JP2636314B2 - Method for producing tetrafluoroethane - Google Patents

Method for producing tetrafluoroethane

Info

Publication number
JP2636314B2
JP2636314B2 JP63067145A JP6714588A JP2636314B2 JP 2636314 B2 JP2636314 B2 JP 2636314B2 JP 63067145 A JP63067145 A JP 63067145A JP 6714588 A JP6714588 A JP 6714588A JP 2636314 B2 JP2636314 B2 JP 2636314B2
Authority
JP
Japan
Prior art keywords
weight
activated carbon
hydrogen
tetrafluoroethane
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63067145A
Other languages
Japanese (ja)
Other versions
JPH01242536A (en
Inventor
真介 森川
優 吉武
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63067145A priority Critical patent/JP2636314B2/en
Publication of JPH01242536A publication Critical patent/JPH01242536A/en
Application granted granted Critical
Publication of JP2636314B2 publication Critical patent/JP2636314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテトラフルオロエタンの製造方法に関するも
のである。
The present invention relates to a method for producing tetrafluoroethane.

[従来の技術および発明の課題] 式CF3CH2F(R−134a)またはCHF2CHF2(R−134)で
表わされるテトラフルオロエタンの製造方法の一つとし
て、式CF2XCFYZ(式中、Xはフッ素または塩素である。
Xがフッ素である場合にはY,Zは塩素、フッ素または水
素であり(但し、Y,Zは同時に水素ではない)、Y,Zの一
方がフッ素である場合にはY,Zの他方は水素または塩素
である。Xが塩素である場合には、Y,Zの一方はフッ素
であり、Y,Zの他方は塩素または水素である。)で表わ
される4個または5個のフッ素原子を有するハロエタン
原料を、水素化触媒の存在下で水素と反応させる製造方
法がある。典型的なハロエタン原料は、1,2−ジクロロ
−1,1,2,2−テトラフルオロエタン(CClF2CClF2)およ
び1,1−ジクロロ−1,2,2,2−テトラフルオロエタン(CC
l2FCF3)の混合物である。この方法においては、ハロエ
タン原料から2個の塩素原子、または、塩素および(ま
たは)フッ素原子を水素で置き換える。このための触媒
としては、既知の水素化触媒、すなわち、ニッケルまた
は周期律表の第VIII a族の金属、それらの合金、また
は、それらの酸化物、および塩のうち、特に塩酸耐性を
有するものの適用が考えられ、既に、パラジウムを用い
る方法が報告されている(特公昭56−38131号公報を参
照)パラジウムは白金族元素の中では安価であり、水素
化能においても優れているため、有機還元反応において
は最もしばしば用いられる代表的な触媒元素である。し
かし、パラジウムは同族の他元素とは異なり、濃硝酸や
沸騰硫酸に溶解するほか、酸素が存在する場合には、濃
塩酸にも溶解するなど、化学的変化を受けやすいという
欠点を有する。また、白金族の中では融点が低い。その
ため同族の中ではシンタリングをおこしやすいと言え
る。したがってパラジウム触媒を本還元反応に用いた場
合、必ずしも寿命が長くないという欠点を有している。
[Prior Art and Problems of the Invention] As one of the methods for producing tetrafluoroethane represented by the formula CF 3 CH 2 F (R-134a) or CHF 2 CHF 2 (R-134), the formula CF 2 XCFYZ (formula Wherein X is fluorine or chlorine.
When X is fluorine, Y and Z are chlorine, fluorine or hydrogen (however, Y and Z are not hydrogen at the same time). When one of Y and Z is fluorine, the other of Y and Z is Hydrogen or chlorine. When X is chlorine, one of Y and Z is fluorine, and the other of Y and Z is chlorine or hydrogen. )), There is a production method in which a haloethane raw material having 4 or 5 fluorine atoms is reacted with hydrogen in the presence of a hydrogenation catalyst. Typical haloethane starting material, 1,2-dichloro-1,1,2,2-tetrafluoroethane (CClF 2 CClF 2) and 1,1-dichloro-1,2,2,2-tetrafluoroethane (CC
l 2 FCF 3 ). In this method, two chlorine atoms or chlorine and / or fluorine atoms are replaced with hydrogen from a haloethane raw material. Catalysts for this include known hydrogenation catalysts, namely nickel or metals of group VIIIa of the periodic table, their alloys, or their oxides and salts, which are particularly resistant to hydrochloric acid. Application is considered, and a method using palladium has already been reported (see Japanese Patent Publication No. 56-38131). Palladium is inexpensive among platinum group elements and excellent in hydrogenation ability. It is the most frequently used representative catalyst element in the reduction reaction. However, palladium, unlike other elements of the same family, has the disadvantage that it is susceptible to chemical changes, such as being soluble in concentrated nitric acid or boiling sulfuric acid and, in the presence of oxygen, also in concentrated hydrochloric acid. In addition, the melting point is low in the platinum group. Therefore, it can be said that sintering is easy to occur in the family. Therefore, when a palladium catalyst is used in the present reduction reaction, there is a disadvantage that the life is not necessarily long.

[課題を解決するための手段] 以上述べたようにパラジウム触媒は耐食性、およびシ
ンタリングの点で改善の余地がある。前者については、
高耐食性元素への置き換え、または高耐食性元素の添加
が、後者については高融点元素への置き換え、または合
金化が有効であると考えられる。但し、合金化によりパ
ラジウム触媒の初期特性を劣化させることは好ましくな
い。水素原子の吸蔵量が多く、表面水素原子濃度が高い
元素または化合物は水素還元特性を得る上で好適な添加
成分と考えられる。これらの条件を満たすものとして種
々の金属、化合物を探索した結果、以下のものが初期特
性、耐久性の点で好適であることを見出し、本発明を提
供するに至ったものである。すなわち、本反応に適用可
能な触媒としては、前述のパラジウムの他、白金、ロジ
ウム、ルテニウム等の白金族元素の中から選ばれる1つ
またはそれ以上の複数の組合せからなる金属、または合
金を主成分とすることが望ましい。中でもパラジウム、
白金、ロジウムが特に好適である。これにイリジウム、
ルテニウム等の比較的高融点の元素を添加したものも主
成分たり得る。これに以下の添加元素を加えることによ
り、初期の目的を達成することが可能となる。即ち、水
素との親和性の高い元素から選択されるチタン、ジルコ
ニウム、ハフニウム、ニオブ、タンタルの添加が耐塩酸
性の見地から好ましい。添加量としては主成分に対し
て、50〜0.01重量%、好ましくは30〜0.1重量%が適当
である。
[Means for Solving the Problems] As described above, the palladium catalyst has room for improvement in corrosion resistance and sintering. For the former,
It is considered that replacement with a high corrosion resistance element or addition of a high corrosion resistance element is effective for the latter, and replacement with a high melting point element or alloying is effective. However, it is not preferable to deteriorate the initial characteristics of the palladium catalyst by alloying. An element or compound having a large amount of stored hydrogen atoms and a high surface hydrogen atom concentration is considered to be a suitable additive component for obtaining hydrogen reduction characteristics. As a result of searching for various metals and compounds as satisfying these conditions, they have found that the following are suitable in terms of initial characteristics and durability, and have provided the present invention. That is, as the catalyst applicable to this reaction, in addition to the above-mentioned palladium, metals or alloys composed of one or more combinations selected from platinum group elements such as platinum, rhodium and ruthenium are mainly used. It is desirable to use it as a component. Among them, palladium,
Platinum and rhodium are particularly preferred. This is iridium,
A material to which an element having a relatively high melting point such as ruthenium is added may be a main component. The initial purpose can be achieved by adding the following additional elements to this. That is, addition of titanium, zirconium, hafnium, niobium, or tantalum, which is selected from elements having a high affinity for hydrogen, is preferable from the viewpoint of hydrochloric acid resistance. The amount of addition is suitably 50 to 0.01% by weight, preferably 30 to 0.1% by weight, based on the main component.

かくして本発明は、上記知見に基づいて完成されたも
のであり、1,1−ジクロロ−1,2,2,2−テトラフルオロエ
タンを、白金族元素にジルコニウム、ハフニウム、チタ
ン、ニオブ、及びタンタルから選ばれる少なくとも1種
の元素または化合物を添加してなる水素化触媒の存在下
で、水素と反応させることを特徴とする1,1,1,2−テト
ラフルオロエタンの製造方法を新規に提供するものであ
る。
Thus, the present invention has been completed on the basis of the above findings, and comprises 1,1-dichloro-1,2,2,2-tetrafluoroethane as a platinum group element, zirconium, hafnium, titanium, niobium, and tantalum. Newly provided a method for producing 1,1,1,2-tetrafluoroethane characterized by reacting with hydrogen in the presence of a hydrogenation catalyst comprising at least one element or compound selected from the group consisting of: Is what you do.

本発明において、水素化触媒の担体としては、例え
ば、アルミナ、活性炭等が好適である。使用に当たって
はかかる金属の化合物は少なくとも一部還元する。
In the present invention, as the carrier of the hydrogenation catalyst, for example, alumina, activated carbon and the like are suitable. In use, such metal compounds are at least partially reduced.

水素と1,1−ジクロロ−1,2,2,2−テトラフルオロエタ
ン(R−114a)の割合は大幅に変動させ得る。しかしな
がら、通常、化学量論量の水素を使用してハロゲン原子
を水素で置換する。R−114aの1モルあたり4モルまで
の水素を使用することが好ましいが、化学量論量よりか
なり多い量、例えば4モルまたはそれ以上の水素を使用
し得る。
The proportion of hydrogen and 1,1-dichloro-1,2,2,2-tetrafluoroethane (R-114a) can vary widely. However, usually a stoichiometric amount of hydrogen is used to replace the halogen atom with hydrogen. It is preferred to use up to 4 moles of hydrogen per mole of R-114a, but it is possible to use considerably more than stoichiometric amounts, such as 4 moles or more.

反応圧力については、大気圧または大気圧を越える圧
力を使用し得る。
With regard to the reaction pressure, atmospheric or superatmospheric pressures can be used.

反応温度は120℃以上が望ましいが、450℃を越えない
温度において気相で行なうことが適当である。
The reaction temperature is preferably 120 ° C. or higher, but it is appropriate to carry out the reaction in a gas phase at a temperature not exceeding 450 ° C.

接触時間は、反応を気相で行なう場合には通常0.1〜3
00秒、特に5〜30秒である。
The contact time is usually 0.1 to 3 when the reaction is carried out in the gas phase.
00 seconds, especially 5 to 30 seconds.

得られるテトラフルオロエタンは出発物質の選択によ
り相当変動する。出発物質がR−114aである場合には、
R−134a(CF3CH2F)が得られ、R−134(CHF2CHF2)は
殆ど生じない。出発物質が1,2−ジクロロ−1,1,2,2−テ
トラフルオロエタン(R−114)である場合には、反応
生成物は通常テトラフルオロエタンの2種の異性体の混
合物からなる。混合物中でのR−114aの、R−114に対
する割合が増大するにつれて、CF3CH2Fの生成量が増大
する。
The resulting tetrafluoroethane varies considerably depending on the choice of starting materials. When the starting material is R-114a,
R-134a (CF 3 CH 2 F) is obtained, and R-134 (CHF 2 CHF 2 ) hardly occurs. When the starting material is 1,2-dichloro-1,1,2,2-tetrafluoroethane (R-114), the reaction product usually consists of a mixture of two isomers of tetrafluoroethane. As the ratio of R-114a to R-114 in the mixture increases, the amount of CF 3 CH 2 F increases.

本発明は所望のR−134aまたはこれらの混合物を簡単
かつ好都合な方法により、種々の割合で得ることが出来
るという利点を有する製造方法を提供するものである。
The present invention provides a production method having the advantage that the desired R-134a or a mixture thereof can be obtained in various ratios by a simple and convenient method.

[実施例] 以下に本発明の実施例を示す。[Example] An example of the present invention will be described below.

調製例 1 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.45重量%だけ溶解した水溶液にタンタル
酸カリウムをタンタルの重量で活性炭の重量に対し、0.
05重量%だけ溶解した。この水溶液に活性炭を浸漬し、
イオンを活性炭に吸着させた。純水を用いて洗浄した
後、それを150℃で5時間乾燥した。次に窒素中550℃で
4時間乾燥した後、水素を導入し、5時間、800℃に保
持して還元した。触媒微粒子の粒径は50〜100Åであっ
た。
Preparation Example 1 Activated carbon was immersed in pure water to impregnate water to the inside of the pores. In this solution, potassium tantalate was dissolved in an aqueous solution in which palladium chloride was dissolved by 0.45% by weight of the total weight of the metal components with respect to the weight of activated carbon, and the weight of tantalum was 0.2% of the weight of activated carbon.
Only 05% by weight was dissolved. Activated carbon is immersed in this aqueous solution,
The ions were adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 800 ° C. for 5 hours. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 2 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.45重量%だけ溶解した水溶液に粒径25μ
m以下のタンタル微粒子を活性炭の重量に対し0.05重量
%だけ分散させた。この液を少しずつ滴下し、撹拌し
た。しかる後、純水を用いて洗浄した後、それを150℃
で5時間乾燥した。次に窒素中550℃で4時間乾燥した
後、水素を導入し、5時間,800℃に保持して還元した。
触媒微粒子の粒径は50〜100Åであった。
Preparation Example 2 Activated carbon was immersed in pure water to impregnate water into the pores. An aqueous solution in which palladium chloride is dissolved by 0.45% by weight of the total weight of the metal component with respect to the weight of the activated carbon has a particle size of 25μ.
m or less of tantalum fine particles were dispersed by 0.05% by weight based on the weight of activated carbon. This liquid was added dropwise little by little and stirred. After washing with pure water,
For 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 800 ° C. for 5 hours.
The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 3 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.45重量%だけ溶解した水溶液にニオブ酸
マグネシウムをニオブの重量で活性炭の重量に対し、0.
05重量%だけ溶解した。この水溶液に活性炭を浸漬し、
イオンを活性炭に吸着させた。純水を用いて洗浄した
後、それを150℃で5時間乾燥した。次に窒素中550℃で
4時間乾燥した後、水素を導入し、5時間、800℃に保
持して還元した。触媒微粒子の粒径は50〜100Åであっ
た。
Preparation Example 3 Activated carbon was immersed in pure water to impregnate the water into the pores. In this solution, magnesium niobate was added to an aqueous solution in which palladium chloride was dissolved in an amount of 0.45% by weight based on the total weight of the metal component with respect to the weight of the activated carbon, and the weight of the niobium was 0.3% of the weight of the activated carbon.
Only 05% by weight was dissolved. Activated carbon is immersed in this aqueous solution,
The ions were adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 800 ° C. for 5 hours. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 4 活性炭をエタノールに浸漬し細孔内部までエタノール
を含浸させた。これに塩化パラジウムを活性炭の重量に
対し金属成分の全重量で0.45重量%だけ溶解したエタノ
ール溶液にチタン酸カリウムをチタンの重量で活性炭の
重量に対し、0.05重量%だけ溶解した。この溶液を少し
ずつ滴下し、撹拌する。それを100℃で5時間乾燥し
た。次に窒素中550℃で4時間乾燥した後、水素を導入
し、5時間、800℃に保持して還元した。触媒微粒子の
粒径は50〜100Åであった。
Preparation Example 4 Activated carbon was immersed in ethanol to impregnate the inside of the pores with ethanol. Potassium titanate was dissolved in an ethanol solution in which palladium chloride was dissolved in an amount of 0.45% by weight based on the total weight of the activated carbon based on the weight of the activated carbon, and 0.05% by weight of titanium in terms of the weight of the activated carbon in terms of titanium. This solution is added dropwise little by little and stirred. It was dried at 100 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 800 ° C. for 5 hours. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 5 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.45重量%だけ溶解した水溶液に硫酸ジル
コニウムをジルコニウム成分の重量で活性炭の重量に対
し、0.05重量%だけ添加した。この水溶液に活性炭を浸
漬し、イオンを活性炭に吸着させた。純水を用いて洗浄
した後、それを150℃で5時間乾燥した。次に窒素中550
℃で4時間乾燥した後、水素を導入し、5時間、700℃
に保持して還元した。触媒微粒子の粒径は50〜100Åで
あった。
Preparation Example 5 Activated carbon was immersed in pure water to impregnate water into the pores. To this aqueous solution in which palladium chloride was dissolved in an amount of 0.45% by weight of the total weight of the metal component to the weight of the activated carbon, zirconium sulfate was added in an amount of 0.05% by weight based on the weight of the activated carbon in terms of the weight of the zirconium component. Activated carbon was immersed in the aqueous solution to adsorb ions on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then 550 in nitrogen
After drying at 4 ° C for 4 hours, hydrogen was introduced and 5 hours at
And reduced. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 6 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化パラジウムを活性炭の重量に対し金属成
分の全重量で0.45重量%だけ溶解した水溶液に塩化ハフ
ニウムをハフニウム成分の重量で活性炭の重量に対し、
0.05重量%だけ添加した。この水溶液に活性炭を浸漬
し、イオンを活性炭に吸着させた。純水を用いて洗浄し
た後、それを150℃で5時間乾燥した。次に窒素中550℃
で4時間乾燥した後、水素を導入し、5時間、700℃に
保持して還元した。触媒微粒子の粒径は50〜100Åであ
った。
Preparation Example 6 Activated carbon was immersed in pure water to impregnate water into the pores. In this solution, hafnium chloride was dissolved in an aqueous solution in which palladium chloride was dissolved in an amount of 0.45% by weight of the total weight of the metal component with respect to the weight of the activated carbon, and the weight of the hafnium component with respect to the weight of the activated carbon
Only 0.05% by weight was added. Activated carbon was immersed in the aqueous solution to adsorb ions on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then 550 ° C in nitrogen
After drying for 4 hours, hydrogen was introduced and reduced at 700 ° C. for 5 hours. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 7 活性炭を純水中に浸漬に細孔内部まで水を含浸させ
た。これに塩化白金酸を活性炭の重量に対し金属成分の
全重量で0.45重量%だけ溶解した水溶液に硫酸ジルコニ
ウムをジルコニウム成分の重量で活性炭の重量に対し、
0.05重量%だけ添加した。この水溶液に活性炭を浸漬
し、イオンを活性炭に吸着させた。純水を用いて洗浄し
た後、それを150℃で5時間乾燥した。次に窒素中550℃
で4時間乾燥した後、水素を導入し、5時間、700℃に
保持して還元した。触媒微粒子の粒径は50〜100Åであ
った。
Preparation Example 7 Activated carbon was immersed in pure water to impregnate water into the pores. In this solution, zirconium sulfate was dissolved in an aqueous solution in which chloroplatinic acid was dissolved by 0.45% by weight of the total weight of the metal component with respect to the weight of the activated carbon.
Only 0.05% by weight was added. Activated carbon was immersed in the aqueous solution to adsorb ions on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then 550 ° C in nitrogen
After drying for 4 hours, hydrogen was introduced and reduced at 700 ° C. for 5 hours. The particle size of the catalyst fine particles was 50 to 100 mm.

調製例 5 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。これに塩化ロジウムを活性炭の重量に対し金属成分
の全重量で0.45重量%だけ溶解した水溶液に硫酸ジルコ
ニウムをジルコニウム成分の重量で活性炭の重量に対
し、0.05重量%だけ添加した。この水溶液に活性炭を浸
漬し、イオンを活性炭に吸着させた。純水を用いて洗浄
した後、それを150℃で5時間乾燥した。次に窒素中550
℃で4時間乾燥した後、水素を導入し、5時間、700℃
に保持して還元した。触媒微粒子の粒径は50〜100Åで
あった。
Preparation Example 5 Activated carbon was immersed in pure water to impregnate water into the pores. To this aqueous solution in which rhodium chloride was dissolved by 0.45% by weight of the total weight of the metal component based on the weight of the activated carbon, zirconium sulfate was added by 0.05% by weight based on the weight of the activated carbon in terms of the weight of the zirconium component. Activated carbon was immersed in the aqueous solution to adsorb ions on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then 550 in nitrogen
After drying at 4 ° C for 4 hours, hydrogen was introduced and 5 hours at
And reduced. The particle size of the catalyst fine particles was 50 to 100 mm.

実施例 1 調製例のようにして調製した触媒を300cc充填した内
径約2.6cm、長さ100cmのインコネル600製反応管を塩浴
炉中に浸漬した。
Example 1 A reaction tube made of Inconel 600 having an inner diameter of about 2.6 cm and a length of 100 cm filled with 300 cc of the catalyst prepared as in the preparation example was immersed in a salt bath furnace.

水素と出発物質(1,1−ジクロロ−1,2,2,2−テトラフ
ルオロエタンと1,2−ジクロロ−1,1,2,2−テトラフルオ
ロエタンよりなる。モル比で40:60)を2:1のモル比で反
応管に導入した。水素、出発物質の流量はそれぞれ、10
0cc/分、50cc/分とした。反応管出口のガス組成をガス
クロを用いて分析した。その結果を第1表に示す。
Hydrogen and starting material (consisting of 1,1-dichloro-1,2,2,2-tetrafluoroethane and 1,2-dichloro-1,1,2,2-tetrafluoroethane, molar ratio 40:60) Was introduced into the reaction tube at a molar ratio of 2: 1. The flow rates of hydrogen and starting material were 10
0 cc / min and 50 cc / min. The gas composition at the outlet of the reaction tube was analyzed using a gas chromatograph. Table 1 shows the results.

比較例 1 触媒として活性炭に0.5重量%のパラジウムを調製例
と同様に担持したものを用いる以外は実施例1と同様に
して、還元反応を行なった。結果を第1表に示す。な
お、触媒微粒子の初期粒径は50〜100Åであった。な
お、第1表中の%はすべてモル%を表す。
Comparative Example 1 A reduction reaction was carried out in the same manner as in Example 1, except that activated carbon was loaded with 0.5% by weight of palladium in the same manner as in the Preparation Example. The results are shown in Table 1. The catalyst particles had an initial particle size of 50 to 100 °. The percentages in Table 1 all represent mol%.

[発明の効果] 本発明における還元触媒は、実施例に示すように、初
期性能が優れているとともに、耐久性の向上においても
優れた特性を有する。
[Effects of the Invention] As shown in Examples, the reduction catalyst of the present invention has excellent initial performance and also has excellent characteristics in improving durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/58 B01J 23/58 Z 23/648 C07B 61/00 300 C07B 61/00 300 B01J 23/64 102Z (56)参考文献 特開 昭53−147005(JP,A) 特許2541256(JP,B2) 特許2531205(JP,B2) 特許2531215(JP,B2)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 23/58 B01J 23/58 Z23 / 648 C07B 61/00 300 C07B 61/00 300 B01J 23 / 64 102Z (56) References JP-A-53-147005 (JP, A) Patent 2541256 (JP, B2) Patent 2531205 (JP, B2) Patent 2531215 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンを、白金族元素にジルコニウム、ハフニウム、チ
タン、ニオブ、及びタンタルから選ばれる少なくとも1
種の元素または化合物を添加してなる水素化触媒の存在
下で、水素と反応させることを特徴とする1,1,1,2−テ
トラフルオロエタンの製造方法。
1. The method of claim 1, wherein 1,1-dichloro-1,2,2,2-tetrafluoroethane is selected from the group consisting of zirconium, hafnium, titanium, niobium and tantalum.
A method for producing 1,1,1,2-tetrafluoroethane, comprising reacting with hydrogen in the presence of a hydrogenation catalyst to which a kind of element or compound is added.
【請求項2】1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタン1モリ当り4モルまでの水素を使用する特許請求
の範囲第1項に記載の製造方法。
2. The process according to claim 1, wherein up to 4 moles of hydrogen are used per mole of 1,1-dichloro-1,2,2,2-tetrafluoroethane.
【請求項3】触媒成分が活性炭担体上またはアルミナ担
体上に担持されている水素化触媒を用いる特許請求の範
囲第1項または第2項に記載の製造方法。
3. The process according to claim 1, wherein the catalyst component comprises a hydrogenation catalyst supported on an activated carbon carrier or an alumina carrier.
【請求項4】反応を気相中において120℃〜450℃の温度
範囲で行なう特許請求の範囲第1項、第2項または第3
項に記載の製造方法。
4. The method according to claim 1, wherein the reaction is carried out in a gas phase at a temperature in the range of 120 ° C. to 450 ° C.
The production method according to the paragraph.
JP63067145A 1988-03-23 1988-03-23 Method for producing tetrafluoroethane Expired - Fee Related JP2636314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067145A JP2636314B2 (en) 1988-03-23 1988-03-23 Method for producing tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067145A JP2636314B2 (en) 1988-03-23 1988-03-23 Method for producing tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01242536A JPH01242536A (en) 1989-09-27
JP2636314B2 true JP2636314B2 (en) 1997-07-30

Family

ID=13336447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067145A Expired - Fee Related JP2636314B2 (en) 1988-03-23 1988-03-23 Method for producing tetrafluoroethane

Country Status (1)

Country Link
JP (1) JP2636314B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU641704B2 (en) * 1989-10-10 1993-09-30 E.I. Du Pont De Nemours And Company Halocarbon hydrogenolysis
EP0669304B1 (en) * 1992-11-11 1998-04-29 Daikin Industries, Limited Process for producing difluoromethane
JP3513962B2 (en) * 1995-02-13 2004-03-31 ダイキン工業株式会社 Method for producing 1,1,1,3,3-pentafluoropropane

Also Published As

Publication number Publication date
JPH01242536A (en) 1989-09-27

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
JP3158440B2 (en) Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane
US5136113A (en) Catalytic hydrogenolysis
JPH06510048A (en) CC1↓3CF↓3 contact manufacturing method
JPH10510266A (en) Preparation of 2-chloro-2-hydrohexafluoropropane and its azeotrope with HF
JP2531205B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2636314B2 (en) Method for producing tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
JP3010847B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
US5663464A (en) Method for producing1,1,1,3,3-pentafluoropropane
US5302765A (en) Catalytic process for producing CF3 CHClF
US6218587B1 (en) Catalytic hydrogenolysis
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
EP0669304B1 (en) Process for producing difluoromethane
JP2541256B2 (en) Method for producing tetrafluoroethane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH01132537A (en) Production of tetrafluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2580696B2 (en) Method for producing pentafluoroethane
JPH01132538A (en) Production of tetrafluoroethane
JP2508807B2 (en) Method for producing R-134a
JP2581169B2 (en) Method for producing R-134a
JP2734672B2 (en) Method for producing 1,1-difluoroethane
US5602288A (en) Catalytic process for producing CF3 CH2 F

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees