JPH01132537A - Production of tetrafluoroethane - Google Patents

Production of tetrafluoroethane

Info

Publication number
JPH01132537A
JPH01132537A JP62288451A JP28845187A JPH01132537A JP H01132537 A JPH01132537 A JP H01132537A JP 62288451 A JP62288451 A JP 62288451A JP 28845187 A JP28845187 A JP 28845187A JP H01132537 A JPH01132537 A JP H01132537A
Authority
JP
Japan
Prior art keywords
hydrogen
tetrafluoroethane
catalyst
haloethane
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62288451A
Other languages
Japanese (ja)
Other versions
JP2551052B2 (en
Inventor
Shinsuke Morikawa
森川 真介
Masaru Yoshitake
優 吉武
Shin Tatematsu
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62288451A priority Critical patent/JP2551052B2/en
Publication of JPH01132537A publication Critical patent/JPH01132537A/en
Application granted granted Critical
Publication of JP2551052B2 publication Critical patent/JP2551052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound by using a catalyst having high initial performance and excellent durability, by reacting a haloethane raw material containing 4-5 fluorine atoms with hydrogen in the presence of a hydrogenating catalyst comprising platinum. CONSTITUTION:A compound shown by the formula CF2XCFYZ (X is F or Cl; when X is F, Y and Z are Cl, F or H and when one of Y and Z is F, the other is H or Cl; when X is Cl, one of Y and Z is F and the other is Cl or H), especially a compound shown by the formula CClF2CClF2 and/or CCl2FCF3 is reacted with a stoichiometric amount - 4 mol based on 1 mol raw material of hydrogen in the presence of a hydrogenating catalyst comprising platinum supported on preferably active carbon or alumina carrier preferably 120-450 deg.C to give the aimed compound shown by the CF3CH2F and/or CFH2CHF2 in any of various ratios simply and life of catalyst is prolonged by using the catalyst having excellent corrosion resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテトラフルオロエタンを製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing tetrafluoroethane.

[従来の技術及び問題点] 式CF3CH2F(R−134a)またはCHF2 C
HF2 (R−134)で表わされるテトラフルオロエ
タンの製造方法の一つとして、弐〇F2XCFYZ(式
中、Xはフッ素または塩素である。Xがフッ素である場
合には、Y、Zは塩素、フッ素または水素であり。
[Prior art and problems] Formula CF3CH2F (R-134a) or CHF2C
One method for producing tetrafluoroethane represented by HF2 (R-134) is 2〇F2XCFYZ (wherein, X is fluorine or chlorine. When X is fluorine, Y and Z are chlorine, Fluorine or hydrogen.

Y、Zの一方がフッ素である場合にL±、Y、Zの他方
は水素または塩素である。Xが塩素である場合には、Y
、Zの一方はフッ素であり、Y、Zの他方は塩素または
水素である。)で表わされる4個または5個のフッ素原
子を有するハロエタン原料を、水素化触媒の存在下で水
素と反応させる製造方法がある。典型的なハロエタン原
料は、1.2−ジクロロ−1,1,2,2−テトラフル
オロエタン(CGIF2CGIF2 )および1.1−
ジクロロ−1,2,2,2−テトラフルオロエタンCC
C12FCF3 )の混合物である。この方法において
は、ハロエタン原料から2個の塩素原子、または、塩素
および(または)フッ素原子を除去し、これらを水素で
置き換える。このための触媒として、既知の水素化触媒
、すなわち、ニッケルまたは周期律表の第■a族の金属
、それらの合金、または、それらの酸化物、および塩の
うち、特に塩酸耐性を有するものの適用が考えられ、既
に、比較的低コストであるパラジウムを用いる方法が報
告されている(特公昭56−38131号公報を参照)
、シかし、本還元反応においては、例えば下式に示すよ
うに塩化水素が副生ずるため触媒には耐酸性が必要であ
る。
When one of Y and Z is fluorine, the other of L±, Y and Z is hydrogen or chlorine. When X is chlorine, Y
, Z is fluorine, and the other of Y and Z is chlorine or hydrogen. There is a production method in which a haloethane raw material having 4 or 5 fluorine atoms represented by the following formula is reacted with hydrogen in the presence of a hydrogenation catalyst. Typical haloethane feedstocks are 1,2-dichloro-1,1,2,2-tetrafluoroethane (CGIF2CGIF2) and 1.1-dichloro-1,1,2,2-tetrafluoroethane (CGIF2CGIF2)
Dichloro-1,2,2,2-tetrafluoroethane CC
C12FCF3). In this method, two chlorine atoms, or chlorine and/or fluorine atoms, are removed from the haloethane raw material and these are replaced with hydrogen. As a catalyst for this purpose, use of known hydrogenation catalysts, i.e. nickel or metals of group IV a of the periodic table, alloys thereof, or oxides and salts thereof, which are particularly resistant to hydrochloric acid. A method using palladium, which is relatively low cost, has already been reported (see Japanese Patent Publication No. 56-38131).
However, in this reduction reaction, hydrogen chloride is produced as a by-product as shown in the following formula, so the catalyst must have acid resistance.

ChCC12F+Ht→CF3CHCIF+)101C
FsCHCIF+Hz→CF3GHzF+I(CIパラ
ジウムは白金族の中では安価であり、水素化能において
も優れている。しかし、水素吸蔵能が高く、最高、原子
比で1:lまで水素が吸蔵する。水素の吸蔵量が多くな
ると格子の歪も大きくなり、#l械的な劣化を受は易く
なる。
ChCC12F+Ht→CF3CHCIF+)101C
FsCHCIF+Hz→CF3GHzF+I (CI palladium is inexpensive among the platinum group metals and has excellent hydrogenation ability. However, it has high hydrogen storage ability and can absorb hydrogen up to an atomic ratio of 1:l.Hydrogen storage As the amount increases, the distortion of the lattice also increases, making it more susceptible to mechanical deterioration.

また、パラジウムは同族の他元素とは異なり、濃硝酸や
沸騰硫酸に溶解するほか、酸素が存在する場合には、濃
塩酸にも溶解するなど、化学的変化を受は易いという欠
点を有する。
Furthermore, unlike other elements in the same group, palladium has the disadvantage of being easily susceptible to chemical changes, such as being soluble in concentrated nitric acid and boiling sulfuric acid, and in the presence of oxygen, in concentrated hydrochloric acid.

[問題点を解決するための手段] したがって、より耐食性の優れた触媒を用いることは、
触媒の長寿命化に有効であると考えられる。
[Means for solving the problem] Therefore, using a catalyst with better corrosion resistance,
It is considered to be effective in extending the life of the catalyst.

白金を水素発生用電極として用いた場合、触媒活性は高
く、非常に低い水素過電圧が得られ、かつ安定である。
When platinum is used as an electrode for hydrogen generation, the catalyst has high activity, a very low hydrogen overvoltage can be obtained, and is stable.

一方、パラジウム電極の場合、初期活性は高いものの、
表面吸着水素原子濃度の増大とともに活性が低下し、水
素過電圧は増大する。これはパラジウムの水素吸蔵能が
高いため、金属バルク中の水素濃度の増大に伴ない表面
吸着水素原子濃度の増大が著しく、反応活性サイトの減
少が顕著であるためと考えらえる。白金では水素吸蔵量
はパラジウムはど多くはなく、反応活性サイト数に対す
る影響が少ないと推定される。また、耐食性の点におい
ても白金はパラジウムに比較すると優れている。触媒の
調製法、取扱いについてはパラジウムと同様に行ない得
る。したがって、白金触媒は本還元反応系に好適な触媒
となり得ることが見出された。
On the other hand, in the case of palladium electrodes, although the initial activity is high,
As the concentration of surface-adsorbed hydrogen atoms increases, the activity decreases and the hydrogen overpotential increases. This is thought to be because palladium has a high hydrogen storage capacity, so as the hydrogen concentration in the metal bulk increases, the surface adsorbed hydrogen atom concentration increases significantly, and the number of reaction active sites decreases significantly. Platinum does not have as much hydrogen storage capacity as palladium, and it is presumed that it has little effect on the number of reaction active sites. Furthermore, platinum is superior to palladium in terms of corrosion resistance. The catalyst can be prepared and handled in the same manner as palladium. Therefore, it has been found that the platinum catalyst can be a suitable catalyst for the present reduction reaction system.

かくして本発明は、上記知見に基づいて完成されたもの
であり、式CF2XCFYZ (式中、Xはフッ素また
は塩素である。Xがフッ素である場合には、 Y、Zは
塩素、フッ素または水素であり、Y、Zの一方がフッ素
である場合には、Y、Zの他方は水素または塩素である
。Xが塩素である場合には、Y、Zの一方はフッ素であ
り、Y、Zの他方は塩素または水素である。)で表わさ
れる4個または5個のフッ素原子を有するハロエタン原
料を、白金からなる水素化触媒の存在下で水素と反応さ
せることを特徴とする特CF3CH2FまたはCHF2
0HF2で表わされるテトラフルオロエタンを製造する
方法を新規に提供するものである。
Thus, the present invention was completed based on the above findings, and has the formula CF2XCFYZ (wherein, X is fluorine or chlorine. When X is fluorine, Y and Z are chlorine, fluorine or hydrogen. Yes, when one of Y and Z is fluorine, the other of Y and Z is hydrogen or chlorine. When X is chlorine, one of Y and Z is fluorine, and the other of Y and Z is fluorine. The other is chlorine or hydrogen.
The present invention provides a new method for producing tetrafluoroethane represented by 0HF2.

本発明において、白金からなる水素化触媒は、金属に限
らず、酸化物あるいは塩の状態であってもよい、また、
担体としては、例えば、アルミナ、活性炭等が好適であ
る。使用に当ってはかかる金属の化合物は少なくとも一
部還元する。
In the present invention, the hydrogenation catalyst made of platinum is not limited to a metal, and may be in the form of an oxide or a salt.
As the carrier, for example, alumina, activated carbon, etc. are suitable. In use, such metal compounds are at least partially reduced.

而して、ハロエタン原料としては次のものが挙げられる
Examples of haloethane raw materials include the following.

1.2−ジクロロ−1,1,2,2−テトラフルオロエ
タン(CGIF2CGIF2:R−114)、1.1−
ジクロロ−1,2,2,2−テトラフルオロエタy (
C012FCF3 :R−114a)、l−クロロ−1
,1,2,2,2−ペンタフルオロエタン(GCIF2
CF3:R−115)、 l−クロロ−1,2,2,2−テトラフルオロエタン(
CHCIFCF3:R−124)、 2−クロロ−1,1,2,2−テトラフルオロエタン(
CHF2GOIFz:R−124a)  、1.1,2
,2.2−ペンタフルオロエタン(CHF2CF3 :
R−125) ハロエタン原料としては上記化合物の混合物も使用し得
る。特に好ましくはR−114とR−114aの混合物
がよい結果を与える。
1.2-dichloro-1,1,2,2-tetrafluoroethane (CGIF2CGIF2:R-114), 1.1-
Dichloro-1,2,2,2-tetrafluoroethyl (
C012FCF3: R-114a), l-chloro-1
, 1,2,2,2-pentafluoroethane (GCIF2
CF3:R-115), l-chloro-1,2,2,2-tetrafluoroethane (
CHCIFCF3:R-124), 2-chloro-1,1,2,2-tetrafluoroethane (
CHF2GOIFz:R-124a), 1.1,2
, 2.2-pentafluoroethane (CHF2CF3:
R-125) A mixture of the above compounds may also be used as the haloethane raw material. Particularly preferred is a mixture of R-114 and R-114a which gives good results.

水素とハロエタン原料の割合は大幅に変動させ得る。し
かしながら1通常、化学量論量の水素を使用してハロゲ
ン原子を除去する。出発物質の全モル数に対して、化学
量論量よりかなり多い量、例えば4モルまたはそれ以上
の水素を使用し得る。
The proportions of hydrogen and haloethane feedstocks can vary widely. However, one typically uses stoichiometric amounts of hydrogen to remove the halogen atoms. Significantly more than stoichiometric amounts of hydrogen can be used, for example 4 moles or more, based on the total number of moles of starting materials.

反応圧力については大気圧、または大気圧を越える圧力
を使用し得る。
As for the reaction pressure, atmospheric pressure or superatmospheric pressure can be used.

、反応温度は120℃以上が望ましいが、450℃を越
えない温度において気相で行なうことが適当である。
The reaction temperature is preferably 120°C or higher, but it is suitable to carry out the reaction in a gas phase at a temperature not exceeding 450°C.

接触時間は、反応を気相で行なう場合には通常0.1〜
300秒、特には5〜30秒である。
The contact time is usually 0.1 to 0.1 when the reaction is carried out in the gas phase.
300 seconds, especially 5 to 30 seconds.

得られるテトラフルオロエタンは出発物質の選択により
相当変動する。出発物質が2,2−ジクロロ−1,1,
2,2−テトラフルオロエタンである場合には!、1,
1.2−テトラフルオロエタン(CF31CI2F)が
得られ、1,1,2.2−テトラフルオロエタン(CH
F2 CHF2 )は殆ど生じない、出発物質が1,2
−ジクロロ−1,1,2,2−テトラフルオロエタンで
ある場合には、反応生成物は通常テトラフルオロエタン
の2種の異性体の混合物からなる。混合物中での2.2
−ジクロロ−1,1,1,2−テトラフルオロエタンの
1.2−ジクロロ−1,1,2,2−テトラフルオロエ
タンに対する割合が増大するにつれて、CF3 CH2
Fの生成量が増大する。
The tetrafluoroethane obtained varies considerably depending on the choice of starting materials. The starting material is 2,2-dichloro-1,1,
In the case of 2,2-tetrafluoroethane! ,1,
1,2-tetrafluoroethane (CF31CI2F) was obtained, and 1,1,2,2-tetrafluoroethane (CH
F2 CHF2 ) is hardly produced, starting material is 1,2
-dichloro-1,1,2,2-tetrafluoroethane, the reaction product usually consists of a mixture of the two isomers of tetrafluoroethane. 2.2 in the mixture
-As the ratio of dichloro-1,1,1,2-tetrafluoroethane to 1,2-dichloro-1,1,2,2-tetrafluoroethane increases, CF3 CH2
The amount of F produced increases.

本発明は所望の1.1,1.2−テトラフルオロエタン
、 1,1,2.2−テトラブルオロエタンまたはこれ
らの混合物を簡単かつ好都合な方法により、種々の割合
で得ることができるという利点を有する製造方法を提供
するものである。
The present invention provides that the desired 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane or mixtures thereof can be obtained in various proportions by a simple and convenient method. The present invention provides a manufacturing method with advantages.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

調製例 活性炭を純水中に浸漬し、細孔内部まで水を含浸させた
。これに塩化白金酸を重量比で80:lOの割合で、活
性炭の重量に対し金属成分の全重量で0.5zだけ溶解
した水溶液を少しずつ滴下しイオン成分を活性炭に吸着
させた。純水を用いて洗浄した後、それを150℃で5
時間乾燥した0次に窒素中550℃で4時間乾燥した後
、水素を導入し、5時間、300℃に保持して還元した
Preparation Example Activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which chloroplatinic acid was dissolved at a weight ratio of 80:1O by 0.5z of the total weight of the metal components relative to the weight of the activated carbon was gradually added dropwise to the mixture, so that the ionic components were adsorbed onto the activated carbon. After washing with pure water, it was heated at 150℃ for 5 minutes.
After drying for 4 hours at 550° C. in nitrogen, hydrogen was introduced and the mixture was maintained at 300° C. for 5 hours for reduction.

実施例1 調製例のようにして調製した触媒を300cc充填した
内径2.54cI+、長さ100c■のインコネル60
0製反応管を塩浴炉中に浸漬した。
Example 1 Inconel 60 with an inner diameter of 2.54 cI+ and a length of 100 c■ filled with 300 cc of the catalyst prepared as in the preparation example.
A reaction tube manufactured by 0.0 was immersed in a salt bath furnace.

水素と出発物質(1,1−ジクロロ−1,2,2,2−
テトラフルオロエタンと1,2−ジクロロ−1,1,2
,2−テトラフルオロエタンよりなる0モル比で40二
60)を2:1のモル比で反応管に導入した。水素、出
発物質の流量はそれぞれ、 100cc /分、50c
c/分とした0反応管出口のガス組成をガスクロを用い
て分析した。その結果を第1表に示す。
Hydrogen and starting material (1,1-dichloro-1,2,2,2-
Tetrafluoroethane and 1,2-dichloro-1,1,2
, 2-tetrafluoroethane in a molar ratio of 40 to 60) were introduced into the reaction tube in a molar ratio of 2:1. The flow rates of hydrogen and starting materials were 100cc/min and 50c/min, respectively.
The gas composition at the outlet of the reaction tube was analyzed using gas chromatography. The results are shown in Table 1.

第1表 R−114aの250℃における反応率は1反応期期に
おいて98.3%、6ケ月後において65.4%であっ
た・ 実施例2 ハロエタン原料としてR−114a (純度98.0%
、残部はR−114)を用いる以外は、実施例1と同様
の条件で還元反応を行なった。結果を第2表に示す。
The reaction rate of R-114a in Table 1 at 250°C was 98.3% in one reaction period and 65.4% after 6 months. Example 2 R-114a (purity 98.0%) was used as a haloethane raw material.
, the remainder being R-114), the reduction reaction was carried out under the same conditions as in Example 1. The results are shown in Table 2.

第2表 R−114aの250℃における反応率は、反応初期に
おいて97.8%、6ケ月後では85.3%であった。
The reaction rate of R-114a in Table 2 at 250°C was 97.8% at the initial stage of the reaction and 85.3% after 6 months.

比較例1 触媒として活性炭に0.5%のパラジウムを調製例と同
様に担持したものを用いる以外は、実施例1と同様にし
て還元反応を行なった。結果を第3表に示す。
Comparative Example 1 A reduction reaction was carried out in the same manner as in Example 1, except that activated carbon supported with 0.5% palladium in the same manner as in the Preparation Example was used as a catalyst. The results are shown in Table 3.

第3表 R−114aの250℃における反応率は、反応初期に
おいて98,0%、6ケ月後では32.1%であった。
The reaction rate of R-114a in Table 3 at 250°C was 98.0% at the initial stage of the reaction and 32.1% after 6 months.

[発明の効果] 本発明における還元触媒は、実施例に示すよ′うに、初
期性能を向上させるとともに、耐久性の向上においても
優れた特性を有する。
[Effects of the Invention] As shown in Examples, the reduction catalyst of the present invention has excellent properties in improving initial performance and durability.

Claims (1)

【特許請求の範囲】 1、式CF_2XCFYZ(式中、Xはフッ素または塩
素である、Xがフッ素である場合には、Y、Zは塩素、
フッ素または水素であり、Y、Zの一方がフッ素である
場合には、Y、Zの他方は水素または塩素である、Xが
塩素である場合に は、Y、Zの一方はフッ素であり、Y、Zの他方は塩素
または水素である。)で表わされる4個または5個のフ
ッ素原子を有するハロエタン原料を、白金からなる水素
化触媒の存在 下で水素と反応させることを特徴とする式 CF_3CH_2FまたはCHF_2CHF_2で表わ
されるテトラフルオロエタンを製造する方法。 2、ハロエタン原料が、1,2−ジクロロ−1,1,2
,2−テトラフルオロエタンである特許請求の範囲第1
項記載の方法。 3、ハロエタン原料が、1,1−ジクロロ−1,2,2
,2−テトラフルオロエタンである特許請求の範囲第1
項記載の方法。 4、ハロエタン原料が、1,2−ジクロロ−1,1,2
,2−テトラフルオロエタンと1,1−ジクロロ−1,
2,2,2テトラフルオロエタンとの混合物である特許
請求の範囲第1項記載の方法。 5、ハロエタン原料に対して少なくとも化学量論量の水
素を使用してハロエタン原料中の1個または複数個のハ
ロゲン原子を除去する特許請求の範囲第1項〜第4項の
いずれか一項に記載の方法。 6、ハロエタン原料1モルあたり4モルまでの水素を使
用する特許請求の範囲第1項〜第5項のいずれか一項に
記載の方法。 7、白金が活性炭担体上に担持されている水素化触媒を
用いる特許請求の範囲第1項〜第6項のいずれか一項に
記載の方法。 8、白金がアルミナ担体上に担持されている水素化触媒
を用いる特許請求の範囲第1項〜第6項のいずれか一項
に記載の方法。 9、反応を気相中において120℃から450℃の温度
範囲で行なう特許請求の範囲第1項〜第8項のいずれか
一項に記載の方法。
[Claims] 1. Formula CF_2XCFYZ (wherein, X is fluorine or chlorine; when X is fluorine, Y and Z are chlorine,
is fluorine or hydrogen; when one of Y and Z is fluorine, the other of Y and Z is hydrogen or chlorine; when X is chlorine, one of Y and Z is fluorine; The other of Y and Z is chlorine or hydrogen. ) is reacted with hydrogen in the presence of a hydrogenation catalyst made of platinum to produce tetrafluoroethane represented by the formula CF_3CH_2F or CHF_2CHF_2. Method. 2. The haloethane raw material is 1,2-dichloro-1,1,2
, 2-tetrafluoroethane.
The method described in section. 3. The haloethane raw material is 1,1-dichloro-1,2,2
, 2-tetrafluoroethane.
The method described in section. 4. The haloethane raw material is 1,2-dichloro-1,1,2
, 2-tetrafluoroethane and 1,1-dichloro-1,
The method according to claim 1, which is a mixture with 2,2,2 tetrafluoroethane. 5. According to any one of claims 1 to 4, in which one or more halogen atoms in the haloethane raw material are removed using at least a stoichiometric amount of hydrogen with respect to the haloethane raw material. Method described. 6. A process according to any one of claims 1 to 5, wherein up to 4 moles of hydrogen are used per mole of haloethane feedstock. 7. The method according to any one of claims 1 to 6, which uses a hydrogenation catalyst in which platinum is supported on an activated carbon carrier. 8. The method according to any one of claims 1 to 6, which uses a hydrogenation catalyst in which platinum is supported on an alumina carrier. 9. The method according to any one of claims 1 to 8, wherein the reaction is carried out in a gas phase at a temperature range of 120°C to 450°C.
JP62288451A 1987-11-17 1987-11-17 Method for producing 1,1,1,2-tetrafluoroethane Expired - Lifetime JP2551052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288451A JP2551052B2 (en) 1987-11-17 1987-11-17 Method for producing 1,1,1,2-tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288451A JP2551052B2 (en) 1987-11-17 1987-11-17 Method for producing 1,1,1,2-tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01132537A true JPH01132537A (en) 1989-05-25
JP2551052B2 JP2551052B2 (en) 1996-11-06

Family

ID=17730379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288451A Expired - Lifetime JP2551052B2 (en) 1987-11-17 1987-11-17 Method for producing 1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JP2551052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347830A2 (en) * 1988-06-21 1989-12-27 Asahi Glass Company Ltd. Process for producing 1,1,1,2-tetrafluoroethane
WO1995013256A1 (en) * 1993-11-12 1995-05-18 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347830A2 (en) * 1988-06-21 1989-12-27 Asahi Glass Company Ltd. Process for producing 1,1,1,2-tetrafluoroethane
WO1995013256A1 (en) * 1993-11-12 1995-05-18 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane

Also Published As

Publication number Publication date
JP2551052B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US5136113A (en) Catalytic hydrogenolysis
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
JP3158440B2 (en) Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane
GB1578933A (en) Manufacture of halogenated hydrocarbons
US5523498A (en) Process for reducing the fluorine content of hydrofluorocarbons and hydrohalofluorocarbons
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
JP2531205B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
JPH01132537A (en) Production of tetrafluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
US6218587B1 (en) Catalytic hydrogenolysis
JP2636314B2 (en) Method for producing tetrafluoroethane
JPH01132538A (en) Production of tetrafluoroethane
JPH01319441A (en) Production of 1,1-dichloro-2,2,2-trifluoroethane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2541256B2 (en) Method for producing tetrafluoroethane
JP2581169B2 (en) Method for producing R-134a
JP2580695B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JPH02218626A (en) Production of 1,1,1,2-tetrafluoroethane
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2508807B2 (en) Method for producing R-134a
JP2581168B2 (en) Method for producing R-134a
JPH02129130A (en) Production of r-134a
JPH01319443A (en) Production of tetrafluoroethane