JP2734672B2 - Method for producing 1,1-difluoroethane - Google Patents

Method for producing 1,1-difluoroethane

Info

Publication number
JP2734672B2
JP2734672B2 JP1217556A JP21755689A JP2734672B2 JP 2734672 B2 JP2734672 B2 JP 2734672B2 JP 1217556 A JP1217556 A JP 1217556A JP 21755689 A JP21755689 A JP 21755689A JP 2734672 B2 JP2734672 B2 JP 2734672B2
Authority
JP
Japan
Prior art keywords
activated carbon
catalyst
hours
reaction
difluoroethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1217556A
Other languages
Japanese (ja)
Other versions
JPH0383940A (en
Inventor
真介 森川
俊一 鮫島
優 吉武
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1217556A priority Critical patent/JP2734672B2/en
Publication of JPH0383940A publication Critical patent/JPH0383940A/en
Application granted granted Critical
Publication of JP2734672B2 publication Critical patent/JP2734672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 近年、化学的に安定なクロロフルオロカーボン類は大
気中に放出されるとオゾン層を破壊する可能性があると
懸念されている。そのため、フロン−11、フロン−12を
始めとするいわゆる特定フロンは国際的にその製造およ
び使用が規制または廃止される方向にある。フロン−12
(化学式:CCl2F2、沸点:−29.8℃)の代替候補物質と
してはHFC−134a(化学式:CF3CH2F、沸点:−26.5℃)
が提案されている。しかし、HFC−134aとフロン−12の
物性は必ずしも同一ではない。したがって、フロン−12
を使用している冷凍機にそのままHFC−134aを置き換え
ることはできず、新設計の冷凍機が必要であると言われ
ている。そこで、現在フロン−12を使用している冷凍機
用の代替冷媒として1,1−ジフルオロエタン(HFC−152
a、化学式:CH3CHF2、沸点:25.0℃)を含む混合系冷媒が
提案されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] In recent years, it has been feared that chemically stable chlorofluorocarbons may destroy the ozone layer when released into the atmosphere. Therefore, the production and use of so-called specific CFCs such as CFC-11 and CFC-12 are being regulated or abolished internationally. Freon-12
As an alternative candidate substance (chemical formula: CCl 2 F 2 , boiling point: −29.8 ° C.), HFC-134a (chemical formula: CF 3 CH 2 F, boiling point: −26.5 ° C.)
Has been proposed. However, the physical properties of HFC-134a and Freon-12 are not always the same. Therefore, CFC-12
It is said that a HFC-134a cannot be directly replaced with a refrigerator using, and a newly designed refrigerator is required. Therefore, 1,1-difluoroethane (HFC-152) is used as an alternative refrigerant for refrigerators currently using Freon-12.
a, a mixed refrigerant containing a chemical formula: CH 3 CHF 2 , boiling point: 25.0 ° C.) has been proposed.

本発明は、フロン−12の代替品への応用が期待されて
いる1,1−ジフルオロエタンの製造方法に関するもので
ある。
The present invention relates to a method for producing 1,1-difluoroethane, which is expected to be used as a substitute for CFC-12.

[従来の技術および課題] 1,1−ジフルオロエタンの製造法としてはアセチレ
ン、またはフッ化ビニルをフッ素化する方法が知られて
いる。しかし、このプロセスにおいては安全性確保のた
めの多大の設備投資が必要であるほか、必ずしも高い反
応収率が容易に得られないという問題点を有している。
[Prior art and problems] As a method for producing 1,1-difluoroethane, a method for fluorinating acetylene or vinyl fluoride is known. However, this process requires a large amount of equipment investment for ensuring safety, and has a problem that a high reaction yield cannot always be easily obtained.

[課題を解決するための手段] 本発明者は、1,1−ジフルオロエタンを得る反応ルー
トとして1−クロロ−1,1−ジフルオロエタン(HCFC−1
42b、化学式:CClF2CH3、沸点:−9.8℃)を還元する方
法について鋭意検討を行ない、高収率で1,1−ジフルオ
ロエタンが得られることを見いだし、本発明を提供する
に至ったものである。以下、本発明の詳細について、実
施例とともに説明する。
[Means for Solving the Problems] The present inventor has proposed 1-chloro-1,1-difluoroethane (HCFC-1) as a reaction route for obtaining 1,1-difluoroethane.
(42b, chemical formula: CClF 2 CH 3 , boiling point: -9.8 ° C.) The inventors have made intensive studies and found that 1,1-difluoroethane can be obtained in high yield, and have provided the present invention. It is. Hereinafter, details of the present invention will be described together with examples.

原料であるHCFC−142bは例えばメチルクロロホルムを
フッ素化する等の方法により容易に得ることができる。
HCFC−142bの還元においては次式に示すように分子中の
塩素が水素原子と置換される。
HCFC-142b as a raw material can be easily obtained by a method such as fluorination of methyl chloroform.
In the reduction of HCFC-142b, chlorine in the molecule is replaced with a hydrogen atom as shown in the following formula.

CClF2CH3 → CHF2CH3+HCl (HCFC−142b) (HFC−152a) 一般にC−X(X=F、C1、Br、I)結合に関しては
C−I>C−Br>C−C1≫C−Fの順に還元が困難とな
る。(次表参照) それゆえ結合エネルギーの強いCF結合を断ち切る過程
を含む1,1−ジフルオロエタンの還元反応は起こりにく
く、本発明方法では選択的に1,1−ジフルオロエタンが
得られることになる。
CClF 2 CH 3 → CHF 2 CH 3 + HCl (HCFC-142b) (HFC-152a) In general, for a C—X (X = F, C1, Br, I) bond, CI>C—Br> C—C1≫ Reduction becomes difficult in the order of CF. (See table below) Therefore, a reduction reaction of 1,1-difluoroethane including a process of breaking a CF bond having a strong binding energy is unlikely to occur, and 1,1-difluoroethane can be selectively obtained by the method of the present invention.

還元は光照射下に行なう方法、亜鉛を用いて行なう方
法、および触媒の存在下水素を用いて行なう方法等種々
の還元方法を用いて行なうことができる。還元を光照射
下に行なう場合においてプロトン源として用いる化合物
としては、水素原子が結合した有機化合物であれば特に
限定されないが、例えばメタノール、エタノール、イソ
プロピルアルコール、sec−ブチルアルコール等のアル
コール類、ヘキサン、ヘプタン等のアルカン類、トルエ
ン、キシレン等の芳香族化合物が好ましく、なかでもイ
ソプロピルアルコール等の二級アルコールが特に好まし
い。また、これらの混合溶媒も使用可能である。反応温
度は−20℃〜+300℃が適当であり、還元剤は化学量論
量又はそれ以上を使用するのが好適である。
The reduction can be performed using various reduction methods, such as a method under light irradiation, a method using zinc, and a method using hydrogen in the presence of a catalyst. When the reduction is performed under light irradiation, the compound used as a proton source is not particularly limited as long as it is an organic compound to which a hydrogen atom is bonded.For example, methanol, ethanol, isopropyl alcohol, alcohols such as sec-butyl alcohol, hexane , Alkanes such as heptane, and aromatic compounds such as toluene and xylene are preferable, and secondary alcohols such as isopropyl alcohol are particularly preferable. Moreover, these mixed solvents can also be used. The reaction temperature is suitably from -20 ° C to + 300 ° C, and the stoichiometric amount or more of the reducing agent is preferably used.

亜鉛を用いて還元する際に用いる溶媒としては、特に
限定されないが、メタノール、エタノール、イソプロピ
ルアルコール等のアルコール類、酢酸や蟻酸等の有機
酸、テトラヒドロフラン等のエーテル類や水、さらには
これらの混合物を用いることが好ましく、なかでもメタ
ノール、エタノール、イソプロピルアルコール等のアル
コール類を使用するのが好適である。亜鉛としては粉
末、顆粒、削り片等いずれの形状のものでも使用できる
が、亜鉛粉末を用いるのが最も好ましい。また使用前に
特別な活性化処理などを施す必要はない。使用する亜鉛
の量は特に限定されるものではないが通常出発原料に対
して等モル用いるのが好ましい。反応温度は−20℃〜+
300℃が適当である。圧力は特に限定されないが通常0
〜10Kg/cm2G、好ましくは1〜3Kg/cm2Gの圧力範囲で行
なうのが良い。
The solvent used for the reduction using zinc is not particularly limited, but includes alcohols such as methanol, ethanol, and isopropyl alcohol; organic acids such as acetic acid and formic acid; ethers such as tetrahydrofuran; water; and mixtures thereof. Preferably, alcohols such as methanol, ethanol, and isopropyl alcohol are used. As zinc, any shape such as powder, granules and shavings can be used, but zinc powder is most preferably used. It is not necessary to perform a special activation treatment or the like before use. The amount of zinc used is not particularly limited, but usually it is preferable to use an equimolar amount based on the starting material. Reaction temperature is -20 ° C ~ +
300 ° C is appropriate. The pressure is not particularly limited, but is usually 0.
The pressure is preferably in the range of 1010 kg / cm 2 G, preferably 1-3 kg / cm 2 G.

還元を触媒の存在下水素を用いて行なう場合、液相、
気相いずれの系も取り得る。還元触媒としては白金、パ
ラジウム、ロジウム、ルテニウム等の貴金属触媒、ニッ
ケル等の非金属触媒いずれも使用可能であるが、なかで
も貴金属触媒を使用するのが特に好ましい。液相で還元
を行なう場合は、無溶媒で行なってもよいし反応に不活
性な溶媒、例えばメタノール、エタノール、イソプロピ
ルアルコールなどのアルコール類を用いてもよい。反応
温度は室温〜400℃が適当であり、水素は化学量論量又
はそれ以上が好適である。反応圧力については常圧、ま
たは常圧以上の圧力が使用し得る。接触時間は反応を気
相で行なう場合には通常0.1〜300℃秒、特には2〜60秒
である。
When the reduction is performed using hydrogen in the presence of a catalyst, the liquid phase,
Any system in the gas phase is possible. As the reduction catalyst, any of noble metal catalysts such as platinum, palladium, rhodium and ruthenium and nonmetal catalysts such as nickel can be used, and among them, it is particularly preferable to use noble metal catalysts. When the reduction is performed in the liquid phase, the reduction may be performed without a solvent, or a solvent inert to the reaction, for example, an alcohol such as methanol, ethanol, or isopropyl alcohol may be used. The reaction temperature is suitably from room temperature to 400 ° C., and the stoichiometric amount or more of hydrogen is suitable. The reaction pressure may be normal pressure or a pressure higher than normal pressure. When the reaction is carried out in a gas phase, the contact time is usually 0.1 to 300 ° C., particularly 2 to 60 seconds.

触媒には副生する塩化水素に対して十分な安定性を有
することが必要である。また、種々の触媒を用い反応挙
動を検討した結果、比較的高い反応温度が必要であるこ
とが判明した。それゆえ、触媒には高活性、高耐熱性が
要求される。すなわち、白金族元素触媒、または白金族
元素を主体に鉄族元素またはレニウムを添加した合金を
主成分とする触媒が使用できる。さらに、これらにチタ
ン、ジルコニウム、ハフニウム、ランタン、他のランタ
ニド元素、タンタル、ニオブ、モリブデン、タングステ
ン、IB族元素を適宜添加することにより触媒の耐熱性を
向上することが可能であり長寿命の触媒が得られる。触
媒成分の担持方法としては上記元素の単純塩、または錯
塩を用いて含浸法、イオン交換法、等により担持する方
法が適用できる。担持した触媒成分の還元法としては、
水素、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナ
トリウム等により液相で還元する法、および水素により
気相で還元する方法等が適用できる。担体としては、例
えば、活性炭、アルミナ、ジルコニア等が好適である。
なお、触媒の使用に当たってはあらかじめ水素還元処理
を施しておくことが安定した特性を得る上で望ましい。
The catalyst needs to have sufficient stability against hydrogen chloride produced as a by-product. Moreover, as a result of examining the reaction behavior using various catalysts, it was found that a relatively high reaction temperature was required. Therefore, the catalyst is required to have high activity and high heat resistance. That is, a platinum group element catalyst or a catalyst mainly containing an alloy obtained by adding an iron group element or rhenium mainly to a platinum group element can be used. Further, by appropriately adding titanium, zirconium, hafnium, lanthanum, other lanthanide elements, tantalum, niobium, molybdenum, tungsten, and group IB elements, the heat resistance of the catalyst can be improved and a long-life catalyst can be obtained. Is obtained. As a method for supporting the catalyst component, a method in which a simple salt or a complex salt of the above element is used and supported by an impregnation method, an ion exchange method or the like can be applied. As a method for reducing the supported catalyst component,
A method of reducing in a liquid phase with hydrogen, hydrazine, formaldehyde, sodium borohydride, or the like, a method of reducing in a gas phase with hydrogen, and the like can be applied. As the carrier, for example, activated carbon, alumina, zirconia and the like are suitable.
Before using the catalyst, it is desirable to perform a hydrogen reduction treatment in advance to obtain stable characteristics.

以上の如く、本発明は1−クロロ−1,1−ジフルオロ
エタンを還元することにより、高収率で1,1−ジフルオ
ロエタンを製造する方法を提供するものである。
As described above, the present invention provides a method for producing 1,1-difluoroethane in a high yield by reducing 1-chloro-1,1-difluoroethane.

[実施例] 以下に本発明の実施例を示す。[Example] An example of the present invention will be described below.

実施例1 市販の活性炭担持白金触媒(担持量0.5%)を300cc充
填した内径2.6cm、長さ100cmのインコネル600製反応管
を塩浴炉中に浸漬した。
Example 1 A reaction tube made of Inconel 600 having an inner diameter of 2.6 cm and a length of 100 cm filled with 300 cc of a commercially available platinum catalyst supported on activated carbon (supporting amount: 0.5%) was immersed in a salt bath furnace.

水素と1−クロロ−1,1−ジフルオロエタンを4:1のモ
ル比で反応管に導入した。水素、出発物質の流量はそれ
ぞれ、200cc/分、50cc/分とした。反応温度は300℃とし
た。生成ガスの分析にはガスクロを用いた。その結果を
第1表に示す。
Hydrogen and 1-chloro-1,1-difluoroethane were introduced into the reaction tube in a 4: 1 molar ratio. The flow rates of hydrogen and starting material were 200 cc / min and 50 cc / min, respectively. The reaction temperature was 300 ° C. Gas chromatography was used for the analysis of the produced gas. Table 1 shows the results.

実施例2 触媒を市販の活性炭担持パラジウム触媒(担持量0.5
%)とする他は実施例1と同様にして反応を行なった。
結果を第1表に示す。
Example 2 A commercially available palladium catalyst supported on activated carbon (supporting amount 0.5
%) Except that the reaction was carried out in the same manner as in Example 1.
The results are shown in Table 1.

実施例3 触媒を市販の活性炭担体ロジウム(担持量0.5%)と
する他は実施例1と同様に反応を行なった。結果を第1
表に示す。
Example 3 The reaction was carried out in the same manner as in Example 1 except that the catalyst was rhodium, a commercially available activated carbon carrier (amount supported: 0.5%). First result
It is shown in the table.

実施例4 触媒を市販の活性炭担体ルテニウム(担持量0.5%)
とする他は実施例1と同様に反応を行なった。結果を第
1表に示す。
Example 4 The catalyst was a commercially available activated carbon carrier ruthenium (loading amount: 0.5%)
The reaction was carried out in the same manner as in Example 1 except for the above. The results are shown in Table 1.

実施例5 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩化パラジウムと塩化ニッケルを金属成分の重量比
で50:50の割合で、活性炭の重量に対して金属成分の全
重量で2.0%だけ溶解した水溶液にアンモニアを加え弱
アルカリ性とした。この水溶液に上記の活性炭を投入し
イオン成分を活性炭に吸着させた。これに水素化ホウ素
ナトリウム水溶液を滴下し触媒成分を還元した。蒸留水
で洗浄した後150℃で5時間乾燥した。このようにして
調製した触媒を用い、反応温度を340℃とする他は実施
例1と同様にして反応を行った。結果を第1表に示す。
Example 5 Activated carbon was immersed in pure water to impregnate the water into the pores. Ammonia was added to an aqueous solution in which palladium chloride and nickel chloride were dissolved by a ratio of 50:50 by weight of the metal component and 2.0% by the total weight of the metal component with respect to the weight of the activated carbon to make it weakly alkaline. The activated carbon was introduced into the aqueous solution to adsorb the ionic components on the activated carbon. An aqueous solution of sodium borohydride was added dropwise thereto to reduce the catalyst component. After washing with distilled water, it was dried at 150 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例6 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと過
レニウム酸カリウムを重金属成分の重量比で90:10の割
合で、活性炭の重量に対し重金属成分の全重量で1.0%
だけ溶解した水溶液を少しずつ滴下しイオン成分を活性
炭に吸着させた。純水を用いて洗浄した後、それを150
℃で5時間乾燥した。次に窒素中550℃で4時間乾燥し
た後、水素を導入し、5時間,300℃に保持して還元し
た。このようにして調製した触媒を用い、反応温度を33
0℃とする他は実施例1と同様にして反応を行った。結
果を第1表に示す。
Example 6 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH using hydrochloric acid, palladium chloride and potassium perrhenate were added in a weight ratio of 90:10 for the heavy metal component, and 1.0% for the total weight of the heavy metal component based on the weight of the activated carbon.
An aqueous solution in which only the ionic components were dissolved was added dropwise little by little, and the ionic components were adsorbed on activated carbon. After washing with pure water,
Dry at 5 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. Using the catalyst thus prepared, the reaction temperature was 33
The reaction was carried out in the same manner as in Example 1 except that the temperature was changed to 0 ° C. The results are shown in Table 1.

実施例7 塩化パラジウムと塩化銅を金属成分の重量比で90:10
の割合で、活性炭の重量に対し金属成分の全重量で2.0
%だけ溶解した水溶液にアンモニア水を1%添加した
後、活性炭を加え、触媒成分を吸着させた。これにヒド
ラジンを滴下し還元を行った後、水洗し、140℃で乾燥
を行った。このようにして調製した触媒を用い、反応温
度340℃とする他は実施例1と同様にして反応を行っ
た。結果を第1表に示す。
Example 7 Palladium chloride and copper chloride were mixed in a weight ratio of metal components of 90:10.
Of the total weight of the metal component with respect to the weight of the activated carbon
After adding 1% of aqueous ammonia to the aqueous solution in which only% was dissolved, activated carbon was added to adsorb the catalyst component. After hydrazine was added dropwise to this and reduced, it was washed with water and dried at 140 ° C. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例8 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと塩
化金酸を金属成分の重量比で80:20の割合で、活性炭の
重量に対し金属成分の全重量で2.0%だけ溶解した水溶
液を少しずつ滴下しイオン成分を活性炭に吸着させた。
純水を用いて洗浄した後、それを150℃で5時間乾燥し
た。次に窒素中550℃で4時間乾燥した後、水素を導入
し、5時間,250℃に保持して還元した。このようにして
調製した触媒を用い、反応温度を320℃とする他は実施
例1と同様にして反応を行った。結果を第1表に示す。
Example 8 Activated carbon was immersed in pure water to impregnate water to the inside of the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which palladium chloride and chloroauric acid are dissolved by a ratio of 80:20 by weight of the metal component and 2.0% by the total weight of the metal component with respect to the weight of the activated carbon is gradually added. The ionic component was adsorbed on the activated carbon by dropping.
After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 250 ° C. for 5 hours. Using the catalyst thus prepared, the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was set to 320 ° C. The results are shown in Table 1.

実施例9 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。硫酸パラジウムと硫酸ジアンミン銀を金属成分の重
量比で80:20の割合で、活性炭の重量に対し金属成分の
全重量で1.0%だけ溶解した水溶液を少しずつ滴下しイ
オン成分を活性炭に吸着させた。アンモニアを添加しpH
を弱アルカリとした後、ヒドラジンを滴下し還元した
後、水洗し、140℃で乾燥を行った。このようにして調
製した触媒を用い、反応温度を340℃とする他は実施例
1と同様にして反応を行った。結果を第1表に示す。
Example 9 Activated carbon was immersed in pure water to impregnate water into the pores. An aqueous solution in which palladium sulfate and silver diammine sulfate were dissolved at a weight ratio of the metal component of 80:20 to the weight of the activated carbon by only 1.0% based on the total weight of the metal component was added dropwise little by little, and the ionic component was adsorbed on the activated carbon. . Add ammonia and pH
Was reduced to a weak alkali, hydrazine was added dropwise, reduced, washed with water, and dried at 140 ° C. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例10 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと塩
化ランタンを金属成分の重量比で90:10の割合で、活性
炭の重量に対し金属成分の全重量で2.0%だけ溶解した
水溶液を少しずつ滴下しイオン成分を活性炭に吸着させ
た。純水を用いて洗浄した後、それを150℃で5時間乾
燥した。次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間,300℃に保持して還元した。このように
して調製した触媒を用い、反応温度を340℃とする他は
実施例1と同様にして反応を行った。結果を第1表に示
す。
Example 10 Activated carbon was immersed in pure water to impregnate water into the inside of the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which palladium chloride and lanthanum chloride are dissolved by a ratio of 90:10 by weight of the metal component and 2.0% of the total weight of the metal component with respect to the weight of the activated carbon is added dropwise little by little. The ionic components were adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例11 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩化白金酸と過レニウム酸カリウムを重金属成分の
重量比で70:30の割合で、活性炭の重量に対し重金属成
分の全重量で2.0%だけ溶解した水溶液を少しずつ滴下
しイオン成分を活性炭に吸着させた。アンモニアを添加
しpHを弱アルカリとした後、水素化ホウ素ナトリウムを
滴下し還元した。蒸留水で洗浄した後、140℃で乾燥し
た。このようにして調製した触媒を用い、反応温度を34
0℃とする他は実施例1と同様にして反応を行った。結
果を第1表に示す。
Example 11 Activated carbon was immersed in pure water to impregnate water to the inside of the pores. An aqueous solution in which chloroplatinic acid and potassium perrhenate are dissolved at a ratio of 70:30 by weight of the heavy metal component and 2.0% of the total weight of the heavy metal component with respect to the weight of the activated carbon is added dropwise little by little, and the ionic component is adsorbed on the activated carbon. I let it. After adding ammonia to make the pH weak alkali, sodium borohydride was added dropwise and reduced. After washing with distilled water, it was dried at 140 ° C. Using the catalyst thus prepared, the reaction temperature was set at 34.
The reaction was carried out in the same manner as in Example 1 except that the temperature was changed to 0 ° C. The results are shown in Table 1.

実施例12 塩化白金酸と塩化ニッケルを金属成分の重量比で60:4
0の割合で、活性炭の重量に対し金属成分の全重量2.0%
だけ溶解した水溶液にアンモニアを滴下しpHを弱アルカ
リ性とする。この水溶液に、純水中に浸漬し細孔内部ま
で水を含浸させた活性炭を投入しイオン成分を活性炭に
吸着させた。これをヒドラジンで還元した後純水を用い
て洗浄し、150℃で5時間乾燥した。このようにして調
製した触媒を用い、反応温度を340℃とする他は実施例
1と同様にして反応を行った。結果を第1表に示す。
Example 12 60: 4 chloroplatinic acid and nickel chloride in a weight ratio of the metal component
0%, the total weight of the metal component is 2.0% based on the weight of activated carbon
Ammonia is added dropwise to the aqueous solution that has just been dissolved to make the pH slightly alkaline. Into this aqueous solution, activated carbon immersed in pure water and impregnated with water to the inside of the pores was introduced, and the ionic components were adsorbed on the activated carbon. This was reduced with hydrazine, washed with pure water, and dried at 150 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例13 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化白金酸と塩化銅
を金属成分の重量比で90:10の割合で、活性炭の重量に
対し金属成分の全重量で1.0%だけ溶解した水溶液にア
ンモニアを1%滴下し、弱アルカリ性とした。これに上
記の活性炭を投入しイオン成分を活性炭に吸着させた。
ホルムアルデヒドで還元し、純水を用いて洗浄した後、
それを150℃で5時間乾燥した。このようにして調製し
た触媒を用い、反応温度を340℃とする他は実施例1と
同様にして反応を行った。結果を第1表に示す。
Example 13 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, ammonia was added to an aqueous solution in which chloroplatinic acid and copper chloride were dissolved in a weight ratio of metal components of 90:10 and 1.0% by weight of the total weight of the metal components to the weight of the activated carbon. 1% was added dropwise to make it slightly alkaline. The activated carbon described above was added thereto, and the ionic components were adsorbed on the activated carbon.
After reducing with formaldehyde and washing with pure water,
It was dried at 150 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例14 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化白金酸と塩化金
酸を金属成分の重量比で80:20の割合で、活性炭の重量
に対し金属成分の全重量で2.0%だけ溶解した水溶液を
少しずつ滴下しイオン成分を活性炭に吸着させた。純水
を用いて洗浄した後、それを150℃で5時間乾燥した。
次に窒素中550℃で4時間乾燥した後、水素を導入し、
5時間,300℃に保持して還元した。このようにして調製
した触媒を用い、反応温度を340℃とする他は実施例1
と同様にして反応を行った。結果を第1表に示す。
Example 14 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, slightly dissolve an aqueous solution in which chloroplatinic acid and chloroauric acid are dissolved in a weight ratio of the metal component of 80:20 and only 2.0% by the total weight of the metal component to the weight of the activated carbon. The ionic components were adsorbed on the activated carbon by dropping each time. After washing with pure water, it was dried at 150 ° C. for 5 hours.
Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced,
Reduction was carried out at 300 ° C. for 5 hours. Example 1 was repeated except that the catalyst thus prepared was used and the reaction temperature was 340 ° C.
The reaction was carried out in the same manner as in. The results are shown in Table 1.

実施例15 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化白金酸とタング
ステン酸カリウムを重金属成分の重量比で90:10の割合
で、活性炭の重量に対し重金属成分の全重量で1.0%だ
け溶解した水溶液を少しずつ滴下しイオン成分を活性炭
に吸着させた。純水を用いて洗浄した後、それを150℃
で5時間乾燥した。次に窒素中550℃で4時間乾燥した
後、水素を導入し、5時間,300℃に保持して還元した。
このようにして調製した触媒を用い、反応温度を340℃
とする他は実施例1と同様にして反応を行った。結果を
第1表に示す。
Example 15 Activated carbon was immersed in pure water to impregnate water into the inside of the pores. After adjusting the pH with hydrochloric acid, slightly dissolve an aqueous solution in which chloroplatinic acid and potassium tungstate are dissolved in a weight ratio of the heavy metal component of 90:10 and 1.0% by the total weight of the heavy metal component to the weight of the activated carbon. The ionic components were adsorbed on the activated carbon by dropping each time. After washing with pure water,
For 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours.
Using the catalyst thus prepared, the reaction temperature was 340 ° C.
The reaction was carried out in the same manner as in Example 1 except for the above. The results are shown in Table 1.

実施例16 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化ロジウムと塩化
ニッケルを金属成分の重量比で60:40の割合で、活性炭
の重量に対し金属成分の全重量で1.0%だけ溶解した水
溶液を少しずつ滴下しイオン成分を活性炭に吸着させ
た。純水を用いて洗浄した後、それを150℃で5時間乾
燥した。次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間,300℃に保持して還元した。このように
して調製した触媒を用い、反応温度340℃とする他は実
施例1と同様にして反応を行った。結果を第1表に示
す。
Example 16 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which rhodium chloride and nickel chloride are dissolved in a weight ratio of metal components of 60:40 and only 1.0% of the total weight of metal components with respect to the weight of activated carbon is added dropwise. The ionic components were adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例17 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと塩
化白金酸を金属成分の重量比で90:10の割合で、活性炭
の重量に対し金属成分の全重量で0.5%だけ溶解した水
溶液を少しずつ滴下しイオン成分を活性炭に吸着させ
た。純水を用いて洗浄した後、それを150℃で5時間乾
燥した。次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間,300℃に保持して還元した。このように
して調製した触媒を用い、反応温度を340℃とする他は
実施例1と同様にして反応を行った。結果を第1表に示
す。
Example 17 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH using hydrochloric acid, an aqueous solution in which palladium chloride and chloroplatinic acid are dissolved in a ratio of 90:10 by weight of the metal component and 0.5% of the total weight of the metal component with respect to the weight of the activated carbon is added little by little. The ionic component was adsorbed on the activated carbon by dropping. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例18 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと塩
化ロジウムを金属成分の重量比で80:20の割合で、活性
炭の重量に対し金属成分の全重量で0.5%だけ溶解した
水溶液を少しずつ滴下しイオン成分を活性炭に吸着させ
た。純水を用いて洗浄した後、それを150℃で5時間乾
燥した。次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間,300℃に保持して還元した。このように
して調製した触媒を用い、反応温度を340℃とする他は
実施例1と同様にして反応を行った。結果を第1表に示
す。
Example 18 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which palladium chloride and rhodium chloride are dissolved in a weight ratio of the metal component of 80:20 and only 0.5% of the total weight of the metal component with respect to the weight of the activated carbon is added dropwise little by little. The ionic components were adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例19 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。アンモニアを用いてpHを調整した後、硫酸パラジウ
ムと硫酸テトラアンミン白金および硫酸ジアミン銀を金
属成分の重量比で80:5:15の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中550℃で4時間乾燥した後、水素を導入し、5時
間,300℃に保持して還元した。このようにして調製した
触媒を用い、反応温度を340℃とする他は実施例1と同
様に反応を行った。結果を第1表に示す。
Example 19 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH using ammonia, palladium sulfate, tetraammineplatinum sulfate, and silver diamine sulfate were added in a weight ratio of the metal component of 80: 5: 15, and only 0.5% of the total weight of the metal component with respect to the weight of the activated carbon. The dissolved aqueous solution was added dropwise little by little, and the ionic components were adsorbed on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. using the catalyst thus prepared. The results are shown in Table 1.

実施例20 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウムと塩
化白金酸および塩化金酸を金属成分の重量比で80:5:15
の割合で、活性炭の重量に対し金属成分の全重量で0.5
%だけ溶解した水溶液を少しずつ滴下イオン成分を活性
炭に吸着させた。純水を用いて洗浄した後、それを150
℃で5時間乾燥した。次に窒素中550℃で4時間乾燥し
た後、水素を導入し、5時間,300℃に保持して還元し
た。このようにして調製した触媒を用い、反応温度を34
0℃とする他は実施例1と同様にして反応を行った。結
果を第1表に示す。
Example 20 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, palladium chloride and chloroplatinic acid and chloroauric acid were added in a weight ratio of metal components of 80: 5: 15.
0.5% of the total weight of the metal components based on the weight of the activated carbon
% Of the aqueous solution was gradually added dropwise, and the ionic component was adsorbed on activated carbon. After washing with pure water,
Dry at 5 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced and reduced at 300 ° C. for 5 hours. Using the catalyst thus prepared, the reaction temperature was set at 34.
The reaction was carried out in the same manner as in Example 1 except that the temperature was changed to 0 ° C. The results are shown in Table 1.

実施例21 1000mlのインコネル600製オートクレーブにメタノー
ル300gおよび亜鉛末400gを加え、0℃で撹拌しながら1
−クロロ−1,1−ジフルオロエタンを400g注入した。注
入後、0℃でさらに8時間撹拌を続けた。有機層350gを
回収しガスクロ及び19F−NMRを用いて分析した。結果を
第1表に示す。
Example 21 300 g of methanol and 400 g of zinc dust were added to a 1000 ml Inconel 600 autoclave, and stirred at 0 ° C. for 1 hour.
400 g of chloro-1,1-difluoroethane were injected. After the injection, stirring was continued at 0 ° C. for another 8 hours. 350 g of the organic layer was collected and analyzed using gas chromatography and 19 F-NMR. The results are shown in Table 1.

[発明の効果] 本発明は、実施例から理解されるように、反応活性お
よび選択製の向上に優れた効果を有する。
[Effects of the Invention] As will be understood from the examples, the present invention has an excellent effect in improving the reaction activity and selection.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1−クロロ−1,1−ジフルオロエタンを還
元することを特徴とする1,1−ジフルオロエタンの製造
法。
1. A method for producing 1,1-difluoroethane, comprising reducing 1-chloro-1,1-difluoroethane.
【請求項2】1−クロロ−1,1−ジフルオロエタンを、
白金族元素を主成分とする触媒の存在下で水素により還
元することを特徴とする1,1−ジフルオロエタンの製造
法。
(2) 1-chloro-1,1-difluoroethane is
A method for producing 1,1-difluoroethane, comprising reducing with hydrogen in the presence of a catalyst containing a platinum group element as a main component.
【請求項3】触媒が、触媒成分が活性炭担体上に担持さ
れている水素化触媒である請求項2に記載の製造法。
3. The method according to claim 2, wherein the catalyst is a hydrogenation catalyst in which a catalyst component is supported on an activated carbon carrier.
【請求項4】1−クロロ−1,1−ジフルオロエタンを、
水素原子が結合した有機化合物の存在下、光照射又は亜
鉛を用いて還元することを特徴とする1,1−ジフルオロ
エタンの製造法。
4. A method according to claim 1, wherein 1-chloro-1,1-difluoroethane is
A method for producing 1,1-difluoroethane, characterized in that reduction is carried out by irradiation with light or zinc in the presence of an organic compound having a hydrogen atom bonded thereto.
【請求項5】水素原子が結合した有機化合物が、アルコ
ール類である請求項4に記載の製造法。
5. The method according to claim 4, wherein the organic compound having a hydrogen atom bonded thereto is an alcohol.
JP1217556A 1989-08-25 1989-08-25 Method for producing 1,1-difluoroethane Expired - Fee Related JP2734672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217556A JP2734672B2 (en) 1989-08-25 1989-08-25 Method for producing 1,1-difluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217556A JP2734672B2 (en) 1989-08-25 1989-08-25 Method for producing 1,1-difluoroethane

Publications (2)

Publication Number Publication Date
JPH0383940A JPH0383940A (en) 1991-04-09
JP2734672B2 true JP2734672B2 (en) 1998-04-02

Family

ID=16706113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217556A Expired - Fee Related JP2734672B2 (en) 1989-08-25 1989-08-25 Method for producing 1,1-difluoroethane

Country Status (1)

Country Link
JP (1) JP2734672B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526788B2 (en) 1999-07-01 2004-05-17 沖電気工業株式会社 Method for manufacturing semiconductor device
KR100383216B1 (en) 2000-12-08 2003-05-12 한국과학기술연구원 A catalyst and method for producing 1,1-difluoroethane

Also Published As

Publication number Publication date
JPH0383940A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
US5629462A (en) Hydrodehalogenation catalysts and their preparation and use
WO1993002029A1 (en) Catalytic hydrogenolysis
JP2814606B2 (en) Method for producing pentafluoroethane
EP0799172A1 (en) Catalytic hydrogenolysis
JP2734672B2 (en) Method for producing 1,1-difluoroethane
JP2540409B2 (en) Production of pentafluoroethane by hydrogenolysis of chloropentafluoroethane
US5302765A (en) Catalytic process for producing CF3 CHClF
JPH08337542A (en) Production of 1,1,1,3,3-pentafluoropropane
US6218587B1 (en) Catalytic hydrogenolysis
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2712475B2 (en) Method for producing propane having difluoromethylene group
JP2580696B2 (en) Method for producing pentafluoroethane
JPH06279328A (en) Production of hexafluoropropane
JP2760136B2 (en) Production method of hydrogen-containing chlorofluorocarbons
JP2636314B2 (en) Method for producing tetrafluoroethane
JP2001316322A (en) Method for producing 1,1,1-trifluoroacetone
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
KR930000889B1 (en) Process for the selective hydrogenolysis of perhalogeno-ethanes
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH02218625A (en) Production of hcfc-134a
JP2541256B2 (en) Method for producing tetrafluoroethane
JPH02218627A (en) Production of 1,1,1,2-tetrafluoroethane
JP2773390B2 (en) Preparation of pentafluoroethane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees