JPH01132169A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01132169A
JPH01132169A JP29136987A JP29136987A JPH01132169A JP H01132169 A JPH01132169 A JP H01132169A JP 29136987 A JP29136987 A JP 29136987A JP 29136987 A JP29136987 A JP 29136987A JP H01132169 A JPH01132169 A JP H01132169A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
gate
semiconductor device
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29136987A
Other languages
Japanese (ja)
Other versions
JP2603088B2 (en
Inventor
Sachiko Nakada
幸子 中田
Moriyoshi Nakajima
盛義 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62291369A priority Critical patent/JP2603088B2/en
Publication of JPH01132169A publication Critical patent/JPH01132169A/en
Application granted granted Critical
Publication of JP2603088B2 publication Critical patent/JP2603088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a semiconductor device containing a floating gate electrode whose insulation breakdown strength is high by a method wherein a first gate electrode as a floating gate is formed to be a two-layer electrode after it has been separated and laminated via an insulating film and an impurity concentration value of this two-layer electrode is set in such a way that the value in an upper-layer electrode is high and that the value in a lower-layer electrode is low. CONSTITUTION:In a semiconductor device which contains a first gate electrode as a floating gate formed in an insulating film 5 and a second gate electrode 6 as a control gate formed on the electrode via the insulating film 5, said first gate electrode contains electrodes 7, 9 of two layers after it has been separated and laminated via an insulating film 8. Out of the electrodes of the two layers, an impurity is diffused in such a way that an impurity concentration value of one electrode 9 situated on the side of the second gate electrode 6 is relatively high; the impurity is diffused in such a way that the impurity concentration value of the other electrode 7 is relatively low. For example, phosphorus is diffused into a polycrystalline silicon film at a concentration of 6X10<20>cm<-3> for said one electrode 9; phosphorus is diffused into the polycrystalline silicon film at a concentration of 2X10<20>cm<-3> for the other electrode 7.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、半導体装置に関し、特に浮遊ゲート構造を有
する半導体装置のゲート電極の構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of a gate electrode of a semiconductor device having a floating gate structure.

[従来の技術] 従来、この種の半導体装置として浮遊ゲートを有する不
揮発性MO8(Metal  OxideSemico
nductor)メモリがある。
[Prior Art] Conventionally, this type of semiconductor device is a non-volatile MO8 (Metal Oxide Semiconductor) having a floating gate.
(inductor) memory.

以下には、この不揮発性MOSメモリのゲート電極の構
造を第2A図および第2B図を用いて製造工程順に説明
する。
The structure of the gate electrode of this nonvolatile MOS memory will be explained below in the order of manufacturing steps with reference to FIGS. 2A and 2B.

第2A図に示すように、シリコン基板1の一生面上にフ
ィールド酸化膜2、第1ゲート酸化膜3を形成した後、
第1ゲート電極となる多結晶シリコン膜4を約4000
人の厚さに堆積する。次に、多結晶シリコン膜4に比較
的低濃度たとえば4X1020cm−2でn型不純物を
拡散した後、写真製版技術を用いて多結晶シリコン膜4
をCF、ガスなどにより異方性プラズマエツチングして
第1ゲート電極4を形成する。
As shown in FIG. 2A, after forming a field oxide film 2 and a first gate oxide film 3 on the entire surface of the silicon substrate 1,
The polycrystalline silicon film 4, which will become the first gate electrode, has a thickness of about 4,000 mm.
Deposits to the thickness of a person. Next, after diffusing n-type impurities into the polycrystalline silicon film 4 at a relatively low concentration, for example, 4 x 1020 cm-2, the polycrystalline silicon film 4 is
The first gate electrode 4 is formed by anisotropic plasma etching using CF, gas, or the like.

次に第2B図に示すように、多結晶シリコンの第1ゲー
ト電極4を熱酸化処理し厚さ600A程度の第2ゲート
酸化膜5を形成する。これにより第1ゲート電極4はそ
の周囲を酸化膜に囲まれた浮遊ゲートを構成する。そし
て、その上に第2ゲート電極となる多結晶シリコン膜6
を化学的気相成長法により厚さ3000A程度堆積する
。以上の工程により第1と第2のゲート電極を有する不
揮発性メモリが製造される。
Next, as shown in FIG. 2B, the first gate electrode 4 made of polycrystalline silicon is thermally oxidized to form a second gate oxide film 5 having a thickness of about 600 Å. As a result, the first gate electrode 4 constitutes a floating gate surrounded by an oxide film. Then, a polycrystalline silicon film 6 that becomes a second gate electrode is placed on top of the polycrystalline silicon film 6.
is deposited to a thickness of about 3000 Å by chemical vapor deposition. Through the above steps, a nonvolatile memory having first and second gate electrodes is manufactured.

[発明が解決しようとする問題点コ 上記のように、従来の浮遊ゲート型不揮発性MOSメモ
リは、1層の浮遊ゲート電極で形成されている。そして
、この浮遊ゲート電極である第1ゲート電極4の絶縁耐
圧は、この第1ゲート電極4に拡散されるリンなどのn
型不純物の濃度に依存する。すなわち、第1ゲート電極
4のリン濃度が高ければ、第2ゲート電極6に対する絶
縁耐圧 □は向上する。しかし、一方で第1ゲート電極
4を熱酸化処理を行なって第2ゲート酸化膜5を形成す
る工程では、第1ゲート?IS極4中に拡散されたリン
が再拡散し第1ゲート酸化膜2を劣化させるなどの悪影
響が生じる。したがって、この場合にはリン濃度が低い
方が好ましい。
[Problems to be Solved by the Invention] As described above, the conventional floating gate nonvolatile MOS memory is formed of a single layer of floating gate electrodes. The dielectric breakdown voltage of the first gate electrode 4, which is this floating gate electrode, is
Depends on the concentration of type impurities. That is, if the phosphorus concentration of the first gate electrode 4 is high, the dielectric strength voltage □ with respect to the second gate electrode 6 is improved. However, on the other hand, in the process of thermally oxidizing the first gate electrode 4 to form the second gate oxide film 5, the first gate electrode 4 may be thermally oxidized. The phosphorus diffused into the IS pole 4 is re-diffused, causing adverse effects such as deterioration of the first gate oxide film 2. Therefore, in this case, it is preferable that the phosphorus concentration is low.

したがって、第1ゲート電極4ではl5tffi内での
リン濃度は第2ゲート電極6側と基板1側とで異なる濃
度分布を有することが最適であるが、従来の1層の第1
ゲート電極の構造ではこれを実現することができなかっ
た。
Therefore, in the first gate electrode 4, it is optimal that the phosphorus concentration within l5tffi has different concentration distributions on the second gate electrode 6 side and the substrate 1 side.
This could not be achieved with the structure of the gate electrode.

したがって、本発明は、第1ゲート電極をその間に極め
て薄い酸化膜を介して2層に分離し、かつその上層電極
と下層電極とをそれぞれ最適な不純物濃度に設定するこ
とにより絶縁耐圧が高い電極を有した半導体装置を提供
することを目的とする。
Therefore, the present invention provides an electrode with high dielectric strength by separating the first gate electrode into two layers with an extremely thin oxide film between them, and setting the upper layer electrode and the lower layer electrode to optimal impurity concentrations. An object of the present invention is to provide a semiconductor device having the following characteristics.

[問題点を解決するための手段] 本発明による半導体装置は、絶縁膜中に設けられた浮遊
ゲートである第1のゲート電極と、前記第1のゲート電
極の上に前記絶縁膜を介して設けられた制御ゲートであ
る第2のゲート電極とを備えた半導体装置であり、前記
第1のゲート電極は絶縁膜を介して分離して積層した2
層の電極を備え、前記2層の電極のうち、前記第2のゲ
ート電極側に位置する一方の電極は相対的に不純物濃度
が高くなるように不純物が拡散され、他方の電極は相対
的に不純物濃度が低くなるように不純物が拡散されてい
ることを特徴としている。
[Means for Solving the Problems] A semiconductor device according to the present invention includes a first gate electrode, which is a floating gate provided in an insulating film, and a gate electrode formed on the first gate electrode through the insulating film. The semiconductor device includes a second gate electrode which is a control gate provided, and the first gate electrode is a two-layered semiconductor device separated by an insulating film.
impurity is diffused in one electrode located on the second gate electrode side among the two layer electrodes so that the impurity concentration is relatively high, and the other electrode is provided with a relatively high impurity concentration. It is characterized in that impurities are diffused so that the impurity concentration is low.

[作用] 本発明における半導体装置は、浮遊ゲート電極を薄い酸
化膜を介して2層に分離している。そして、上層電極は
リンなどの不純物濃度を高く設定することにより、第2
ゲート電極に対する絶縁耐圧を高くすることができる。
[Function] In the semiconductor device of the present invention, the floating gate electrode is separated into two layers via a thin oxide film. Then, by setting the upper layer electrode to a high concentration of impurities such as phosphorus,
The dielectric strength voltage for the gate electrode can be increased.

また、下層電極では、リンなどの不純物濃度を低く設定
することにより製造工程で行なわれる熱処理によって第
1ゲート酸化膜の劣化が生じないようにしている。
Further, in the lower electrode, the concentration of impurities such as phosphorus is set low to prevent the first gate oxide film from deteriorating due to heat treatment performed in the manufacturing process.

[実施例] 以下、本発明の一実施例を図を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1A図および第1B図は本発明による浮遊ゲート型不
揮発性MOSメモリのゲート電極をその製造工程に従っ
て示した断面図である。
1A and 1B are cross-sectional views showing a gate electrode of a floating gate nonvolatile MOS memory according to the present invention according to its manufacturing process.

第1A図に示すように、シリコン基板1の一生面上に、
フィールド酸化膜2および第1ゲート酸化膜3を形成す
る。さらに、多結晶シリコン7を化学気相成長法により
約1800A厚さに形成した後、写真製版技術を用いて
多結晶シリコン膜7をCF4ガスにより異方性プラズマ
エツチングする。次に、多結晶シリコン膜7にリンなど
のn型不純物を不純物濃度2×102°cr!1−”で
拡散し、下層第1ゲート電極7を形成する。次いで、多
結晶シリコンの下層第1ゲート電極7を熱酸化処理する
ことにより膜厚が約100人の酸化膜8を形成する。さ
らにその上に、多結晶シリコン膜9を化学的気相成長法
により膜厚的1800Aに形成した後、写真製版技術を
用いて多結晶シリコン膜9をCF4ガスにより異方性プ
ラぞマエッチングする。そして、この多結晶シリコン膜
9にリンなどのn型不純物を不純物濃度6X1026c
m−”で拡散し、上層第1ゲート専極9を形成する。
As shown in FIG. 1A, on the whole surface of the silicon substrate 1,
A field oxide film 2 and a first gate oxide film 3 are formed. Furthermore, after forming polycrystalline silicon 7 to a thickness of about 1800 Å by chemical vapor deposition, polycrystalline silicon film 7 is anisotropically plasma etched with CF4 gas using photolithography. Next, an n-type impurity such as phosphorus is added to the polycrystalline silicon film 7 at an impurity concentration of 2×102°cr! 1-'' to form a lower first gate electrode 7. Next, the lower first gate electrode 7 made of polycrystalline silicon is thermally oxidized to form an oxide film 8 having a thickness of about 100 mm. Further, a polycrystalline silicon film 9 is formed thereon to a thickness of 1800 Å by chemical vapor deposition, and then the polycrystalline silicon film 9 is anisotropically plasma etched with CF4 gas using photolithography. Then, an n-type impurity such as phosphorus is added to this polycrystalline silicon film 9 at an impurity concentration of 6×1026c.
m-'' to form the upper layer first gate exclusive pole 9.

次いで、第1B図に示すように、多結晶シリコンの上層
第1ゲート電極9を熱酸化処理し膜厚的60OAの第2
ゲート酸化膜5を形成する。そして、その上に多結晶シ
リコン膜6を約3000A厚さに化学気相成長法により
堆積し、第2ゲート電極6を形成する。
Next, as shown in FIG. 1B, the upper layer first gate electrode 9 of polycrystalline silicon is thermally oxidized to form a second gate electrode 9 with a film thickness of 60 OA.
A gate oxide film 5 is formed. Then, a polycrystalline silicon film 6 is deposited thereon to a thickness of about 3000 Å by chemical vapor deposition to form the second gate electrode 6.

以上のように構成した場合、第1ゲート電極は酸化膜8
を介して2層に分離され、その上層電極9と下層電極7
ではそれぞれ異なったリン濃度にすることができる。す
なわち、上層電極に対しては高濃度のリンを拡散し、ま
た下層電極に対しては低濃度のリンを拡散することによ
り絶縁耐圧が高い電極を有する不遊ゲート型不揮発性M
OSメモリが製造される。
In the case of the above structure, the first gate electrode is formed by the oxide film 8.
The upper layer electrode 9 and the lower layer electrode 7 are separated into two layers through the
In this case, different phosphorus concentrations can be obtained. In other words, a non-volatile gate-type non-volatile M having an electrode with high dielectric strength by diffusing high concentration phosphorus into the upper layer electrode and diffusing low concentration phosphorus into the lower layer electrode.
OS memory is manufactured.

[発明の効果] 以上のように、本発明によれば浮遊ゲート電極構造を有
する半導体装置の第1ゲート電極が、酸化膜を介して2
層に分離された構造としたのでその上層部と下層部で各
々不純物濃度を調整することによって、浮遊ゲート電極
の絶縁耐圧を高くすることができ、特性の優れた半導体
装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the first gate electrode of the semiconductor device having the floating gate electrode structure is connected to the second gate electrode through the oxide film.
Since the structure is separated into layers, by adjusting the impurity concentration in each of the upper and lower layers, the dielectric breakdown voltage of the floating gate electrode can be increased, and a semiconductor device with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図および第1B図は、本発明の実施例の半導体装
置の製造工程を示す断面図である。 第2A図および第2B図は、従来の半導体装置の製造工
程を示す断面図である。 図において、3は第1ゲート酸化膜、5は第2ゲート酸
化膜、6は第2ゲート電極、7は下層第1ゲート電極、
8は酸化膜、9は上層第1ゲート電極を示す。 なお、図中同一符号は同一または相当する部分を示す。
1A and 1B are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. FIGS. 2A and 2B are cross-sectional views showing the manufacturing process of a conventional semiconductor device. In the figure, 3 is a first gate oxide film, 5 is a second gate oxide film, 6 is a second gate electrode, 7 is a lower first gate electrode,
Reference numeral 8 indicates an oxide film, and reference numeral 9 indicates an upper layer first gate electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁膜中に設けられた浮遊ゲートである第1のゲ
ート電極と、前記第1のゲート電極の上に前記絶縁膜を
介して設けられた制御ゲートである第2のゲート電極と
を備えた半導体装置において、前記第1のゲート電極は
絶縁膜を介して分離して積層した2層の電極を備えてお
り、 前記2層の電極のうち、前記第2のゲート電極側に位置
する一方の電極は、相対的に不純物濃度が高くなるよう
に不純物が拡散され、他方の電極は相対的に不純物濃度
が低くなるように不純物が拡散されていることを特徴と
する、半導体装置。
(1) A first gate electrode, which is a floating gate provided in an insulating film, and a second gate electrode, which is a control gate, provided on the first gate electrode via the insulating film. In the semiconductor device, the first gate electrode includes two layers of electrodes separated and laminated via an insulating film, and of the two layers of electrodes, the first gate electrode is located on the side of the second gate electrode. A semiconductor device characterized in that impurities are diffused in one electrode so that the impurity concentration is relatively high, and impurities are diffused in the other electrode so that the impurity concentration is relatively low.
(2)前記2層の電極に拡散されている不純物がリンで
ある特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the impurity diffused into the two-layer electrode is phosphorus.
JP62291369A 1987-11-17 1987-11-17 Semiconductor device Expired - Lifetime JP2603088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291369A JP2603088B2 (en) 1987-11-17 1987-11-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291369A JP2603088B2 (en) 1987-11-17 1987-11-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01132169A true JPH01132169A (en) 1989-05-24
JP2603088B2 JP2603088B2 (en) 1997-04-23

Family

ID=17768025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291369A Expired - Lifetime JP2603088B2 (en) 1987-11-17 1987-11-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2603088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229631A (en) * 1990-08-15 1993-07-20 Intel Corporation Erase performance improvement via dual floating gate processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010679A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Semiconductor memory
JPS61255071A (en) * 1985-05-07 1986-11-12 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS61294870A (en) * 1985-06-21 1986-12-25 Nec Corp Non-volatile semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010679A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Semiconductor memory
JPS61255071A (en) * 1985-05-07 1986-11-12 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS61294870A (en) * 1985-06-21 1986-12-25 Nec Corp Non-volatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229631A (en) * 1990-08-15 1993-07-20 Intel Corporation Erase performance improvement via dual floating gate processing

Also Published As

Publication number Publication date
JP2603088B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US5473184A (en) Semiconductor device and method for fabricating same
US4780428A (en) Mosfet semiconductor device and manufacturing method thereof
JPH01132169A (en) Semiconductor device
JPS59195859A (en) Manufacture of semiconductor device
JP2695812B2 (en) Semiconductor device
JPH0142147B2 (en)
JPS6386455A (en) Semiconductor device
JPS61228661A (en) Semiconductor device and manufacture thereof
JPH01298758A (en) Manufacture of semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS60158670A (en) Thin-film transistor and manufacture thereof
JPS60133755A (en) Manufacture of semiconductor device
JPS6345865A (en) Floating gate type mos semiconductor device
JPH0487339A (en) Semiconductor device and its manufacture
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS62111459A (en) Manufacture of semiconductor device
JPS59136973A (en) Semiconductor device
JPH05110103A (en) Semiconductor device
JPS59148366A (en) Manufacture of insulated gate field effect transistor
JPH07326749A (en) Semiconductor device and manufacture thereof
JPS60249361A (en) Semiconductor device and manufacture thereof
JPH06252169A (en) Semiconductor device and its manufacturing thereof
JPH04103121A (en) Manufacture of semiconductor device
JPH04348040A (en) Thin film transistor and manufacture thereof
JPH0336307B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term