JP2712475B2 - Method for producing propane having difluoromethylene group - Google Patents

Method for producing propane having difluoromethylene group

Info

Publication number
JP2712475B2
JP2712475B2 JP1023746A JP2374689A JP2712475B2 JP 2712475 B2 JP2712475 B2 JP 2712475B2 JP 1023746 A JP1023746 A JP 1023746A JP 2374689 A JP2374689 A JP 2374689A JP 2712475 B2 JP2712475 B2 JP 2712475B2
Authority
JP
Japan
Prior art keywords
reaction
hexafluoropropane
same manner
except
difluoromethylene group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1023746A
Other languages
Japanese (ja)
Other versions
JPH02204442A (en
Inventor
真介 森川
俊一 鮫島
優 吉武
啓一 大西
敏弘 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1023746A priority Critical patent/JP2712475B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to EP90902677A priority patent/EP0416113B1/en
Priority to DE69019090T priority patent/DE69019090T2/en
Priority to CA002026568A priority patent/CA2026568C/en
Priority to EP93112758A priority patent/EP0580181A1/en
Priority to PCT/JP1990/000122 priority patent/WO1990008753A1/en
Publication of JPH02204442A publication Critical patent/JPH02204442A/en
Priority to US08/272,622 priority patent/US5545777A/en
Application granted granted Critical
Publication of JP2712475B2 publication Critical patent/JP2712475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジフルオロメチレン基を有するプロパンの
製造法に関するものである。ジフルオロメチレン基を有
するプロパンは従来から用いられてきたフロン類と同様
に発泡剤、冷媒、洗浄剤等の用途が期待される。
Description: TECHNICAL FIELD The present invention relates to a method for producing propane having a difluoromethylene group. Propane having a difluoromethylene group is expected to be used as a foaming agent, a refrigerant, a cleaning agent, and the like, similarly to conventionally used fluorocarbons.

[従来の技術および発明が解決しようとする課題] ジフルオロメチレン基を有するプロパンの合成ルート
としては、従来塩化アルミニウムの存在下にテトラフル
オロエチレンにクロロジフルオロメタンを付加させて合
成する方法が知られている。しかし、この方法ではクロ
ロジフルオロメタンが不均化を起こし多くの反応副生物
を生成するため、目的生成物の収率向上が困難であると
いう欠点を有している。
[Problems to be Solved by the Prior Art and the Invention] As a synthesis route of propane having a difluoromethylene group, a method of synthesizing by adding chlorodifluoromethane to tetrafluoroethylene in the presence of aluminum chloride has been known. I have. However, this method has a disadvantage that chlorodifluoromethane causes disproportionation and generates many reaction by-products, so that it is difficult to improve the yield of the target product.

[課題を解決するための手段] 本発明は下記一般式(1)で表されるジフルオロメチ
レン基を有するプロパン(以下、化合物Aという)を水
素化触媒の存在下で水素と反応させることを特徴とする
下記一般式(2)および(3)から選ばれるジフルオロ
メチレン基を有するプロパン(以下、化合物Bという)
の製造法である。
[Means for Solving the Problems] The present invention is characterized in that propane having a difluoromethylene group represented by the following general formula (1) (hereinafter, referred to as compound A) is reacted with hydrogen in the presence of a hydrogenation catalyst. A propane having a difluoromethylene group selected from the following general formulas (2) and (3) (hereinafter referred to as compound B)
It is a manufacturing method of.

C3HmCl2-mF6 ……(1) C3HnCl2-nF6 ……(2) C3HpCl3-pF5 ……(3) (式中、mは0または1、nは1または2、pは1、2
または3) 本反応においてはVIII族元素、レニウム、ジルコニウ
ム、タングステン等、またはこれらの組合せにより形成
された種々の水素化触媒が使用可能である。触媒の担体
としては、例えば、アルミナ、活性炭、ジルコニア等が
好適である。担持方法は、従来の貴金属触媒の調製法が
適用可能である。なお、使用に当たってはあらかじめ触
媒の還元処理を施しておくことが安定した特性を得る上
で好ましいが、必ずしも行なう必要はない。
C 3 H m Cl 2-m F 6 ...... (1) C 3 H n Cl 2-n F 6 ...... (2) C 3 H p Cl 3-p F 5 ...... (3) ( wherein, m Is 0 or 1, n is 1 or 2, p is 1, 2
Or 3) In this reaction, various hydrogenation catalysts formed by a Group VIII element, rhenium, zirconium, tungsten, or the like, or a combination thereof can be used. As the catalyst carrier, for example, alumina, activated carbon, zirconia, etc. are suitable. As the supporting method, a conventional method for preparing a noble metal catalyst can be applied. In use, it is preferable to perform a catalyst reduction treatment in advance in order to obtain stable characteristics, but it is not always necessary to perform the reduction treatment.

原料に用いる化合物Aとしては、1,3−ジクロロ−1,
1,2,2,3,3−ヘキサフルオロプロパン(R−216ca)、1,
1−ジクロロ−1,2,2,3,3,3−ヘキサフルオロプロパン
(R−216cb)、1−クロロ−1,2,2,3,3,3−ヘキサフル
オロプロパン(R−226ca)、1−クロロ−1,1,2,2,3,3
−ヘキサフルオロプロパン(R−226cb)があげられる
が、これらはいずれも公知である。
Compound A used as a raw material includes 1,3-dichloro-1,
1,2,2,3,3-hexafluoropropane (R-216ca),
1-dichloro-1,2,2,3,3,3-hexafluoropropane (R-216cb), 1-chloro-1,2,2,3,3,3-hexafluoropropane (R-226ca), 1-chloro-1,1,2,2,3,3
-Hexafluoropropane (R-226cb), all of which are known.

水素と原料の割合は大幅に変動させ得る。通常、化学
量論量の水素を使用してハロゲン原子を除去するが、原
料の化合物Aをほぼ完全に反応させるために出発物質の
全モル数に対して化学量論量よりかなり多い量、例えば
4倍モルまたはそれ以上の水素を使用してもよい。
The ratio of hydrogen to feed can vary greatly. Usually, a stoichiometric amount of hydrogen is used to remove the halogen atoms, but in order to make the starting compound A almost completely reacted, the amount is considerably larger than the stoichiometric amount relative to the total number of moles of the starting material, for example, Four times or more hydrogen may be used.

反応温度は、気相反応においては100〜450℃が適当で
あり、特には100〜300℃が好適である。接触時間は通常
0.1〜300秒、特には2〜60秒が好ましい。
The reaction temperature is suitably from 100 to 450 ° C in the gas phase reaction, and particularly preferably from 100 to 300 ° C. Normal contact time
0.1 to 300 seconds, particularly preferably 2 to 60 seconds.

液相で反応を行なう場合において用いる溶媒としては
エタノール、イソプロピルアルコール等のアルコール
類、酢酸、ピリジン等があげられるが、無溶媒で行なう
ことも可能である。液相反応での反応温度は常温〜150
℃が好ましく、また反応圧力は常圧〜10kg/cm2が好まし
い。
Solvents used in the reaction in the liquid phase include alcohols such as ethanol and isopropyl alcohol, acetic acid, pyridine and the like, but can be carried out without a solvent. The reaction temperature in the liquid phase reaction is from room temperature to 150
C. is preferable, and the reaction pressure is preferably normal pressure to 10 kg / cm 2 .

反応より生成する化合物Bとしては、1−クロロ−1,
2,2,3,3,3−ヘキサフルオロプロパン(R−226ca)、1
−クロロ−1,1,2,2,3,3−ヘキサフルオロプロパン(R
−226cb)、1,1,2,2,3,3−ヘキサフルオロプロパン(R
−236ca)、1,1,1,2,2,3−ヘキサフルオロプロパン(R
−236cb)または1,1,1,2,2−ペンタフルオロプロパン
(R−245cb)があげられ、これらは通常の蒸留等の操
作により分離することができる。
Compound B produced by the reaction includes 1-chloro-1,
2,2,3,3,3-hexafluoropropane (R-226ca), 1
-Chloro-1,1,2,2,3,3-hexafluoropropane (R
-226cb), 1,1,2,2,3,3-hexafluoropropane (R
-236ca), 1,1,1,2,2,3-hexafluoropropane (R
-236cb) or 1,1,1,2,2-pentafluoropropane (R-245cb), which can be separated by an ordinary operation such as distillation.

[実施例] 以下に本発明の実施例を示す。[Example] An example of the present invention will be described below.

調製例 1 ヤシガラ成形炭を純水中に塩酸を1重量%加えpHを調
整した液に浸漬し細孔内部まで液を含浸させた。これに
塩化パラジウムと塩化ニッケルを金属成分の重量比とし
て活性炭の重量に対し金属成分の全重量で0.5%だけ溶
解した水溶液を少しずつ滴下しイオン成分を活性炭に吸
着させた。これにヒドラジン水溶液を投入し急速に還元
した。純水を用いて洗浄した後、それを150℃で5時間
乾燥した。
Preparation Example 1 Molded coconut shell charcoal was immersed in a solution adjusted to pH by adding hydrochloric acid at 1% by weight in pure water to impregnate the inside of the pores with the solution. An aqueous solution in which palladium chloride and nickel chloride were dissolved by 0.5% of the total weight of the metal component with respect to the weight of the activated carbon as a weight ratio of the metal component was added dropwise little by little to adsorb the ionic component on the activated carbon. An aqueous solution of hydrazine was added to this to rapidly reduce it. After washing with pure water, it was dried at 150 ° C. for 5 hours.

調製例 2 ヤシガラ破砕炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化白金酸を活性炭の重量に対し金属
成分の全重量で0.5%だけ溶解した水溶液を少しずつ滴
下しイオン成分を活性炭に吸着させた。純水を用いて洗
浄した後、それを150℃で5時間乾燥した。次に窒素中5
50℃で4時間乾燥した後、水素を導入し、5時間、250
℃に保持して還元した。
Preparation Example 2 Crushed coconut shell charcoal was immersed in pure water to impregnate water into the pores. An aqueous solution in which chloroplatinic acid was dissolved by 0.5% based on the total weight of the metal component with respect to the weight of the activated carbon was added dropwise little by little to adsorb the ionic component on the activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then in nitrogen 5
After drying at 50 ° C for 4 hours, hydrogen was introduced, and the
It was kept at ℃ and reduced.

実施例 1 触媒成分を表1に示すものとし、還元剤を水素化ホウ
素ナトリウムとする他は調製例1と同様にして調製した
還元触媒を400cc充填した内径2.54cm、長さ100cmのイン
コネル600製反応管を塩浴炉中に浸漬した。
Example 1 A catalyst component shown in Table 1 was used, and a reducing catalyst prepared in the same manner as in Preparation Example 1 except that the reducing agent was sodium borohydride was used. The reaction tube was immersed in a salt bath furnace.

水素と出発物質1,1−ジクロロヘキサフルオロプロパ
ンを2:1のモル比でガス化して反応管に導入した。反応
温度は200℃、接触時間は20秒であった。反応生成物は
酸分を除去した後、−78℃に冷却したトラップに捕集し
た。捕集した反応生成物をガスクロマトグラフィーおよ
びNMRを用いて分析した。その結果を表1に示す。
Hydrogen and the starting material 1,1-dichlorohexafluoropropane were gasified in a molar ratio of 2: 1 and introduced into the reaction tube. The reaction temperature was 200 ° C. and the contact time was 20 seconds. After removing the acid component, the reaction product was collected in a trap cooled to -78 ° C. The collected reaction products were analyzed using gas chromatography and NMR. Table 1 shows the results.

実施例 2 触媒成分を表1に示すものとし、担持量を2重量%と
する他は調製例2と同様にして調製した水素化触媒を用
い、表1に示す反応条件を用いる以外は実施例1と同様
にして、1,1−ジクロロヘキサフルオロプロパンの水素
化反応を行い反応生成物の分析を行なった。その結果を
表1に示す。
Example 2 The hydrogenation catalyst prepared in the same manner as in Preparation Example 2 was used except that the catalyst components were as shown in Table 1 and the loading amount was 2% by weight, and the reaction conditions shown in Table 1 were used. Hydrogenation of 1,1-dichlorohexafluoropropane was performed in the same manner as in 1, and the reaction product was analyzed. Table 1 shows the results.

実施例 3〜4 触媒成分を表2に示すものとし、担持量を5重量%、
還元剤を水素化ホウ素カリウムとする他は調製例1と同
様にして調製した水素化触媒を用い、表2に示す反応条
件を用いる以外は実施例1と同様にして、1,1−ジクロ
ロヘキサフルオロプロパンの水素化反応を行い反応生成
物の分析を行なった。その結果を表2に示す。
Examples 3 to 4 The catalyst components are as shown in Table 2, and the supported amount is 5% by weight.
A hydrogenation catalyst prepared in the same manner as in Preparation Example 1 except that the reducing agent was potassium borohydride was used, and 1,1-dichlorohexaene was prepared in the same manner as in Example 1 except that the reaction conditions shown in Table 2 were used. Hydrogenation of fluoropropane was performed and the reaction product was analyzed. Table 2 shows the results.

実施例 5〜6 触媒成分を表3に示すものとし、担持量を2重量%、
還元条件を290℃、5時間とする他は調製例2と同様に
して調製した水素化触媒を用い、表3に示す反応条件を
用いる以外は実施例1と同様にして、1,1−ジクロロヘ
キサフルオロプロパンの水素化反応を行い反応生成物の
分析を行なった。その結果を表3に示す。
Examples 5 to 6 The catalyst components are as shown in Table 3, and the supported amount is 2% by weight.
A hydrogenation catalyst prepared in the same manner as in Preparation Example 2 was used except that the reduction conditions were changed to 290 ° C. for 5 hours, and 1,1-dichloromethane was prepared in the same manner as in Example 1 except that the reaction conditions shown in Table 3 were used. Hexafluoropropane was hydrogenated and the reaction products were analyzed. Table 3 shows the results.

実施例 7〜8 触媒成分を表4に示すものとし、担持量を5重量%、
担体をヤシガラ成形炭、還元条件を300℃、5時間とす
る他は調製例2と同様にして調製した水素化触媒を用
い、表4に示す反応条件を用いる以外は実施例1と同様
にして、1,1−ジクロロヘキサフルオロプロパンの水素
化反応を行い反応生成物の分析を行なった。その結果を
表4に示す。
Examples 7 to 8 The catalyst components are shown in Table 4, and the supported amount was 5% by weight.
Using a hydrogenation catalyst prepared in the same manner as in Preparation Example 2 except that coconut shell charcoal was used as the carrier and the reducing conditions were set at 300 ° C. for 5 hours, and as in Example 1, except that the reaction conditions shown in Table 4 were used. A hydrogenation reaction of 1,1-dichlorohexafluoropropane was performed, and the reaction products were analyzed. Table 4 shows the results.

実施例9 出発物質として1,3−ジクロロヘキサフルオロプロパ
ンを用い、表5に示す反応条件を用いる以外は実施例1
と同様にして反応を行ない反応生成物の分析を行なっ
た。その結果を表5に示す。
Example 9 Example 1 except that 1,3-dichlorohexafluoropropane was used as a starting material and the reaction conditions shown in Table 5 were used.
The reaction was carried out in the same manner as described above, and the reaction product was analyzed. Table 5 shows the results.

実施例10 出発物質として1−クロロ−1,1,2,2,3,3−ヘキサフ
ルオロプロパンを用い、表5に示す反応条件を用いる以
外は実施例1と同様にして反応を行ない反応生成物の分
析を行なった。その結果を表5に示す。
Example 10 A reaction was carried out in the same manner as in Example 1 except that 1-chloro-1,1,2,2,3,3-hexafluoropropane was used as a starting material and the reaction conditions shown in Table 5 were used. The product was analyzed. Table 5 shows the results.

実施例11 出発物質として1−クロロ−1,2,2,3,3,3−ヘキサフ
ルオロプロパンを用い、表5に示す反応条件を用いる以
外は実施例1と同様にして反応を行ない反応生成物の分
析を行なった。その結果を表5に示す。
Example 11 A reaction was carried out in the same manner as in Example 1 except that 1-chloro-1,2,2,3,3,3-hexafluoropropane was used as a starting material and the reaction conditions shown in Table 5 were used. The product was analyzed. Table 5 shows the results.

実施例12 水素化触媒として担体をヤシガラ破砕炭、担持量を1
重量%、還元剤を水素化ホウ素カリウムとする他は調製
例2と同様にして調製した白金触媒を用い、出発物質と
して1,3−ジクロロヘキサフルオロプロパンを用い、表
6に示す反応条件を用いる以外は実施例1と同様にして
反応を行ない反応生成物の分析を行なった。その結果を
表6に示す。
Example 12 As a hydrogenation catalyst, the carrier was coconut crushed charcoal, and the loading amount was 1
Wt%, a platinum catalyst prepared in the same manner as in Preparation Example 2 except that potassium borohydride is used as the reducing agent, 1,3-dichlorohexafluoropropane is used as a starting material, and the reaction conditions shown in Table 6 are used. The reaction was carried out in the same manner as in Example 1 except for the above, and the reaction products were analyzed. Table 6 shows the results.

実施例13 水素化触媒として調製例2と同様にして調製した白金
触媒を用い、出発物質として1−クロロ−1,1,2,2,3,3
−ヘキサフルオロプロパンを用い、表6に示す反応条件
を用いる以外は実施例1と同様にして反応を行ない反応
生成物の分析を行なった。その結果を表6に示す。
Example 13 A platinum catalyst prepared in the same manner as in Preparation Example 2 was used as a hydrogenation catalyst, and 1-chloro-1,1,2,2,3,3
The reaction was carried out in the same manner as in Example 1 except for using hexafluoropropane and using the reaction conditions shown in Table 6, and the reaction product was analyzed. Table 6 shows the results.

実施例14 水素化触媒として担体をヤシガラ成形炭、担持量を5
重量%とする他は調製例2と同様にして調製した白金触
媒を用い、出発物質として1−クロロ−1,2,2,3,3,3−
ヘキサフルオロプロパンを用い、表6に示す反応条件を
用いる以外は実施例1と同様にして反応を行ない反応生
成物の分析を行なった。その結果を表6に示す。
Example 14 As a hydrogenation catalyst, coconut shell charcoal was used as a carrier, and the supported amount was 5
A platinum catalyst prepared in the same manner as in Preparation Example 2 except that the amount was changed to% by weight, and 1-chloro-1,2,2,3,3,3-
The reaction was carried out in the same manner as in Example 1 except that the reaction conditions shown in Table 6 were used, using hexafluoropropane, and the reaction product was analyzed. Table 6 shows the results.

[発明の効果] 本発明は、化合物Aを原料として水素化触媒の存在下
で水素と反応させることにより選択的に化合物Bを製造
し得るという効果を有する。
[Effects of the Invention] The present invention has an effect that compound B can be selectively produced by reacting compound A with hydrogen in the presence of a hydrogenation catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 B01J 23/56 301Z (72)発明者 田沼 敏弘 神奈川県横浜市港南区港南2―24―31 (56)参考文献 特開 平4−503209(JP,A)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication B01J 23/89 B01J 23/56 301Z (72) Inventor Toshihiro Tanuma Konan-ku, Yokohama-shi, Kanagawa 2- 24-31 (56) References JP-A-4-503209 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(1)で表されるジフルオロメ
チレン基を有するプロパンを水素化触媒の存在下で水素
と反応させることを特徴とする下記一般式(2)および
(3)から選ばれるジフルオロメチレン基を有するプロ
パンの製造法。 C3HmCl2-mF6 ……(1) C3HnCl2-nF6 ……(2) C3HpCl3-pF5 ……(3) (式中、mは0または1、nは1または2、pは1、2
または3)
1. A compound selected from the following general formulas (2) and (3), wherein a propane having a difluoromethylene group represented by the following general formula (1) is reacted with hydrogen in the presence of a hydrogenation catalyst. For producing propane having a difluoromethylene group. C 3 H m Cl 2-m F 6 ...... (1) C 3 H n Cl 2-n F 6 ...... (2) C 3 H p Cl 3-p F 5 ...... (3) ( wherein, m Is 0 or 1, n is 1 or 2, p is 1, 2
Or 3)
【請求項2】一般式(1)で表されるジフルオロメチレ
ン基を有するプロパンが1,3−ジクロロ−1,1,2,2,3,3−
ヘキサフルオロプロパン、1,1−ジクロロ−1,2,2,3,3,3
−ヘキサフルオロプロパン、1−クロロ−1,2,2,3,3,3
−ヘキサフルオロプロパンまたは1−クロロ−1,1,2,2,
3,3−ヘキサフルオロプロパンである請求項1に記載の
製造法。
2. The propane having a difluoromethylene group represented by the general formula (1) is 1,3-dichloro-1,1,2,2,3,3-
Hexafluoropropane, 1,1-dichloro-1,2,2,3,3,3
-Hexafluoropropane, 1-chloro-1,2,2,3,3,3
-Hexafluoropropane or 1-chloro-1,1,2,2,
The production method according to claim 1, wherein the production method is 3,3-hexafluoropropane.
JP1023746A 1989-02-02 1989-02-03 Method for producing propane having difluoromethylene group Expired - Fee Related JP2712475B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1023746A JP2712475B2 (en) 1989-02-03 1989-02-03 Method for producing propane having difluoromethylene group
DE69019090T DE69019090T2 (en) 1989-02-02 1990-02-01 METHOD FOR PRODUCING A HYDROGEN-CONTAINING 2,2-DIFLUOROPROPANE.
CA002026568A CA2026568C (en) 1989-02-02 1990-02-01 Process for producing a hydrogen-containing 2,2-difluoropropane
EP93112758A EP0580181A1 (en) 1989-02-02 1990-02-01 Process for producing a hydrogen-containing 2,2-difluoropropane
EP90902677A EP0416113B1 (en) 1989-02-02 1990-02-01 Process for producing a hydrogen-containing 2,2-difluoropropane
PCT/JP1990/000122 WO1990008753A1 (en) 1989-02-02 1990-02-01 Process for producing a hydrogen-containing 2,2-difluoropropane
US08/272,622 US5545777A (en) 1989-02-02 1994-07-11 Process for producing a hydrogen-containing 2,2-difluoropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023746A JP2712475B2 (en) 1989-02-03 1989-02-03 Method for producing propane having difluoromethylene group

Publications (2)

Publication Number Publication Date
JPH02204442A JPH02204442A (en) 1990-08-14
JP2712475B2 true JP2712475B2 (en) 1998-02-10

Family

ID=12118877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023746A Expired - Fee Related JP2712475B2 (en) 1989-02-02 1989-02-03 Method for producing propane having difluoromethylene group

Country Status (1)

Country Link
JP (1) JP2712475B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335804B2 (en) * 2005-11-03 2008-02-26 Honeywell International Inc. Direct conversion of HCFC 225ca/cb mixture
EP2925439B1 (en) 2012-12-03 2021-02-17 Audi AG Core-shell catalyst and method of making a palladium-based core particle
JP6637015B2 (en) * 2017-11-06 2020-01-29 アウディ アクチェンゲゼルシャフトAudi Ag Core-shell catalyst and method for palladium-based core particles
CN116888091A (en) * 2021-01-29 2023-10-13 Agc株式会社 Method for producing hydrofluorocarbon by hydrogen reduction reaction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9007058A (en) * 1989-02-03 1991-11-12 Du Pont PERFECT HYDROGENOLYSIS / DEHYDROALOGENATION PROCESS

Also Published As

Publication number Publication date
JPH02204442A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
CA2026568C (en) Process for producing a hydrogen-containing 2,2-difluoropropane
US5136113A (en) Catalytic hydrogenolysis
US5447896A (en) Hydrodehalogenation catalysts and their preparation and use
US5523501A (en) Catalytic hydrogenolysis
JP2712475B2 (en) Method for producing propane having difluoromethylene group
JP2814606B2 (en) Method for producing pentafluoroethane
JP2712476B2 (en) Method for producing propane having difluoromethylene group
US6218587B1 (en) Catalytic hydrogenolysis
JPH08217705A (en) Production of 1,1,1,3,3-pentafluoropropane
JPH02233625A (en) Selective hydrogenolysis of perhalogenated ethane derivative
KR930000889B1 (en) Process for the selective hydrogenolysis of perhalogeno-ethanes
JPH06279328A (en) Production of hexafluoropropane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH01172349A (en) Production of tetrafluoroethane
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2849129B2 (en) Method for producing 1,3-dichloro-1,1,2,2,3-pentafluoropropane
JP2734672B2 (en) Method for producing 1,1-difluoroethane
JP2738042B2 (en) Method for producing 3,3-dichloro-1,1,1,2,2-pentafluoropropane
JP2580696B2 (en) Method for producing pentafluoroethane
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP3489179B2 (en) Method for producing hydrofluorocarbon
JPH10510206A (en) Hydrogenation catalyst and hydrogenation method
JPH02218625A (en) Production of hcfc-134a
JPH02204445A (en) Production of hydrogen-containing tetrafluoropropanes and hydrogen-containing trifluoropropanes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees