JPH01258632A - Production of pentafluoroethane - Google Patents

Production of pentafluoroethane

Info

Publication number
JPH01258632A
JPH01258632A JP63085177A JP8517788A JPH01258632A JP H01258632 A JPH01258632 A JP H01258632A JP 63085177 A JP63085177 A JP 63085177A JP 8517788 A JP8517788 A JP 8517788A JP H01258632 A JPH01258632 A JP H01258632A
Authority
JP
Japan
Prior art keywords
reaction
chloropentafluoroethane
hydrogen
rhenium
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63085177A
Other languages
Japanese (ja)
Other versions
JP2580696B2 (en
Inventor
Shinsuke Morikawa
森川 真介
Masaru Yoshitake
優 吉武
Shin Tatematsu
伸 立松
So Yoneda
米田 創
Kunihiro Ohira
大平 訓弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63085177A priority Critical patent/JP2580696B2/en
Publication of JPH01258632A publication Critical patent/JPH01258632A/en
Application granted granted Critical
Publication of JP2580696B2 publication Critical patent/JP2580696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the present substance in good yield, by reducing chloropentafluoroethane with hydrogen in the presence of a platinum group, iron family element, rhenium, etc., as a principal component supported on active carbon or alumina. CONSTITUTION:Chloropentafluoroethane is reduced with hydrogen in at least a stoichiometric amount in the presence of a hydrogenation catalyst consisting essentially of one or two or more selected from platinum group, iron family elements and rhenium in the liquid or vapor phase at 0-450 deg.C (preferably 50-300 deg.C) to afford the present substance. Pd, Pt, Rh, Ru, etc., are preferred as the platinum group elements in the catalyst components and initial characteristics and durability can be improved by combination thereof with the iron family elements (preferably Ni or Co) and rhenium. The present substance finds uses as a refrigerant, heating medium, etc., for heat pumps.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は塩素を含まないフルオロカーボンの一種である
ペンタフルオロエタンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing pentafluoroethane, which is a type of fluorocarbon that does not contain chlorine.

し従来の技術および発明の課題] 近年、冷媒、発泡剤、および溶剤として広く用いられて
いるクロロフルオロカーボン(フロン)よるオゾン層破
壊の可能性が論議され、その製造、使用について規制さ
れる方向にある。現在のオゾン層の濃度変化とフロンと
の相関については必ずしも明確になっているとは言えな
いが、フロンが紫外線により分解して生成する塩素化合
物がオゾン分解反応の触媒として作用すると考えられて
いる。そのための代替フロンとしては水素と含有し大気
圏で分解する構造のものが適していると考えられている
Prior Art and Problems with the Invention] In recent years, the possibility of depletion of the ozone layer by chlorofluorocarbons (fluorocarbons), which are widely used as refrigerants, blowing agents, and solvents, has been discussed, and there is a trend towards regulating their production and use. be. Although the correlation between current changes in the concentration of the ozone layer and CFCs is not necessarily clear, it is thought that chlorine compounds produced when CFCs are decomposed by ultraviolet light act as catalysts for the ozone decomposition reaction. . For this purpose, it is thought that suitable CFC substitutes are those that contain hydrogen and have a structure that decomposes in the atmosphere.

[課題を解決するための手段] ペンタフルオロエタン(CHF2CF3:  R125
>は塩素をその分子中に含まずフッ素を5原子有するエ
タン誘導体であって、不燃性である。沸点は一48□5
 ”Cであり冷媒としての使用可能性を有する。また、
ヒートポンプ用の熱媒としての用途もある。然るに現在
、商業的な大量生産は行なわれていない。
[Means for solving the problem] Pentafluoroethane (CHF2CF3: R125
> is an ethane derivative that does not contain chlorine in its molecule and has five fluorine atoms, and is nonflammable. The boiling point is -48□5
"C" and has the possibility of being used as a refrigerant. Also,
It is also used as a heating medium for heat pumps. However, commercial mass production is not currently underway.

ペンタフルオロエタン分製造する方法として可能性のあ
る種々の製造方法の中で、商業的に製造されているクロ
ロペンタフルオロエタンく沸点ニー39.1°C)を原
料とする反応は、気相で水素還元と行なうことが可能で
あり(下式参照)、CHF2CF3   →   CH
F2CF3   +  t(CI(R−115)  還
元触媒 (R−125)工業的な生産に適している。 
 そこで本反応条件の最適化について鋭意検討を行った
結果、気相反応、および液相反応において良好な反応成
績が得られることを確認し本発明を提供するに至ったも
のである。
Among various possible methods for producing pentafluoroethane, the reaction using commercially produced chloropentafluoroethane (boiling point: 39.1°C) as a raw material is a gas phase reaction. It is possible to perform hydrogen reduction (see the formula below), CHF2CF3 → CH
F2CF3 + t(CI(R-115) reduction catalyst (R-125) Suitable for industrial production.
Therefore, as a result of intensive studies on optimizing the reaction conditions, it was confirmed that good reaction results could be obtained in gas phase reactions and liquid phase reactions, and the present invention was provided.

以下、詳細について説明する。The details will be explained below.

本還元反応においてはクロロペンタフルオロエタン分子
中の塩素を引き抜き水素で置き換える。
In this reduction reaction, chlorine in the chloropentafluoroethane molecule is extracted and replaced with hydrogen.

このための触媒としては、既知の水素化触媒、すなわち
白金族元素、鉄族元素、またはレニウムのうちいずれか
1種、または2種以上を主成分として含む触媒の中で耐
酸性を有するものが適用可能である。白金族の中では特
にパラジウム、白金、ロジウム、ルテニウム等が好適で
ある。鉄族の中ではニッケル、コバルトが好ましく、白
金族元素と組み合わせることにより初期特性および耐久
性を向上することが可能である。レニウムについても同
様に白金族元素と組み合わせることにより特性の向上を
図ることが出来る。
As a catalyst for this purpose, among the known hydrogenation catalysts, that is, catalysts containing as a main component any one or more of platinum group elements, iron group elements, or rhenium, those having acid resistance are used. Applicable. Among the platinum group metals, palladium, platinum, rhodium, ruthenium, etc. are particularly preferred. Among the iron group elements, nickel and cobalt are preferred, and by combining them with platinum group elements, initial characteristics and durability can be improved. Similarly, the characteristics of rhenium can be improved by combining it with a platinum group element.

本発明において、還元触媒の担体としては、例えば、ア
ルミナ、活性炭等が好適である。触媒担持量は0.01
〜10%、好ましくは0,1〜5%が特性、コスト、等
の点から好適である。
In the present invention, suitable carriers for the reduction catalyst include, for example, alumina and activated carbon. The amount of catalyst supported is 0.01
~10%, preferably 0.1~5% is suitable from the viewpoint of characteristics, cost, etc.

なお、使用に当たってはかかる金属の化合物は少なくと
も一部還元する。
In addition, upon use, such metal compounds are at least partially reduced.

水素と原料R−115の割合は大幅に変動させ得る。し
かしながら、通常、化学量論量の水素を使用してハロゲ
ン原子を除去する。原料R−115の全モル数に対して
、化学量論量よりがなり多い量、例えば4モルまたはそ
れ以上の水素を使用し得る。  反応圧力については常
圧、または常圧以上の圧力が使用し得る。
The proportions of hydrogen and feedstock R-115 can vary widely. However, stoichiometric amounts of hydrogen are usually used to remove the halogen atoms. A more than stoichiometric amount of hydrogen may be used, for example 4 moles or more, based on the total number of moles of raw material R-115. As for the reaction pressure, normal pressure or a pressure higher than normal pressure can be used.

反応温度はO℃〜450℃、好ましくは50’C〜30
0℃とし、液相、または気相で反応を行なうことが適当
である。
The reaction temperature is 0°C to 450°C, preferably 50'C to 30°C.
It is appropriate to conduct the reaction at 0° C. in a liquid phase or a gas phase.

接触時間は、反応を気相で行なう場合には通常0.1〜
300秒、特には5〜100秒である。
The contact time is usually 0.1 to 0.1 when the reaction is carried out in the gas phase.
300 seconds, especially 5 to 100 seconds.

液相反応は原料、および生成物の物性から加圧状態で行
なう必要がある。
The liquid phase reaction must be carried out under pressure due to the physical properties of the raw materials and products.

[実施例] 以下に本発明の実施例3示す。[Example] Example 3 of the present invention is shown below.

調製例 活性炭を純水中に浸漬し細孔内部まで水を含浸させた。Preparation example Activated carbon was immersed in pure water to impregnate the inside of the pores with water.

塩酸を用いてpHを調整した後、塩化パラジウムを活性
炭の平旦に対し金属成分の全重旦で0.5%だけ溶解し
た水溶液を少しずつ滴下しイオン成分を活性炭に吸着さ
せた。純水を用いて洗浄した後、それを150℃で5時
間乾燥した。
After adjusting the pH using hydrochloric acid, an aqueous solution containing palladium chloride dissolved in an amount of 0.5% of the total weight of the metal component in the active carbon was added dropwise little by little to allow the ionic components to be adsorbed onto the activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours.

次に窒素中550℃で4時間乾燥した後、水素を導入し
、300’CGご5時間保持して還元した。
Next, after drying in nitrogen at 550° C. for 4 hours, hydrogen was introduced and the mixture was maintained at 300′CG for 5 hours to reduce.

実施例 1 調製例のようにして調製したパラジウム触媒を300c
c充填した内径2.6cm、長さ1100Cのインコネ
ル600製反応管を塩浴炉中に浸漬した。
Example 1 A palladium catalyst prepared as in Preparation Example was
A reaction tube made of Inconel 600 and having an inner diameter of 2.6 cm and a length of 1100 C was immersed in a salt bath furnace.

水素とクロロペンタフルオロエタンを2=1のモル比で
反応管に導入した。水素、出発物置の流量はそれぞれ、
100cc/分、100cc/分とした0反応温度は3
00°C5接触時間は20秒とした。生成ガスの分析に
はガスクロを用いた。
Hydrogen and chloropentafluoroethane were introduced into the reaction tube in a molar ratio of 2=1. The flow rates of hydrogen and starting storage are as follows:
100cc/min, 0 reaction temperature at 100cc/min is 3
00°C5 contact time was 20 seconds. Gas chromatography was used to analyze the generated gas.

その結果を第1表に示す。The results are shown in Table 1.

実施例 2 担持量を5%とする他は実施例】と同様にして触媒を調
製)2反応を行なった。その結果を第1.2<に示ず。
Example 2 A catalyst was prepared in the same manner as in Example except that the supported amount was changed to 5%). 2 reactions were carried out. The results are shown in Section 1.2.

実施例 3 活性炭分純水中に浸漬しa1孔内部まで71りを含浸さ
せた。塩酸分用いてp H?′A整17た後、塩化パラ
ジウム3活性炭の重量に対し金属成分の全重量で0 、
5 %だけ溶解した水溶液な少しずつ滴下しイオン成分
を活性炭に吸着させた。この溶液を攪拌しながら水素化
ホウ素すl・リウム水溶液を滴下し還元を行なった。純
水を用いて洗浄した後、それを150℃で5時間乾燥し
た6次に窒素中550℃で4時間乾燥した後、水素を導
入し、300゛Cに5時間保持した。
Example 3 Activated carbon was immersed in pure water to impregnate the inside of the a1 hole with 71 liters. pH using hydrochloric acid? 'After adjusting 17, the total weight of metal components is 0 with respect to the weight of palladium chloride 3 activated carbon,
An aqueous solution in which only 5% of the ionic components were dissolved was dropped little by little, and the ionic components were adsorbed onto the activated carbon. While stirring this solution, an aqueous solution of sulfur and lithium borohydride was added dropwise to perform reduction. After washing with pure water, it was dried at 150°C for 5 hours, then dried in nitrogen at 550°C for 4 hours, then hydrogen was introduced and kept at 300°C for 5 hours.

このようにして非j製した触媒を用いて実施例1と同様
にして反応を行った。その結果を第1表に示す。
A reaction was carried out in the same manner as in Example 1 using the catalyst thus prepared. The results are shown in Table 1.

実施例 4 活性炭分純水中に浸漬し細孔内部まで水を含浸させた。Example 4 The activated carbon was immersed in pure water to impregnate the inside of the pores with water.

塩酸を用いてp )(を調整した後、塩化パラジウム、
および塩化白金酸を活性炭の重量に対し金属成分の全重
量でそれぞれ0,25%だけ溶解した水溶液と少しずつ
滴下しイオン成分を活性炭に吸着させた。純水を用いて
洗浄した後、それを150°Cで5時間乾燥した。次に
窒素中550°Cで4時間乾燥した後、水素を導入し、
300’Cに5時間保持して還元した後500°Cまで
昇温し3時間保持した。
After adjusting p ) ( using hydrochloric acid, palladium chloride,
Then, an aqueous solution in which 0.25% of the total weight of metal components was dissolved in each of the activated carbon and chloroplatinic acid was added dropwise little by little to cause the ionic components to be adsorbed onto the activated carbon. After washing with pure water, it was dried at 150°C for 5 hours. Next, after drying in nitrogen at 550 °C for 4 hours, hydrogen was introduced,
After being reduced by holding at 300'C for 5 hours, the temperature was raised to 500°C and held for 3 hours.

このようにL7て調製した触媒を用いて実施例1と同様
にし、て反応を行なり六二。その結果を第1表に示す。
Using the catalyst thus prepared, a reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例 5 塩化白金酸の変わりに塩化ロジウムを用いる他は実施例
4と同様にして触媒を調製し、反応を行なった。その結
果を第1表に示す。
Example 5 A catalyst was prepared and a reaction was carried out in the same manner as in Example 4, except that rhodium chloride was used instead of chloroplatinic acid. The results are shown in Table 1.

実施例 6 塩化白金酸の変わりに塩化ルテニウムを用いる他は実施
例4と同様にして触媒を調製し、反応を行なった。その
結果を第1表に示す。
Example 6 A catalyst was prepared and a reaction was carried out in the same manner as in Example 4, except that ruthenium chloride was used instead of chloroplatinic acid. The results are shown in Table 1.

実施例 7 活性炭を純水中に浸漬し細孔内部まで水を含浸させた。Example 7 Activated carbon was immersed in pure water to impregnate the inside of the pores with water.

塩酸を用いてpHを調整した後、塩化パラジウム、およ
び過1/ニウム酸カリウムを活性炭の重量に対し金属成
分の全重量でそれぞれ0.4%、0.1%だけ溶解した
水溶液を少しずつ滴下しイオン成分を活性炭に吸着させ
た。純水を用いて洗浄した後、それを150’Cで5時
間乾燥した。
After adjusting the pH using hydrochloric acid, an aqueous solution in which palladium chloride and potassium peroxide were dissolved at 0.4% and 0.1%, respectively, based on the total weight of the metal components based on the weight of activated carbon, was added dropwise little by little. The ionic components were adsorbed onto activated carbon. After washing with pure water, it was dried at 150'C for 5 hours.

次に窒素中550℃で4時間乾燥した後、水素を導入し
、300°Cに5時間保持して還元した後500℃まで
昇温し3時間保持し7た。
Next, after drying in nitrogen at 550°C for 4 hours, hydrogen was introduced, and the temperature was maintained at 300°C for 5 hours for reduction, and then the temperature was raised to 500°C and maintained for 3 hours.

このようにして調製した触媒を用いて反応を行なった。A reaction was carried out using the catalyst thus prepared.

その結果を第1表に示す。The results are shown in Table 1.

実施例 8 塩化白金酸の代わりに塩化ニッケルを用いる他は実施例
4と同様にして触媒を調製し反応を行なった。その結果
を第1表に示す。
Example 8 A catalyst was prepared and a reaction was carried out in the same manner as in Example 4, except that nickel chloride was used instead of chloroplatinic acid. The results are shown in Table 1.

実施例 9 塩化白金酸の代わりに塩化コバルトを用いる他は実施例
4と同様にして触媒を調製し、反応を行なった。その結
果を第1表に示す。
Example 9 A catalyst was prepared and a reaction was carried out in the same manner as in Example 4, except that cobalt chloride was used instead of chloroplatinic acid. The results are shown in Table 1.

実施例 10 塩化パラジウムの代わりに塩化白金酸を用いる他は調製
例と同様にして調製した触媒を用いて実施例1と同様に
して反応を行なった。その結果を第1表に示す。
Example 10 A reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Preparation Example except that chloroplatinic acid was used instead of palladium chloride. The results are shown in Table 1.

実施例 11 塩化パラジウムの代わりに塩化ロジウムを用いる他は調
製例と同様にして調製1,7た触媒を用いて実施例1と
同様にして反応を行なった。 その結果を第1表に示す
Example 11 A reaction was carried out in the same manner as in Example 1 using the catalysts prepared in Preparation Examples 1 and 7, except that rhodium chloride was used instead of palladium chloride. The results are shown in Table 1.

実施例 12 塩化パラジウムの代わりに塩化ルテニウムを用いる他は
調製例と同様にして調製した触媒を用いて実施例1と同
様にして反応を行なった。その結果を第1表に示す。
Example 12 A reaction was carried out in the same manner as in Example 1 using a catalyst prepared in the same manner as in Preparation Example except that ruthenium chloride was used instead of palladium chloride. The results are shown in Table 1.

実施例 13 塩化パラジウムの代わりに塩化ロジウムを用いる他は実
施例7と同様にして触媒を調製し反応を行なった。その
結果を第1表に示す。
Example 13 A catalyst was prepared and a reaction was carried out in the same manner as in Example 7, except that rhodium chloride was used instead of palladium chloride. The results are shown in Table 1.

実施例 14 塩化パラジウムの代わりに塩化白金酸を用いる池は実施
例7と同様にして触媒f!−調製し反応を行なった。そ
の結果を第1表に示す。
Example 14 A pond using chloroplatinic acid instead of palladium chloride was prepared in the same manner as in Example 7 using catalyst f! -Prepared and reacted. The results are shown in Table 1.

実施例 15 塩化ニッケルの代わりに塩化ルテニウムを用いる他は実
施例5と同様にして触媒を調製し反応を行なった。その
結果を第1表に示す。
Example 15 A catalyst was prepared and a reaction was carried out in the same manner as in Example 5, except that ruthenium chloride was used instead of nickel chloride. The results are shown in Table 1.

実方組PA    16 内容積1リツトルのハステロイC製オートクレーブにク
ロロペンタフルオロエタン’i:200g、トリエチル
アミンを250g、および実施例2で用いたパラジウム
触媒を28g入れてO′Cに保持した。攪拌しながら水
素を内圧が10気圧を維持するように導入し、水素吸収
が無くなるまで約10時間保持した。ガス組成をガスク
ロマトグラフで分析した。その結果を第1表に示す。
200 g of chloropentafluoroethane'i, 250 g of triethylamine, and 28 g of the palladium catalyst used in Example 2 were placed in a Hastelloy C autoclave having an internal volume of 1 liter and maintained at O'C. Hydrogen was introduced while stirring to maintain an internal pressure of 10 atm, and this was maintained for about 10 hours until hydrogen absorption disappeared. The gas composition was analyzed using a gas chromatograph. The results are shown in Table 1.

第1表 [発明の効果] 本発明は、実施例に示すように、クロロペンタフルオロ
エタン(R−115)を原料として有用なペンタフルオ
ロエタン(R−125>を、円滑有利に良好な収率で製
造し得ると言う効果を有する。
Table 1 [Effects of the Invention] As shown in the examples, the present invention provides useful pentafluoroethane (R-125) using chloropentafluoroethane (R-115) as a raw material in a smooth, advantageous and good yield. It has the advantage that it can be manufactured using

Claims (1)

【特許請求の範囲】 1、クロロペンタフルオロエタンを白金族元素、鉄族元
素、またはレニウムのうちいずれか1種類、またはそれ
らのうち2種類以上を主成分として含む水素化触媒の存
在下で水素により還元することを特徴とするペンタフル
オロエタンの製造方法。 2、クロロペンタフルオロエタンに対して少なくとも化
学量論量の水素を使用してクロロペンタフルオロエタン
中の1個の塩素原子を除去する請求項1に記載の製造方
法。 3、還元触媒が活性炭担体上に担持されている水素化触
媒を用いる請項1叉は2に記載の製造方法。 4、還元触媒がアルミナ担体上に担持されている水素化
触媒を用いる請求1叉は2に記載の製造方法。 5、反応を液相中、または気相中において0℃〜450
℃の温度範囲で行なう請求項1〜4のいずれか一項に記
載の製造方法。
[Claims] 1. Hydrogenation of chloropentafluoroethane in the presence of a hydrogenation catalyst containing any one of platinum group elements, iron group elements, or rhenium, or two or more of these as a main component. A method for producing pentafluoroethane, characterized by reducing it by. 2. The method according to claim 1, wherein at least one chlorine atom in chloropentafluoroethane is removed using at least a stoichiometric amount of hydrogen relative to chloropentafluoroethane. 3. The production method according to claim 1 or 2, wherein the reduction catalyst uses a hydrogenation catalyst supported on an activated carbon carrier. 4. The production method according to claim 1 or 2, wherein the reduction catalyst uses a hydrogenation catalyst supported on an alumina carrier. 5. Carry out the reaction in the liquid phase or gas phase at 0°C to 450°C.
The manufacturing method according to any one of claims 1 to 4, wherein the manufacturing method is carried out at a temperature range of °C.
JP63085177A 1988-04-08 1988-04-08 Method for producing pentafluoroethane Expired - Fee Related JP2580696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085177A JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085177A JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Publications (2)

Publication Number Publication Date
JPH01258632A true JPH01258632A (en) 1989-10-16
JP2580696B2 JP2580696B2 (en) 1997-02-12

Family

ID=13851381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085177A Expired - Fee Related JP2580696B2 (en) 1988-04-08 1988-04-08 Method for producing pentafluoroethane

Country Status (1)

Country Link
JP (1) JP2580696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674521A1 (en) * 1991-03-27 1992-10-02 Atochem PREPARATION OF PENTAFLUOROETHANE BY HYDROGENOLYSIS OF CHLOROPENTAFLUOROETHANE.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674521A1 (en) * 1991-03-27 1992-10-02 Atochem PREPARATION OF PENTAFLUOROETHANE BY HYDROGENOLYSIS OF CHLOROPENTAFLUOROETHANE.
JPH0597728A (en) * 1991-03-27 1993-04-20 Elf Atochem Sa Manufacturing of pentafuoroethane by the hydrocracking of chloropentafluoroethane

Also Published As

Publication number Publication date
JP2580696B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
EP0596007A1 (en) Catalytic hydrogenolysis.
JP2008523089A (en) Direct one-step synthesis of trifluoromethyl iodide.
JPH0399026A (en) Production of pentafluoroethane
JPH05507028A (en) Activation of noble metal catalysts for use in the hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
JPH10510838A (en) Catalytic hydrogenolysis
JPH01258632A (en) Production of pentafluoroethane
US6218587B1 (en) Catalytic hydrogenolysis
JPH01128942A (en) Production of tetrafluoroethane
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JPH0429944A (en) Production of hydrogen-containing chlorofluorocarbons
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2712475B2 (en) Method for producing propane having difluoromethylene group
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2773390B2 (en) Preparation of pentafluoroethane
JPH06279328A (en) Production of hexafluoropropane
JPH02218625A (en) Production of hcfc-134a
JP2581169B2 (en) Method for producing R-134a
KR930000889B1 (en) Process for the selective hydrogenolysis of perhalogeno-ethanes
JPH02218626A (en) Production of 1,1,1,2-tetrafluoroethane
CN115611703B (en) Hydrofluorocycloalkanes and preparation method and application thereof
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH01319443A (en) Production of tetrafluoroethane
JPH01132538A (en) Production of tetrafluoroethane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees