JP2580696B2 - Method for producing pentafluoroethane - Google Patents

Method for producing pentafluoroethane

Info

Publication number
JP2580696B2
JP2580696B2 JP63085177A JP8517788A JP2580696B2 JP 2580696 B2 JP2580696 B2 JP 2580696B2 JP 63085177 A JP63085177 A JP 63085177A JP 8517788 A JP8517788 A JP 8517788A JP 2580696 B2 JP2580696 B2 JP 2580696B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
catalyst
results
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63085177A
Other languages
Japanese (ja)
Other versions
JPH01258632A (en
Inventor
真介 森川
優 吉武
伸 立松
創 米田
訓弘 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63085177A priority Critical patent/JP2580696B2/en
Publication of JPH01258632A publication Critical patent/JPH01258632A/en
Application granted granted Critical
Publication of JP2580696B2 publication Critical patent/JP2580696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は塩素を含まないフルオロカーボンの一種であ
るぺンタフルオロエタンの製造方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing pentafluoroethane, which is a kind of fluorocarbon containing no chlorine.

[従来の技術および発明の課題] 近年、冷媒、発泡剤、および溶剤として広く用いられ
ているクロロフルオロカーボン(フロン)よるオゾン層
破壊の可能性が論議され、その製造、使用について規制
される方向にある。現在のオゾン層の濃度変化とフロン
との相関については必ずしも明確になっているとは言え
ないが、フロンが紫外線により分解して生成する塩素化
合物がオゾン分解反応の触媒として作用すると考えられ
ている。そのための代替フロンとしては水素を含有し大
気圏で分解する構造のものが適していると考えられてい
る。
[Related Art and Problems of the Invention] In recent years, the possibility of destruction of the ozone layer by chlorofluorocarbon (fluorocarbon) widely used as a refrigerant, a blowing agent, and a solvent has been discussed, and the production and use thereof have been regulated. is there. The correlation between the current change in the concentration of the ozone layer and CFCs is not always clear, but it is believed that chlorine compounds generated by decomposition of CFCs by ultraviolet light act as catalysts for the ozone decomposition reaction. . It is considered that an alternative fluorocarbon containing hydrogen and having a structure decomposing in the atmosphere is suitable.

[課題を解決するための手段] ペンタフルオロエタン(CHF2CF3: R−125)は塩素
をその分子中に含まずフッ素を5原子有するエタン誘導
体であって、不燃性である。沸点は−48.5℃であり冷媒
としての使用可能性を有する。また、ヒートポンプ用の
熱媒としての用途もある。然るに現在、商業的な大量生
産は行なわれていない。
[Means for Solving the Problems] Pentafluoroethane (CHF 2 CF 3 : R-125) is an ethane derivative having no fluorine in its molecule and five atoms of fluorine, and is nonflammable. It has a boiling point of -48.5 ° C and has the potential to be used as a refrigerant. There is also a use as a heat medium for a heat pump. However, there is currently no commercial mass production.

ペンタフルオロエタンを製造する方法として可能性の
ある種々の製造方法の中で、商業的に製造されているク
ロロペンタフルオロエタン(沸点:−39.1℃)を原料と
する反応は、気相で水素還元を行なうことが可能であり
(下式参照)、 工業的な生産に適している。そこで本反応条件の最適化
について鋭意検討を行った結果、気相反応、および液相
反応において良好な反応成績が得られることを確認し本
発明を提供するに至ったものである。
Among various production methods that can be used for producing pentafluoroethane, a reaction using chloropentafluoroethane (boiling point: −39.1 ° C.) as a raw material, which is commercially produced, is carried out by hydrogen reduction in the gas phase. (See the formula below), Suitable for industrial production. Therefore, as a result of intensive studies on optimization of the reaction conditions, it was confirmed that good reaction results were obtained in a gas phase reaction and a liquid phase reaction, and the present invention was provided.

以下、詳細について説明する。 Hereinafter, the details will be described.

本還元反応においてはクロロペンタフルオロタン分子
中の塩素を引き抜き水素で置き換える。このための触媒
としては、既知の水素化触媒、すなわち白金族元素、鉄
族元素、またはレニウムのうちいずれか1種、または2
種以上を主成分として含む触媒の中で耐酸性を有するも
のが適用可能である。白金族の中では特にパラジウム、
白金、ロジウム、ルテニウム等が好適である。鉄族の中
ではニッケル、コバルトが好ましく、白金族元素と組み
合わせることにより初期特性および耐久性を向上するこ
とが可能である。レニウムについても同様に白金族元素
と組み合わせることにより特性の向上を図ることが出来
る。
In this reduction reaction, chlorine in the chloropentafluorotan molecule is extracted and replaced with hydrogen. As a catalyst for this, a known hydrogenation catalyst, that is, one of a platinum group element, an iron group element, or rhenium, or 2
Among the catalysts containing at least one species as a main component, those having acid resistance are applicable. Among the platinum group, especially palladium,
Platinum, rhodium, ruthenium and the like are preferred. Among the iron group, nickel and cobalt are preferable, and the initial characteristics and durability can be improved by combining with the platinum group element. The characteristics of rhenium can be similarly improved by combining it with a platinum group element.

本発明において、還元触媒の担体としては、例えば、
アルミナ、活性炭等が好適である。触媒担持量は0.01〜
10重量%、好ましくは0.1〜5重量%が特性、コスト、
等の点から適である。
In the present invention, as the carrier of the reduction catalyst, for example,
Alumina, activated carbon and the like are preferred. The amount of catalyst supported is 0.01 to
10% by weight, preferably 0.1-5% by weight, properties, cost,
It is suitable from the point of, etc.

なお、使用に当たってはかかる金属の化合物は少なく
とも一部還元する。
In use, the metal compound is at least partially reduced.

水素と原料R−115の割合は大幅に変動させ得る。し
かしながら、通常、化学量論量に水素を使用して塩素原
子を水素原子で置き換える。原料R−115の全モル数に
対して、化学量論量によりかなり多い量、例えば4モル
またはそれ以上の水素を使用し得る。反応圧力について
は常圧、または常圧以上の圧力が使用し得る。
The ratio of hydrogen to raw material R-115 can vary widely. However, usually chlorine is replaced by hydrogen using stoichiometric amounts of hydrogen. Substantially higher stoichiometric amounts, for example 4 moles or more, of hydrogen can be used relative to the total number of moles of raw material R-115. The reaction pressure may be normal pressure or a pressure higher than normal pressure.

反応温度は0℃〜450℃、好ましくは50℃〜300℃と
し、液相、または気相で反応を行なうことが好適であ
る。
The reaction temperature is 0 ° C. to 450 ° C., preferably 50 ° C. to 300 ° C., and the reaction is suitably performed in a liquid phase or a gas phase.

接触時間は、反応を気相で行なう場合には通常0.1〜3
00秒、特には5〜100秒である。
The contact time is usually 0.1 to 3 when the reaction is carried out in the gas phase.
00 seconds, especially 5 to 100 seconds.

液相反応は原料、および生成物の物性から加圧状態で
行なう必要がある。
The liquid phase reaction needs to be performed in a pressurized state due to the physical properties of the raw material and the product.

[実施例] 以下に本発明の実施例を示す。[Example] An example of the present invention will be described below.

調製例 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩素を用いてpHを調整した後、塩化パラジウムを活
性炭の重量に対し金属成分の全重量で0.5重量%だけ溶
解した水溶液を少しずつ滴下しイオン成分を活性炭に吸
着させた。純水を用いて洗浄した後、それを150℃で5
時間乾燥した。次に窒素中550℃で4時間乾燥した後、
水素を導入し、300℃に5時間保持して還元した。
Preparation Example Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with chlorine, an aqueous solution in which palladium chloride was dissolved by 0.5% by weight based on the total weight of the metal component with respect to the weight of the activated carbon was added dropwise little by little, and the ionic component was adsorbed on the activated carbon. After washing with pure water, it is
Dried for hours. Next, after drying in nitrogen at 550 ° C for 4 hours,
Hydrogen was introduced and reduced at 300 ° C. for 5 hours.

実施例 1 調製例のようにして調製したパラジウム触媒を300cc
充填した内径2.6cm、長さ100cmのインコネル600製反応
管を塩浴炉中に浸漬した。
Example 1 300 cc of palladium catalyst prepared as in Preparation Example
The filled Inconel 600 reaction tube having an inner diameter of 2.6 cm and a length of 100 cm was immersed in a salt bath furnace.

水素とクロロペンタフルオロエタンを2:1のモル比で
反応管に導入した。水素、出発物質の流量はそれぞれ、
100cc/分、100cc/分とした。反応温度は300℃、接触時
間は20秒とした。生成ガスの分析にはガスクロを用い
た。その結果を第1表に示す。
Hydrogen and chloropentafluoroethane were introduced into the reaction tube at a molar ratio of 2: 1. The flow rates of hydrogen and starting material are respectively
100 cc / min and 100 cc / min. The reaction temperature was 300 ° C., and the contact time was 20 seconds. Gas chromatography was used for the analysis of the produced gas. Table 1 shows the results.

実施例 2 担持量を5重量%とする他は実施例1と同様にして触
媒を調製し反応を行なった。その結果を第1表に示す。
Example 2 A catalyst was prepared and reacted in the same manner as in Example 1 except that the loading amount was 5% by weight. Table 1 shows the results.

実施例 3 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調製した後、塩化パラジウムを活
性炭の重量に対し金属成分の全重量で0.5重量%だけ溶
解した水溶液を少しずつ滴下しイオン成分を活性炭に吸
着させた。この溶液を撹拌しながら水素化ホウ素ナトリ
ウム水溶液を滴下し還元を行なった。純水を用いて洗浄
した後、それを150℃で5時間乾燥した。次に窒素中550
℃で4時間乾燥した後、水素を導入し、300℃に5時間
保持した。
Example 3 Activated carbon was immersed in pure water to impregnate the water into the pores. After adjusting the pH using hydrochloric acid, an aqueous solution in which palladium chloride was dissolved by 0.5% by weight based on the total weight of the metal component with respect to the weight of the activated carbon was added dropwise little by little, and the ionic component was adsorbed on the activated carbon. An aqueous solution of sodium borohydride was added dropwise while stirring this solution to effect reduction. After washing with pure water, it was dried at 150 ° C. for 5 hours. Then 550 in nitrogen
After drying at 4 ° C. for 4 hours, hydrogen was introduced and kept at 300 ° C. for 5 hours.

このようにして調製した触媒を用いて実施例1と同様
にして反応を行った。その結果を第1表に示す。
A reaction was carried out in the same manner as in Example 1 using the catalyst thus prepared. Table 1 shows the results.

実施例 4 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウム、お
よび塩化白金酸を活性炭の重量に対し金属成分の全重量
でそれぞれ0.25重量%だけ溶解した水溶液を少しずつ滴
下しイオン成分を活性炭に吸着させた。純水を用いて洗
浄した後、それを150℃で5時間乾燥した。次に窒素中5
50℃で4時間乾燥した後、水素を導入し、300℃に5時
間保持して還元した後500℃まで昇温し3時間保持し
た。
Example 4 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which palladium chloride and chloroplatinic acid were each dissolved in an amount of 0.25% by weight of the total weight of the metal components with respect to the weight of the activated carbon was added dropwise little by little, and the ionic components were adsorbed on the activated carbon. . After washing with pure water, it was dried at 150 ° C. for 5 hours. Then in nitrogen 5
After drying at 50 ° C. for 4 hours, hydrogen was introduced, reduced at 300 ° C. for 5 hours, and then heated to 500 ° C. and maintained for 3 hours.

このようにして調製した触媒を用いて実施例1と同様
にして反応を行なった。その結果を第1表に示す。
Using the catalyst thus prepared, a reaction was carried out in the same manner as in Example 1. Table 1 shows the results.

実施例 5 塩化白金酸の変わりに塩化ロジウムを用いる他は実施
例4と同様にして触媒を調製し、反応を行なった。その
結果を第1表に示す。
Example 5 A catalyst was prepared and reacted in the same manner as in Example 4 except that rhodium chloride was used instead of chloroplatinic acid. Table 1 shows the results.

実施例 6 塩化白金酸の変わりに塩化ルテニウムを用いる他は実
施例4と同様にして触媒を調製し、反応を行なった。そ
の結果を第1表に示す。
Example 6 A catalyst was prepared and reacted in the same manner as in Example 4 except that ruthenium chloride was used instead of chloroplatinic acid. Table 1 shows the results.

実施例 7 活性炭を純水中に浸漬し細孔内部まで水を含浸させ
た。塩酸を用いてpHを調整した後、塩化パラジウム、お
よび過レニウム酸カリウムを活性炭の重量に対し金属成
分の全重量でそれぞれ0.4重量%、0.1重量%だけ溶解し
た水溶液を少しずつ滴下しイオン成分を活性炭に吸着さ
せた。純水を用いて洗浄した後、それを150℃で5時間
乾燥した。次に窒素中550℃で4時間乾燥した後、水素
を導入し、300℃に5時間保持して還元した後500℃まで
昇温し3時間保持した。
Example 7 Activated carbon was immersed in pure water to impregnate water into the pores. After adjusting the pH with hydrochloric acid, an aqueous solution in which palladium chloride and potassium perrhenate are dissolved by 0.4% by weight and 0.1% by weight, respectively, based on the total weight of the activated carbon based on the weight of the activated carbon is added dropwise little by little to remove the ionic components. Adsorbed on activated carbon. After washing with pure water, it was dried at 150 ° C. for 5 hours. Next, after drying in nitrogen at 550 ° C. for 4 hours, hydrogen was introduced, reduced at 300 ° C. for 5 hours, and then heated to 500 ° C. and maintained for 3 hours.

このようにして調製した触媒を用いて反応を行なっ
た。その結果を第1表に示す。
The reaction was carried out using the catalyst thus prepared. Table 1 shows the results.

実施例 8 塩化白金酸の代わりに塩化ニッケルを用いる他は実施
例4と同様にして触媒を調製し反応を行なった。その結
果を第1表に示す。
Example 8 A catalyst was prepared and reacted in the same manner as in Example 4 except that nickel chloride was used instead of chloroplatinic acid. Table 1 shows the results.

実施例 9 塩化白金酸の代わりに塩化コバルトを用いる他は実施
例4と同様にして触媒を調製し、反応を行なった。結果
を第1表に示す。
Example 9 A catalyst was prepared and reacted in the same manner as in Example 4 except that cobalt chloride was used instead of chloroplatinic acid. The results are shown in Table 1.

実施例 10 塩化パラジウムの代わりに塩化白金酸を用いる他は調
製例と同様にして調製した触媒を用いて実施例1と同様
にして反応を行なった。その結果を第1表に示す。
Example 10 A reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Preparation Example except that chloroplatinic acid was used instead of palladium chloride. Table 1 shows the results.

実施例 11 塩化パラジウムの代わりに塩化ロジウムを用いる他は
調製例と同様にして調製した触媒を用いて実施例1と同
様にして反応を行なった。その結果を第1表に示す。
Example 11 A reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Preparation Example except that rhodium chloride was used instead of palladium chloride. Table 1 shows the results.

実施例 12 塩化パラジウムの代わりに塩化ルテニウムを用いる他
は調製例と同様にして調製した触媒を用いて実施例1と
同様にして反応を行なった。その結果を第1表に示す。
Example 12 A reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Preparation Example except that ruthenium chloride was used instead of palladium chloride. Table 1 shows the results.

実施例 13 塩化パラジウムの代わりに塩化ロジウムを用いる他は
実施例7と同様にして触媒を調製し反応を行なった。そ
の結果を第1表に示す。
Example 13 A catalyst was prepared and reacted in the same manner as in Example 7 except that rhodium chloride was used instead of palladium chloride. Table 1 shows the results.

実施例 14 塩化パラジウムの代わりに塩化白金酸を用いる他は実
施例7と同様にして触媒を調製し反応を行なった。その
結果を第1表に示す。
Example 14 A catalyst was prepared and reacted in the same manner as in Example 7 except that chloroplatinic acid was used instead of palladium chloride. Table 1 shows the results.

実施例 15 塩化パラジウムの代わりに塩化ルテニウムを用いる他
は実施例7と同様にして触媒を調製し反応を行なった。
その結果を第1表に示す。
Example 15 A catalyst was prepared and reacted in the same manner as in Example 7 except that ruthenium chloride was used instead of palladium chloride.
Table 1 shows the results.

実施例 16 内容積1リットルのハステロイC製オートクレーブに
クロロペンタフルオロエタンを200g、トリエチルアミン
を250g、および実施例2で用いたパラジウム触媒を28g
入れて0℃に保持した。撹拌しながら水素を内圧が10気
圧を維持するように導入し、水素吸収が無くなるまで約
10時間保持した。ガス組成をガスクロマトグラフで分析
した。その結果を第1表に示す。なお、第1表中の%は
すべてモル%を表す。
Example 16 200 g of chloropentafluoroethane, 250 g of triethylamine, and 28 g of the palladium catalyst used in Example 2 were placed in an autoclave made of Hastelloy C having an internal volume of 1 liter.
And kept at 0 ° C. While stirring, introduce hydrogen so that the internal pressure is maintained at 10 atm.
Hold for 10 hours. The gas composition was analyzed by gas chromatography. Table 1 shows the results. The percentages in Table 1 all represent mol%.

[発明の効果] 本発明は、実施例に示すように、クロロペンタフルオ
ロエタン(R−115)を原料として有用なペンタフルオ
ロエタン(R−125)を、円滑有利に良好な収率で製造
し得ると言う効果を有する。
[Effect of the Invention] As shown in the Examples, the present invention produces pentafluoroethane (R-125), which is useful using chloropentafluoroethane (R-115) as a raw material, smoothly and advantageously in good yield. It has the effect of obtaining.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/46 311 B01J 23/46 311X 23/656 23/89 X 23/89 C07B 61/00 300 C07B 61/00 300 B01J 23/64 104X (56)参考文献 特開 昭64−38034(JP,A) 特開 昭53−147005(JP,A) 特開 平1−149739(JP,A) 特開 平1−128942(JP,A) 特開 平1−172349(JP,A)Continued on the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical display location B01J 23/46 311 B01J 23/46 311X 23/656 23/89 X 23/89 C07B 61/00 300 C07B 61 / 00 300 B01J 23/64 104X (56) References JP-A-64-38034 (JP, A) JP-A-53-147005 (JP, A) JP-A-1-14939 (JP, A) JP-A-1- 128942 (JP, A) JP-A-1-172349 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロロペンタフルオロエタンを白金族元
素、鉄族元素、およびレニウムから選ばれる1種または
2種以上の元素を主成分として含む水素化触媒の存在下
で水素により還元することを特徴とするペンタフルオロ
エタンの製造方法。
1. A method of reducing chloropentafluoroethane with hydrogen in the presence of a hydrogenation catalyst containing one or more elements selected from platinum group elements, iron group elements and rhenium as main components. Pentafluoroethane production method.
【請求項2】クロロペンタフルオロエタンに対して少な
くとも化学量論量の水素を使用する請求項1に記載の製
造方法。
2. The process according to claim 1, wherein at least a stoichiometric amount of hydrogen is used relative to chloropentafluoroethane.
【請求項3】水素化触媒の担体が活性炭またはアルミナ
である請求項1または2に記載の製造方法。
3. The production method according to claim 1, wherein the carrier of the hydrogenation catalyst is activated carbon or alumina.
【請求項4】反応を液相中、または気相中において0℃
〜450℃の温度範囲で行なう請求項1、2または3に記
載の製造方法。
4. The reaction is carried out at 0 ° C. in a liquid phase or a gas phase.
The method according to claim 1, 2 or 3, wherein the method is carried out in a temperature range of -450 ° C.
JP63085177A 1988-04-08 1988-04-08 Method for producing pentafluoroethane Expired - Fee Related JP2580696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085177A JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085177A JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Publications (2)

Publication Number Publication Date
JPH01258632A JPH01258632A (en) 1989-10-16
JP2580696B2 true JP2580696B2 (en) 1997-02-12

Family

ID=13851381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085177A Expired - Fee Related JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Country Status (1)

Country Link
JP (1) JP2580696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674521B1 (en) * 1991-03-27 1994-05-06 Atochem PREPARATION OF PENTAFLUOROETHANE BY HYDROGENOLYSIS OF CHLOROPENTAFLUOROETHANE.

Also Published As

Publication number Publication date
JPH01258632A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
US5136113A (en) Catalytic hydrogenolysis
US5447896A (en) Hydrodehalogenation catalysts and their preparation and use
WO1993004024A1 (en) CATALYTIC PROCESS FOR PRODUCING CCl3CF¿3?
JP2814606B2 (en) Method for producing pentafluoroethane
JPH05507028A (en) Activation of noble metal catalysts for use in the hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
JPH08502063A (en) Method for converting 1,1,1,2-tetrachloroethane to vinylidene chloride
JP2580696B2 (en) Method for producing pentafluoroethane
US5302765A (en) Catalytic process for producing CF3 CHClF
US6218587B1 (en) Catalytic hydrogenolysis
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2760136B2 (en) Production method of hydrogen-containing chlorofluorocarbons
JPH0747551B2 (en) Selective hydrogenolysis of perhalogenated ethane derivatives
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JP2636314B2 (en) Method for producing tetrafluoroethane
KR930000889B1 (en) Process for the selective hydrogenolysis of perhalogeno-ethanes
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH06279328A (en) Production of hexafluoropropane
JP2773390B2 (en) Preparation of pentafluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2000226346A (en) Production of heptafluorocyclopentane
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH02218625A (en) Production of hcfc-134a
JPH0383940A (en) Production of 1,1-difluoroethane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees