JPH01131022A - Production of highly dispersible magnesium hydroxide - Google Patents

Production of highly dispersible magnesium hydroxide

Info

Publication number
JPH01131022A
JPH01131022A JP29026687A JP29026687A JPH01131022A JP H01131022 A JPH01131022 A JP H01131022A JP 29026687 A JP29026687 A JP 29026687A JP 29026687 A JP29026687 A JP 29026687A JP H01131022 A JPH01131022 A JP H01131022A
Authority
JP
Japan
Prior art keywords
magnesium
magnesium hydroxide
powder
magnesium oxide
highly dispersible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29026687A
Other languages
Japanese (ja)
Other versions
JP2602436B2 (en
Inventor
Kazuhiko Iwamoto
和彦 岩本
Toyotaka Uchida
内田 豊隆
Yojiro Ichimura
洋二郎 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Chemical Industries Co Ltd
Original Assignee
Ube Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Chemical Industries Co Ltd filed Critical Ube Chemical Industries Co Ltd
Priority to JP29026687A priority Critical patent/JP2602436B2/en
Publication of JPH01131022A publication Critical patent/JPH01131022A/en
Application granted granted Critical
Publication of JP2602436B2 publication Critical patent/JP2602436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain in an industrially and economically efficient manner the title magnesium hydroxide useful as e.g., a flame-retardant for polyolefin, by hydrating specific fine powder in the presence of a magnesium salt. CONSTITUTION:First, Mg(OH)2 containing <=0.1wt.% of Ca ion is calcined at 1,150 to 1,350 deg.C to produce MgO. Secondly, this MgO is ground using e.g., a ball mill to produce MgO fine powder having the following characteristics: (1) crystallite diameter in the <200> direction... 800 to 1,500Angstrom (2) BET specific surface area... 0.7 to 2m<2>/g (3) average particle size... 2 to 5mum (4) purity... >=98wt.%. Thirdly, a liquid to be subjected to hydration is prepared by incorporating water with this MgO and a Mg salt such as MgCl2 or magnesium acetate so that their concentrations fall between 100 and 300g/l and between 0.02 and 0.3mole/l respectively. Finally, this liquid is subjected to hydration at 70 to 95 deg.C for 1 to 4hrs to obtain the objective highly dispersible magnesium hydroxide.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、高分散性水酸化マグネシウムの製造方法に関
する。さらに詳しくは、結晶粒子が均一によく発達し、
且つ結晶粒子同士が二次凝集を起しにくく、分散性に優
れた水酸化マグネシウムを、工業的規模で経済的に効率
よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing highly dispersed magnesium hydroxide. More specifically, the crystal grains are uniformly well developed,
The present invention also relates to a method for economically and efficiently producing magnesium hydroxide on an industrial scale, in which crystal particles are less likely to cause secondary agglomeration and have excellent dispersibility.

[発明の背景1 従来、高分散性の水酸化マグネシウムを得る方法として
、酸化マグネシウムを各種イオン性物質の存在下で水和
させる方法が提案されている。
[Background of the Invention 1 Conventionally, as a method for obtaining highly dispersed magnesium hydroxide, a method has been proposed in which magnesium oxide is hydrated in the presence of various ionic substances.

たとえば、特開昭56−109820号公報には、14
00℃以上の温度で焼成された酸化マグネシウムを好ま
しくは250μm以下、さらに好ましくは100μm以
下に粉砕し、酸あるいはそのマグネシウム塩共存下で水
和することにより、高分散性の水酸化マグネシウムを製
造する方法が開示されている。
For example, in Japanese Patent Application Laid-open No. 56-109820, 14
Highly dispersed magnesium hydroxide is produced by pulverizing magnesium oxide calcined at a temperature of 00°C or higher, preferably to 250 μm or less, more preferably 100 μm or less, and hydrating it in the coexistence of an acid or its magnesium salt. A method is disclosed.

上記公報に開示された方法によれば、結晶粒子が均一に
よく発達し、平均粒子径が1μm以下であって粒度分布
の比較的狭い、水酸化マグネシウムを得ることができる
とされている。このような水酸化マグネシウムは、結晶
粒子同士が二次凝集を起さず、分散性に優れているので
、合成樹脂用の充填剤として好適に用いることができる
とされている。
According to the method disclosed in the above-mentioned publication, it is said that it is possible to obtain magnesium hydroxide in which crystal grains are uniformly well developed, the average particle diameter is 1 μm or less, and the particle size distribution is relatively narrow. Such magnesium hydroxide is said to be suitable for use as a filler for synthetic resins because its crystal particles do not cause secondary aggregation and have excellent dispersibility.

しかしながら、」−記の方法で水酸化マグネシウムの製
造を行なった場合には、上記公報の実施例の記載によれ
ば、水和反応に100℃で14〜17時間を要するとさ
れている。−]二記の水和反応に要する時間は、目的の
水酸化マグネシウムを工業的規模で生産するためには長
時間であり、生産性が低くなる傾向がある。
However, when magnesium hydroxide is produced by the method described in "-", the hydration reaction requires 14 to 17 hours at 100 DEG C., according to the description of the examples in the above-mentioned publication. -] The time required for the hydration reaction described in item 2 is too long to produce the target magnesium hydroxide on an industrial scale, and productivity tends to be low.

本発明者は、上記水和反応を工業的規模で効率よく行な
う方法について鋭意研究を行ない、酸化マグネシウムの
粉砕生成物であって、その粉体物性のうち、<200>
方向の結晶子径、BET比表面積および平均粒子径が特
定の範囲にある酸化マグネシウム微粉末を使用すること
により、生成する水酸化マグネシウムの優れた特性を損
なうことなく、水和反応に要する時間を短縮できること
が判明した。
The present inventor has conducted intensive research on a method for efficiently carrying out the above hydration reaction on an industrial scale, and has determined that the pulverized product of magnesium oxide has a powder property of <200>
By using fine magnesium oxide powder whose directional crystallite diameter, BET specific surface area, and average particle diameter are within specific ranges, the time required for the hydration reaction can be reduced without impairing the excellent properties of the produced magnesium hydroxide. It turns out that it can be shortened.

[発明の目的] 本発明は、高分散性水酸化マグネシウムを、工業的規模
で経済的に効率よく製造する方法を提供することを目的
とする。
[Object of the Invention] An object of the present invention is to provide a method for producing highly dispersed magnesium hydroxide economically and efficiently on an industrial scale.

[発明の要旨] 本発明は、酸化マグネシウムを粉砕して得られる生成物
であって、<200>方向の結晶子径が800〜150
0又の範囲にあり、BET比表面積が0,7〜2ml/
gの範囲にあり、且つ、平均粒子径が2〜5μmの範囲
にある酸化マグネシウム微粉末を、マグネシウム塩共存
下で水和させることを特徴とする高分散性水酸化マグネ
シウムの製造方法にある。
[Summary of the Invention] The present invention provides a product obtained by pulverizing magnesium oxide, which has a crystallite diameter in the <200> direction of 800 to 150.
The BET specific surface area is in the range of 0.7 to 2 ml/
The present invention provides a method for producing highly dispersible magnesium hydroxide, which comprises hydrating fine magnesium oxide powder having an average particle diameter of 2 to 5 μm in the coexistence of a magnesium salt.

[発明の詳細な記述] 本発明の方法は、<200>方向の結晶子径、BET比
表面積および、平均粒子径が特定の範囲にある酸化マグ
ネシウム微粉末を、マグネシウム塩共存下に水和させる
ことを特徴とする。
[Detailed Description of the Invention] The method of the present invention involves hydrating fine magnesium oxide powder having a crystallite diameter in the <200> direction, a BET specific surface area, and an average particle diameter within a specific range in the coexistence of a magnesium salt. It is characterized by

本発明の方法に使用する酸化マグネシウム微粉末は、酸
化マグネシウムを粉砕して得られる生成物であって、(
200>方向の結晶子径が800〜1500又の範囲に
あり、BET比表面積が0.7〜2d/gの範囲にあり
、且つ、平均粒子径が2〜5μmの範囲にある微粉末で
あることが必要である。
The magnesium oxide fine powder used in the method of the present invention is a product obtained by pulverizing magnesium oxide, and is (
A fine powder with a crystallite diameter in the 200> direction in the range of 800 to 1500, a BET specific surface area in the range of 0.7 to 2 d/g, and an average particle diameter in the range of 2 to 5 μm. It is necessary.

上記の各物性値は互いに関連のある数値であって、この
3種の粉体物性値を同時に満足する酸化マグネシウム微
粉末以外の原料では、高分散性水酸化マグネシウムを工
業的規模で効率的に得ることが困難である。
The above physical property values are mutually related values, and highly dispersible magnesium hydroxide can be efficiently produced on an industrial scale using raw materials other than fine magnesium oxide powder that simultaneously satisfy these three types of powder physical property values. difficult to obtain.

本発明者の検討によれば、従来−数的に利用されている
方法で製造された酸化マグネシウムを粉砕して得られた
酸化マグネシウム微粉末においては、<200>方向の
結晶子径およびBET比表面積が上記範囲にある場合に
は平均粒子径が、<200>方向の結晶子径および平均
粒子径が上記範囲にある場合にはBET比表面積が、い
ずれも上記範囲よりも大きくなる傾向が強いため、上記
酸化マグネシウム微粉末を用いて高分散性水酸化マグネ
シウムを短時間で得ることは難しいことが判明した。
According to the study of the present inventor, in the fine magnesium oxide powder obtained by pulverizing magnesium oxide produced by the method conventionally used numerically, the crystallite diameter in the <200> direction and the BET ratio When the surface area is within the above range, the average particle diameter tends to be larger than the above range, and when the crystallite diameter in the <200> direction and the average particle diameter are within the above range, the BET specific surface area tends to be larger than the above range. Therefore, it has been found that it is difficult to obtain highly dispersed magnesium hydroxide in a short time using the above fine magnesium oxide powder.

BET比表面積の値が上記範囲を上回る場合には、水和
反応の速度が過度に大きくなり、該水和反応において水
酸化マグネシウムの核か多数発生するので、生成する水
酸化マグネシウムの結晶粒子径が小さくなり、不規則凝
集体を形成するので好ましくない。また、平均粒子径が
上記の範囲より大きい場合には、水和反応の速度が低く
なり、目的とする水酸化マグネシウムを製造するために
長時間を要するので好ましくない。
When the value of the BET specific surface area exceeds the above range, the rate of the hydration reaction becomes excessively high, and a large number of nuclei of magnesium hydroxide are generated in the hydration reaction, so that the crystal particle size of the produced magnesium hydroxide decreases. becomes small and forms irregular aggregates, which is not preferable. Furthermore, if the average particle diameter is larger than the above range, the rate of hydration reaction will be low and it will take a long time to produce the desired magnesium hydroxide, which is not preferable.

上記酸化マグネシウム微粉末は、水酸化マグネシウムを
仮焼して得られた酸化マグネシウムを粉砕することによ
り製造されることが好ましい。
The magnesium oxide fine powder is preferably manufactured by pulverizing magnesium oxide obtained by calcining magnesium hydroxide.

上記原料水酸化マグネシウムは、従来公知のどのような
方法で製造されたものであってもよく、カルシウムイオ
ンの含有量が0.1重量%以下の範囲であることが好ま
しい。
The raw material magnesium hydroxide may be produced by any conventionally known method, and preferably has a calcium ion content of 0.1% by weight or less.

上記の仮焼は、1150〜1350℃の温度範囲で行な
うことか好ましい。仮焼温度が1150℃よりも低いと
きには酸化マグネシウム結晶の発達が不充分になり、こ
のような酸化マグネシウムを粉砕して得られる微粉末は
、<200>方向の結晶子径が800又よりも小さくな
り、且つ、比表面積が犬きくなる傾向がある。また、仮
焼温度が1350℃よりも高いときには酸化マグネシウ
ム結晶が過度に成長して強固に焼結し、このような酸化
マグネシウムは従来公知の一般的な粉砕装置、たとえば
、振動ボールミルあるいはフレットミルなどでは平均粒
子径を5μmよりも小さく粉砕することが困難になる。
The above calcination is preferably carried out at a temperature range of 1150 to 1350°C. When the calcination temperature is lower than 1150°C, the development of magnesium oxide crystals is insufficient, and the fine powder obtained by crushing such magnesium oxide has a crystallite diameter smaller than 800 mm in the <200> direction. Moreover, the specific surface area tends to become larger. Furthermore, when the calcination temperature is higher than 1350°C, magnesium oxide crystals grow excessively and are strongly sintered. In this case, it becomes difficult to pulverize the average particle size to smaller than 5 μm.

特殊な粉砕装置を用いて、平均粒子径が上記の範囲とな
るまで粉砕した場合には、粉砕によるメカノケミカル効
果により、たとえば格子欠陥あるいは格子不整などが惹
き起され、粉砕生成物のBET比表面積が上記の範囲を
上回る傾向がある。
If a special grinding device is used to grind the particles until the average particle diameter falls within the above range, the mechanochemical effect caused by the grinding may cause, for example, lattice defects or lattice irregularities, resulting in a decrease in the BET specific surface area of the pulverized product. tends to exceed the above range.

上述の温度範囲で仮焼された酸化マグネシウムを粉砕す
ることにより、<200>方向の結晶子径、BET比表
面積および平均粒子径の3種の粉体物性が、同時に上記
の範囲にある酸化マグネシウム微粉末を効率よく製造す
ることができる。
By pulverizing magnesium oxide calcined in the above-mentioned temperature range, magnesium oxide can be produced in which three types of powder physical properties, namely crystallite diameter in the <200> direction, BET specific surface area, and average particle diameter, are simultaneously within the above-mentioned range. Fine powder can be efficiently produced.

上記の粉砕には、従来公知の粉砕装置を使用することが
でき、たとえば、振動ボールミルまたはフレットミルを
使用することができる。
For the above-mentioned pulverization, a conventionally known pulverizer can be used, for example, a vibrating ball mill or a fret mill.

上述のようにして製造される酸化マグネシウム微粉末に
おいて、酸化マグネシウムの純度は、通常98%以上、
さらに99%以上であることが好ましく、不純物の含有
量は、硫酸イオンが0.1重量%以下、カルシウムイオ
ンが0.15重量%以下であることが好ましい。
In the magnesium oxide fine powder produced as described above, the purity of the magnesium oxide is usually 98% or more,
Further, the content of impurities is preferably 99% or more, and the content of impurities is preferably 0.1% by weight or less for sulfate ions and 0.15% by weight or less for calcium ions.

不純物イオンが、上述の範囲よりも多く含まれている場
合には、硫酸イオンは水和反応時に溶出して規則正しい
結晶成長を阻害し、また、カルシウムイオンは水和反応
に有効なマグネシウム塩の濃度を低下させ水和反応を阻
害する傾向がある。
If impurity ions are contained in a larger amount than the above range, sulfate ions will be eluted during the hydration reaction and will inhibit regular crystal growth, and calcium ions will affect the concentration of magnesium salt that is effective for the hydration reaction. It tends to reduce the hydration reaction and inhibit the hydration reaction.

本発明は、上記の酸化マグネシウム微粉末をマグネシウ
ム塩の存在下に水和させ、高分散性水酸化マグネシウム
を製造するものである。
In the present invention, highly dispersed magnesium hydroxide is produced by hydrating the above fine powder of magnesium oxide in the presence of a magnesium salt.

上記水和反応において、原料の酸化マグネシウム濃度は
、水和反応液に対して100〜300g/lの範囲にあ
ることが好ましい。100 g/uより低いと生産性が
低下し、300 g/I1.より高いと水和反応液(ス
ラリー)の粘性が高く通常の攪拌機では均一な混合が難
しくなることがある。
In the above hydration reaction, the magnesium oxide concentration of the raw material is preferably in the range of 100 to 300 g/l based on the hydration reaction solution. If it is less than 100 g/u, productivity will decrease, and if it is less than 300 g/I1. If it is higher, the viscosity of the hydration reaction liquid (slurry) is so high that it may be difficult to mix it uniformly with a normal stirrer.

上記マグネシウム塩は、本発明の水和反応において、水
和促進剤および結晶形状制御剤として作用する。−F記
マグネシウム塩として、塩化マグネシウム、硝酸マグネ
シウムなどの無機マグネシウム塩;あるいは、酢酸マグ
ネシウム、ギ酸マグネシウムおよび、クエン酸マグネシ
ウムなどの有機マグネシウム塩を挙げることができるが
、塩化マグネシウムもしくは酢酸マグネシウムであるこ
とが特に好ましい。
The above magnesium salt acts as a hydration accelerator and a crystal shape control agent in the hydration reaction of the present invention. -F Magnesium salts include inorganic magnesium salts such as magnesium chloride and magnesium nitrate; and organic magnesium salts such as magnesium acetate, magnesium formate, and magnesium citrate, but must be magnesium chloride or magnesium acetate. is particularly preferred.

水和反応液中の上記マグネシウム塩の濃度は、0.02
〜0.3モル/Iであることが好ましい。マグネシウム
塩濃度が0.02モル/Iより低いと、水和反応に長時
間を要し、マグネシウム塩による結晶形状制御効果も小
さくなる傾向があり、0.3モル/2より高いと、水和
反応が急速に進むので結晶が微細化し、且つ結晶形状が
不均一になり不規則凝集体を形成する傾向がある。
The concentration of the above magnesium salt in the hydration reaction solution is 0.02
It is preferable that it is 0.3 mol/I. When the magnesium salt concentration is lower than 0.02 mol/I, the hydration reaction takes a long time and the effect of controlling the crystal shape by the magnesium salt tends to be small; when it is higher than 0.3 mol/I, the hydration reaction Since the reaction proceeds rapidly, the crystals tend to become finer and non-uniform, forming irregular aggregates.

上記マグネシウム塩の代わりに、マグネシウムとともに
上記マグネシウム塩を形成する酸、たとえば、塩酸、硝
酸、酢酸、ギ酸および、クエン酸などの無機または有機
の酸を用いてもよく、同様の結果が得られる。
In place of the above magnesium salts, acids which form the above magnesium salts together with magnesium, such as inorganic or organic acids such as hydrochloric acid, nitric acid, acetic acid, formic acid and citric acid, may be used and similar results will be obtained.

上記水和反応は、70〜95℃の温度範囲にて行なうこ
とが好ましい。反応温度が70℃より低いと、水和反応
に長時間を要し、生成物の永和率が低くなる。また、反
応温度が95℃より高いと、水和反応が急速に進行して
結晶が微細化し、不規則凝集体が多くなる。
The above hydration reaction is preferably carried out at a temperature range of 70 to 95°C. If the reaction temperature is lower than 70°C, the hydration reaction will take a long time and the persistence rate of the product will be low. Moreover, if the reaction temperature is higher than 95° C., the hydration reaction will proceed rapidly, the crystals will become finer, and the number of irregular aggregates will increase.

上述の条件下にて水和反応を行なうことにより、1〜4
時間で、目的の水酸化マグネシウムを製造することがで
きる。
By carrying out the hydration reaction under the above conditions, 1 to 4
The desired magnesium hydroxide can be produced in just a few hours.

[発明の効果1 本発明の方法に従って、<200>方向の結晶子径、B
ET比表面積および、平均粒子径が特定の範囲に限定さ
れた酸化マグネシウム微粉末を原料に用いて、希薄な濃
度のマグネシウム塩共存下に水和反応を行なうことによ
り、その所要時間を従来よりはるかに短縮することがで
き、且つ、生成する水酸化マグネシウム粒子の結晶成長
を制御することができるので、高分散性水酸化マグネシ
ウムを工業的規模で経済的に効率よく製造することがで
きる。
[Effect of the invention 1 According to the method of the present invention, the crystallite diameter in the <200> direction, B
By using fine magnesium oxide powder whose ET specific surface area and average particle size are limited to a specific range as a raw material and performing the hydration reaction in the coexistence of a dilute concentration of magnesium salt, the time required for the hydration reaction is much shorter than before. Since the crystal growth of the produced magnesium hydroxide particles can be controlled, highly dispersed magnesium hydroxide can be produced economically and efficiently on an industrial scale.

本発明の方法により製造される水酸化マグネシウムは、
結晶粒子が均一によく発達し且つ結晶粒子同士が二次凝
集を起こしにくいので、分散性に優れており、合成樹脂
用充填剤、特に、ポリオレフィン用難燃剤として、好適
に使用することができる。
Magnesium hydroxide produced by the method of the present invention is
Since the crystal particles are uniformly well developed and the crystal particles are unlikely to cause secondary aggregation, it has excellent dispersibility and can be suitably used as a filler for synthetic resins, particularly as a flame retardant for polyolefins.

以下に、本発明の実施例および比較例を示す。Examples and comparative examples of the present invention are shown below.

[実施例1] カルシウムイオン含有量が0.095%である水酸化マ
グネシウムを、1350℃で仮焼して得られた酸化マグ
ネシウムを、振動ボールミル(中央化工機製CH−20
型)にて充填量30kgで10分間粉砕し、第1表に示
す粉体物性および化学組成を有する酸化マグネシウム微
粉末を得た。
[Example 1] Magnesium oxide obtained by calcining magnesium hydroxide having a calcium ion content of 0.095% at 1350°C was heated in a vibrating ball mill (CH-20 manufactured by Chuo Kakoki Co., Ltd.).
The powder was pulverized for 10 minutes using a mold with a filling amount of 30 kg to obtain fine magnesium oxide powder having the powder physical properties and chemical composition shown in Table 1.

この微粉末1.5kgを、90℃に加熱保持した濃度0
.19モル/2の塩化マグネシウム水溶液1oiL中に
投入し、十分な攪拌下に3時間反応させた後、45μm
篩で分級した。
1.5 kg of this fine powder was heated and held at 90°C to a concentration of 0.
.. After pouring into 1 oiL of 19 mol/2 magnesium chloride aqueous solution and reacting for 3 hours with sufficient stirring, 45 μm
It was classified using a sieve.

上記篩下生成物を水洗、濾過、乾燥して得た粉末は、水
和率が99.6%の水酸化マグネシウムで、平均粒子径
0.7μm、粒子径分布が1μm以下92重量%の六角
柱状結晶であった。また、その収率は95%であった。
The powder obtained by washing, filtering and drying the above sieved product is magnesium hydroxide with a hydration rate of 99.6%, an average particle size of 0.7 μm, and a hexagonal particle size distribution of 92% by weight of 1 μm or less. It was a columnar crystal. Moreover, the yield was 95%.

得られた水酸化マグネシウムの粉体物性を第2表に示す
Table 2 shows the powder properties of the obtained magnesium hydroxide.

[実施例2] 実施例1で使用したものと同じ酸化マグネシウム微粉末
(<Zoo)方向の結晶子径:1330λ、BET比表
面積:1.2g/rn’、平均粒子径:3.5μm)1
.0kgを、90℃に加熱保持した濃度0.028モル
/I1.の酢酸マグネシウム水溶液102中に投入し、
十分な攪拌下に3時間反応させた後、45μmの篩で分
級した。
[Example 2] Same magnesium oxide fine powder as used in Example 1 (crystallite diameter in <Zoo) direction: 1330λ, BET specific surface area: 1.2 g/rn', average particle diameter: 3.5 μm) 1
.. 0 kg was heated and held at 90°C at a concentration of 0.028 mol/I1. into a magnesium acetate aqueous solution 102,
After reacting for 3 hours with sufficient stirring, the mixture was classified using a 45 μm sieve.

篩下生成物を実施例1と同じ後処理をして得た粉末は、
水和率が99.8%の水酸化マグネシウムで、平均粒子
径0.5μm、粒子径分布が1μm以下89重量%の六
角板状結晶であった。また、その収率は97%であった
The powder obtained by subjecting the unsieved product to the same post-treatment as in Example 1 was
It was magnesium hydroxide with a hydration rate of 99.8%, hexagonal plate-shaped crystals with an average particle size of 0.5 μm and a particle size distribution of 89% by weight of 1 μm or less. Moreover, the yield was 97%.

得られた水酸化マグネシウムの粉体物性を第2表に示す
Table 2 shows the powder properties of the obtained magnesium hydroxide.

[実施例3] 実施例1で使用したものと同じ水酸化マグネシウムを、
1150℃で仮焼して得られた酸化マグネシウムを、実
施例1と同様にして粉砕し、第1表に示す粉体物性およ
び化学組成を有する酸化マグネシウム微粉末を得た。
[Example 3] The same magnesium hydroxide used in Example 1 was
Magnesium oxide obtained by calcining at 1150° C. was pulverized in the same manner as in Example 1 to obtain fine magnesium oxide powder having the powder physical properties and chemical composition shown in Table 1.

この微粉末1.0kgを85℃に加熱保持した濃度0.
25モル/λの塩化マグネシウム水溶液10j2中に投
入し、充分な攪拌下に2時間反応させた後、45μmの
篩で分級した。
1.0 kg of this fine powder was heated and held at 85°C to a concentration of 0.
The mixture was poured into a 25 mol/λ aqueous magnesium chloride solution 10j2, reacted for 2 hours with sufficient stirring, and then classified using a 45 μm sieve.

篩下生成物を実施例1と同じ後処理をして得た粉末は、
水和率が100%の水酸化マグネシウムで、平均粒子径
0.7μm、粒子径分布が1μm以下93重量%の円板
状結晶であった。また、その収率は99%であった。
The powder obtained by subjecting the unsieved product to the same post-treatment as in Example 1 was
It was magnesium hydroxide with a hydration rate of 100%, and was disc-shaped crystals with an average particle size of 0.7 μm and a particle size distribution of 93% by weight of 1 μm or less. Moreover, the yield was 99%.

得られた水酸化マグネシウムの粉体物性を第2表に示す
Table 2 shows the powder properties of the obtained magnesium hydroxide.

[比較例1] 実施例1で使用したものと同じ水酸化マグネシウムを、
1700℃で焼成して得られた酸化マグネシウムを、実
施例1と同じ振動ボールミルにて充填量30kgで20
分間粉砕し、第1表に示す粉体物性および化学組成を有
する酸化マグネシウム粉末を得た。
[Comparative Example 1] The same magnesium hydroxide used in Example 1 was
Magnesium oxide obtained by firing at 1700°C was heated to 20 kg using the same vibrating ball mill as in Example 1 with a filling amount of 30 kg.
The powder was ground for minutes to obtain magnesium oxide powder having the powder physical properties and chemical composition shown in Table 1.

この粉末を原料に用いた以外は、実施例1と同一条件で
水和反応させた後、45μm篩で分級した。
A hydration reaction was carried out under the same conditions as in Example 1, except that this powder was used as a raw material, and then classified using a 45 μm sieve.

篩下生成物を実施例1と同じ後処理をして得た粉末は、
水和率が88.1%の水酸化マグネシウムと酸化マグネ
シウムの混合物であった。得られた生成物の粉体物性を
第2表に示す。
The powder obtained by subjecting the unsieved product to the same post-treatment as in Example 1 was
It was a mixture of magnesium hydroxide and magnesium oxide with a hydration rate of 88.1%. Table 2 shows the powder properties of the obtained product.

[比較例2] 実施例1で使用したものと同じ水酸化マグネシウムを、
1700℃で仮焼して得られた酸化マグネシウムを、ジ
ェットミル(セイシン企業製5TJ−20型)にて砕料
供給速度3 k g / h rで粉砕し、第1表に示
す粉体物性および化学組成を有する酸化マグネシウム微
粉末を得た。
[Comparative Example 2] The same magnesium hydroxide used in Example 1 was
Magnesium oxide obtained by calcining at 1700°C was pulverized with a jet mill (Model 5TJ-20 manufactured by Seishin Enterprises) at a feed rate of 3 kg/hr, and the powder physical properties and properties shown in Table 1 were obtained. Magnesium oxide fine powder having a chemical composition was obtained.

この粉末を原料に用いた以外は、実施例1と同一条件で
水和反応させた後、45μm篩で分級した。
A hydration reaction was carried out under the same conditions as in Example 1, except that this powder was used as a raw material, and then classified using a 45 μm sieve.

篩下生成物を実施例1と同じ後処理をして得た粉末は、
水和率が99.6%の水酸化マグネシウムであり、その
収率は88%であった。
The powder obtained by subjecting the unsieved product to the same post-treatment as in Example 1 was
The magnesium hydroxide had a hydration rate of 99.6% and a yield of 88%.

得られた水酸化マグネシウムの粉体物性を第2表に示す
Table 2 shows the powder properties of the obtained magnesium hydroxide.

[比較例3] 実施例1で使用したものと同じ水酸化マグネシウムを、
1000℃で仮焼して得られた酸化マグネシウムを、実
施例1と同様にして粉砕し、第1表に示す粉体物性およ
び化学組成を有する酸化マグネシウム微粉末を得た。
[Comparative Example 3] The same magnesium hydroxide used in Example 1 was
Magnesium oxide obtained by calcining at 1000° C. was pulverized in the same manner as in Example 1 to obtain fine magnesium oxide powder having the powder physical properties and chemical composition shown in Table 1.

この粉末を実施例1と同一条件で水和反応させた後、4
5μm篩で分級した。
After hydrating this powder under the same conditions as in Example 1,
It was classified using a 5 μm sieve.

篩下生成物を実施例1と同じ後処理をして得た粉末は、
水和率が100%の水酸化マグネシウムであり、その収
率は99%であった。
The powder obtained by subjecting the unsieved product to the same post-treatment as in Example 1 was
It was magnesium hydroxide with a hydration rate of 100% and a yield of 99%.

得られた水酸化マグネシウムの粉体物性を第2表に示す
Table 2 shows the powder properties of the obtained magnesium hydroxide.

第2表から、本発明の方法により製造された水酸化マグ
ネシウムは、結晶が均一に発達しており、二次凝集体を
形成していない高分散性水酸化マグネシウムであること
が明らかである。
From Table 2, it is clear that the magnesium hydroxide produced by the method of the present invention is a highly dispersed magnesium hydroxide with uniformly developed crystals and no secondary aggregates.

また、各比較例の方法により製造された水酸化マグネシ
ウムは、不規則凝集体を形成しており、分散性が低いこ
とが明らかである。
Furthermore, it is clear that the magnesium hydroxide produced by the method of each comparative example forms irregular aggregates and has low dispersibility.

特許出願人  宇部化学工業株式会社Patent applicant: Ube Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 1。酸化マグネシウムを粉砕して得られる生成物であっ
て、<200>方向の結晶子径が800〜1500Åの
範囲にあり、BET比表面積が0.7〜2m^2/gの
範囲にあり、且つ、平均粒子径が2〜5μmの範囲にあ
る酸化マグネシウム微粉末を、マグネシウム塩共存下で
水和させることを特徴とする高分散性水酸化マグネシウ
ムの製造方法。 2。粉砕前の酸化マグネシウムが、水酸化マグネシウム
を1150〜1350℃の温度範囲で仮焼して得られた
酸化マグネシウムであることを特徴とする特許請求の範
囲第1項記載の高分散性水酸化マグネシウムの製造方法
。 3。酸化マグネシウム微粉末の純度が、98%以上であ
ることを特徴とする特許請求の範囲第1項記載の高分散
性水酸化マグネシウムの製造方法。 4。上記マグネシウム塩が、塩化マグネシウムもしくは
酢酸マグネシウムであることを特徴とする特許請求の範
囲第1項記載の高分散性水酸化マグネシウムの製造方法
。 5。上記マグネシウム塩の水和反応液中の濃度が、0.
02〜0.3モル/lであることを特徴とする特許請求
の範囲第1項記載の高分散性水酸化マグネシウムの製造
方法。
[Claims] 1. A product obtained by pulverizing magnesium oxide, which has a crystallite diameter in the <200> direction in the range of 800 to 1500 Å, a BET specific surface area in the range of 0.7 to 2 m^2/g, and A method for producing highly dispersible magnesium hydroxide, which comprises hydrating fine magnesium oxide powder having an average particle size in the range of 2 to 5 μm in the coexistence of a magnesium salt. 2. The highly dispersible magnesium hydroxide according to claim 1, wherein the magnesium oxide before pulverization is magnesium oxide obtained by calcining magnesium hydroxide at a temperature range of 1150 to 1350°C. manufacturing method. 3. 2. The method for producing highly dispersible magnesium hydroxide according to claim 1, wherein the magnesium oxide fine powder has a purity of 98% or more. 4. 2. The method for producing highly dispersed magnesium hydroxide according to claim 1, wherein the magnesium salt is magnesium chloride or magnesium acetate. 5. The concentration of the magnesium salt in the hydration reaction solution is 0.
2. The method for producing highly dispersible magnesium hydroxide according to claim 1, wherein the amount is 0.02 to 0.3 mol/l.
JP29026687A 1987-11-17 1987-11-17 Method for producing highly dispersible magnesium hydroxide Expired - Fee Related JP2602436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29026687A JP2602436B2 (en) 1987-11-17 1987-11-17 Method for producing highly dispersible magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29026687A JP2602436B2 (en) 1987-11-17 1987-11-17 Method for producing highly dispersible magnesium hydroxide

Publications (2)

Publication Number Publication Date
JPH01131022A true JPH01131022A (en) 1989-05-23
JP2602436B2 JP2602436B2 (en) 1997-04-23

Family

ID=17753914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29026687A Expired - Fee Related JP2602436B2 (en) 1987-11-17 1987-11-17 Method for producing highly dispersible magnesium hydroxide

Country Status (1)

Country Link
JP (1) JP2602436B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568488A2 (en) * 1992-04-23 1993-11-03 Defped Limited Particulate magnesium hydroxide
EP0772570A1 (en) * 1994-07-23 1997-05-14 Ici Australia Operations Proprietary Limited Magnesium hydroxide slurries
WO2000035808A1 (en) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2006306658A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
JP2006306659A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
GR1006510B (en) * 2008-06-18 2009-09-02 Ελληνικοι Λευκολιθοι Α.Μ.Β.Ν.Ε.Ε. Layered magnesium hydroxide suitable as a polymer combustion retardant and method for the preparation thereof.
JP4778111B1 (en) * 2010-06-29 2011-09-21 貴夫 舩田 Magnesium hydroxide and method for producing the same
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568488A2 (en) * 1992-04-23 1993-11-03 Defped Limited Particulate magnesium hydroxide
EP0772570A1 (en) * 1994-07-23 1997-05-14 Ici Australia Operations Proprietary Limited Magnesium hydroxide slurries
EP0772570A4 (en) * 1994-07-23 1997-08-13 Ici Australia Operations Magnesium hydroxide slurries
WO2000035808A1 (en) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
US6676920B1 (en) 1998-12-14 2004-01-13 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2005200300A (en) * 1998-12-14 2005-07-28 Kyowa Chem Ind Co Ltd Manufacturing method of magnesium hydroxide particle
JP2006306658A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
JP2006306659A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
GR1006510B (en) * 2008-06-18 2009-09-02 Ελληνικοι Λευκολιθοι Α.Μ.Β.Ν.Ε.Ε. Layered magnesium hydroxide suitable as a polymer combustion retardant and method for the preparation thereof.
JP4778111B1 (en) * 2010-06-29 2011-09-21 貴夫 舩田 Magnesium hydroxide and method for producing the same
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US10358364B2 (en) 2013-10-24 2019-07-23 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US10800683B2 (en) 2013-10-24 2020-10-13 Calix Ltd Process for manufacture of hydroxide slurry
US11401183B2 (en) 2013-10-24 2022-08-02 Calix Ltd Process for manufacture of hydroxide slurry

Also Published As

Publication number Publication date
JP2602436B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
JP4340160B2 (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
US8518536B2 (en) Magnesium oxide particle aggregate and method for producing the same
US4308088A (en) Macrocrystalline aluminum oxide and method for its manufacture
Vacassy et al. Calcium carbonate precipitation using new segmented flow tubular reactor
TWI401211B (en) Indium oxide powder and method for producing same
JP4281943B2 (en) Method for producing plate-like alumina particles
JP2602436B2 (en) Method for producing highly dispersible magnesium hydroxide
KR102568496B1 (en) Amorphous tungstic acid composite and tungsten oxide prepared using the same
CN112714751B (en) Active high-purity magnesium oxide and production method thereof
HU187981B (en) Process for producing of medium granulated aluminium-hydroxide free choosable between 2 and 100 micron
JPH03170325A (en) Production of magnesium hydroxide
JPH04325415A (en) Indium hydroxide and oxide
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP3965279B2 (en) Method for producing high purity highly oriented magnesium hydroxide powder
CN101873998A (en) Fine cerium oxide powder, preparation method thereof, and CMP slurry containing the same
CA2195649C (en) Magnesium hydroxide slurries
US3152001A (en) Process for the production of a filler
JPH09221322A (en) Indium oxide-tin oxide powder and its production
JPS6335571B2 (en)
JPH054337B2 (en)
JPH06263437A (en) Production of platy boehmite particles
JP2766525B2 (en) Method for producing fibrous basic magnesium sulfate
US2805956A (en) Silica pigment and method of preparing same
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JP2868329B2 (en) Method for producing cubic calcium carbonate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees