved in palladium chloride based on the weight of the activated carbon was gradually added dropwise to adsorb the ionic components to the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then in nitrogen 550
After drying at ℃ for 4 hours, hydrogen was introduced and the temperature was kept at 300 ℃ for 5 hours for reduction.

実施例1 調製例のようにして調製した触媒を300cc充填した内
径2.54cm、長さ100cmのインコネル600製反応管を塩浴炉
中に浸漬した。
Example 1 An Inconel 600 reaction tube having an inner diameter of 2.54 cm and a length of 100 cm, which was filled with 300 cc of the catalyst prepared as in Preparation Example, was immersed in a salt bath furnace.

水素と出発物質(R−114aと1,2−ジクロロ−1,1,2,2
−テトラフルオロエタンよりなる。モル比で40:60)を
2:1のモル比で反応管に導入した。水素、出発物質の流
量はそれぞれ、100cc/分、50cc/分とした。反応温度250
℃、接触時間4.2秒で反応を行なった。反応管出口のガ
ス組成をガスクロを用いて分析した。又、接触の平均粒
径については、走査型電子顕微鏡を用いた観察により測
定した。その結果を第1表に示す。
Hydrogen and starting materials (R-114a and 1,2-dichloro-1,1,2,2
-Consisting of tetrafluoroethane. Molar ratio 40:60)
It was introduced into the reaction tube in a molar ratio of 2: 1. The flow rates of hydrogen and starting material were 100 cc / min and 50 cc / min, respectively. Reaction temperature 250
The reaction was carried out at ℃ for 4.2 seconds. The gas composition at the outlet of the reaction tube was analyzed using a gas chromatograph. Further, the average particle size of contact was measured by observation using a scanning electron microscope. The results are shown in Table 1.

[発明の効果] 本発明は、実施例に示すように、R−134aを良好な収
率で製造し得るとともに、触媒の耐久性の向上において
も優れた効果を有する。
[Effects of the Invention] As shown in the examples, the present invention can produce R-134a in a good yield and also has an excellent effect in improving the durability of the catalyst.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/46 311 B01J 23/46 311X 23/652 C07B 61/00 300 C07B 61/00 300 B01J 23/64 103X Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 23/46 311 B01J 23/46 311X 23/652 C07B 61/00 300 C07B 61/00 300 B01J 23/64 103X

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンを、イリジウム、ルテニウム、ロジウム、モリブ
デン、オスミウムおよびタングステンからなる群から選
ばれる少なくとも一種の高融点金属とパラジウムを成分
とする水素化触媒の存在下で水素と反応させることを特
徴とする、1,1,1,2−テトラフルオロエタンの製造法。
1. 1,1-Dichloro-1,2,2,2-tetrafluoroethane is added to at least one refractory metal selected from the group consisting of iridium, ruthenium, rhodium, molybdenum, osmium and tungsten and palladium. A method for producing 1,1,1,2-tetrafluoroethane, which comprises reacting with hydrogen in the presence of a hydrogenation catalyst as a component.
【請求項2】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンに対して少なくとも化学量論量の水素を使用する
特許請求の範囲第1項に記載の製造法。
2. The process according to claim 1, wherein at least a stoichiometric amount of hydrogen is used with respect to 1,1-dichloro-1,2,2,2-tetrafluoroethane.
【請求項3】水素化触媒がパラジウムと前記高融点金属
からなる合金またはその酸化物である特許請求の範囲第
1項〜第2項のいずれか一項に記載の製造法。
3. The production method according to claim 1, wherein the hydrogenation catalyst is an alloy of palladium and the refractory metal or an oxide thereof.
【請求項4】水素化触媒が、前記高融点金属の割合が0.
01〜90重量%であるパラジウムと前記高融点金属からな
る合金またはその酸化物である特許請求の範囲第3項に
記載の製造法。
4. The hydrogenation catalyst has a ratio of the refractory metal of 0.
4. The method according to claim 3, wherein the alloy is an alloy of 01 to 90% by weight of palladium and the refractory metal, or an oxide thereof.
【請求項5】水素化触媒が、前記高融点金属の割合が0.
1〜30重量%であるパラジウムと前記高融点金属からな
る合金またはその酸化物である特許請求の範囲第3項に
記載の製造法。
5. The hydrogenation catalyst has a ratio of the refractory metal of 0.
The manufacturing method according to claim 3, which is an alloy of 1 to 30% by weight of palladium and the refractory metal or an oxide thereof.
【請求項6】水素化触媒が活性炭担体またはアルミナ担
体上に担持されている特許請求の範囲第1項〜第5項の
いずれか一項に記載の製造法。
6. The production method according to any one of claims 1 to 5, wherein the hydrogenation catalyst is supported on an activated carbon carrier or an alumina carrier.
【請求項7】反応を気相中において120℃〜450℃の温度
範囲で行なう特許請求の範囲第1項〜第6項のいずれか
一項に記載の製造法。
7. The method according to any one of claims 1 to 6, wherein the reaction is carried out in the gas phase in the temperature range of 120 ° C to 450 ° C.
JP62327394A 1987-12-25 1987-12-25 Method for producing tetrafluoroethane Expired - Fee Related JP2541256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327394A JP2541256B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327394A JP2541256B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01172348A JPH01172348A (en) 1989-07-07
JP2541256B2 true JP2541256B2 (en) 1996-10-09

Family

ID=18198659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327394A Expired - Fee Related JP2541256B2 (en) 1987-12-25 1987-12-25 Method for producing tetrafluoroethane

Country Status (1)

Country Link
JP (1) JP2541256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655982B1 (en) * 1989-12-15 1992-03-27 Atochem MANUFACTURE OF CHLOROFLUOROETHANES BY SELECTIVE HYDROGENOLYSIS OF PERHALOGENATED ETHANE DERIVATIVES.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531205B2 (en) * 1987-11-13 1996-09-04 旭硝子株式会社 Method for producing 1,1,1,2-tetrafluoroethane
JP2531215B2 (en) * 1987-12-25 1996-09-04 旭硝子株式会社 Method for producing tetrafluoroethane

Also Published As

Publication number Publication date
JPH01172348A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
EP0596007B1 (en) Catalytic hydrogenolysis
CN101861293B (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
JP2531205B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
US5663464A (en) Method for producing1,1,1,3,3-pentafluoropropane
JP2541256B2 (en) Method for producing tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
EP0810192B1 (en) Process for preparing 1,1,1,3,3-pentafluoropropane
JP2551052B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
US6218587B1 (en) Catalytic hydrogenolysis
JP2636314B2 (en) Method for producing tetrafluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2508807B2 (en) Method for producing R-134a
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2581169B2 (en) Method for producing R-134a
JP2581168B2 (en) Method for producing R-134a
JP7388776B2 (en) Catalyst for ammonia synthesis and method for producing ammonia
JPH06279328A (en) Production of hexafluoropropane
JPH01132538A (en) Production of tetrafluoroethane
JPH01319442A (en) Production of tetrafluoroethane
JPH01319443A (en) Production of tetrafluoroethane
JPH02218625A (en) Production of hcfc-134a

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees