JPH04325415A - Indium hydroxide and oxide - Google Patents

Indium hydroxide and oxide

Info

Publication number
JPH04325415A
JPH04325415A JP3122880A JP12288091A JPH04325415A JP H04325415 A JPH04325415 A JP H04325415A JP 3122880 A JP3122880 A JP 3122880A JP 12288091 A JP12288091 A JP 12288091A JP H04325415 A JPH04325415 A JP H04325415A
Authority
JP
Japan
Prior art keywords
indium
powder
indium hydroxide
hydroxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122880A
Other languages
Japanese (ja)
Other versions
JP3314388B2 (en
Inventor
Ryoji Yoshimura
吉村 了治
Nobuhiro Ogawa
小川 展弘
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP12288091A priority Critical patent/JP3314388B2/en
Publication of JPH04325415A publication Critical patent/JPH04325415A/en
Application granted granted Critical
Publication of JP3314388B2 publication Critical patent/JP3314388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a high density ITO sintered body by using acicular indium hydroxide of a specified particle length as a starting material. CONSTITUTION:An aq. indium nitrate soln. is heated to 70-95 deg.C, an aq. alkali soln. is added to the heated soln. to form an indium hydroxide slurry and this slurry is filtered and dried to obtain acicular indium hydroxide of 0.03-0.3mum average length. Indium oxide powder of 200-500Angstrom crystallite diameter and <=0.5mum average particle diameter calculated from the particle size distribution is obtd. by calcining the acicular indium hydroxide powder. An ITO sintered body having >=5.3g/cm<3> density can be obtd. by mixing the indium oxide powder with tin oxide, molding and sintering the mixture.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水酸化インジウム及び
酸化インジウム粉末並びにその製造方法に関する物であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to indium hydroxide, indium oxide powder, and a method for producing the same.

【0002】近年、太陽電池や液晶ディスプレ−透明電
極やタッチパネルなどに用いる透明導電膜としてITO
薄膜の需要が急増している。このようなITO薄膜を形
成する方法には、ITO微粒子を基材に塗布する方法、
IT合金タ−ゲットあるいはITO焼結体タ−ゲットの
スパッタリングもしくは、真空蒸着法により基材面にI
TO膜を形成させる方法などが知られているが、現在で
は特にITO焼結体のスパッタリング法が高性能な膜が
得られることから一般的となっている。
[0002] In recent years, ITO has been used as a transparent conductive film for use in solar cells, liquid crystal displays, transparent electrodes, touch panels, etc.
Demand for thin films is rapidly increasing. Methods for forming such an ITO thin film include a method of applying ITO fine particles to a base material;
Ion is applied to the substrate surface by sputtering an IT alloy target or ITO sintered target, or by vacuum evaporation.
Although methods for forming TO films are known, sputtering of an ITO sintered body is currently particularly popular because it yields a high-performance film.

【0003】本発明による酸化インジウム粉末は、この
ようなスパッタリング法によって透明導電膜を作成する
際に用いられるITO焼結体スパッタリングタ−ゲット
製造時の原料粉末として、極めて優れた性能を有するも
のである。
The indium oxide powder according to the present invention has extremely excellent performance as a raw material powder for producing an ITO sintered sputtering target used in producing a transparent conductive film by such a sputtering method. be.

【0004】0004

【従来の技術】従来、酸化インジウム、酸化スズ粉末又
はITO粉末は、各々金属水酸化物、酸化物水和物、有
機金属塩又は無機金属塩の粉末、あるいはそれぞれのソ
ル、ゲルを加熱脱水あるいは熱分解する方法やインジウ
ム塩とスズ塩の混合溶液に沈殿剤を添加して沈殿生成(
特開昭62−7627、特開昭60−186416)、
又は、加水分解により生成(特開昭58−36925)
した生成物を加熱分解する方法が知られている。
[Prior Art] Conventionally, indium oxide, tin oxide powder, or ITO powder has been produced by heat dehydration or Precipitation can be produced by thermal decomposition or by adding a precipitant to a mixed solution of indium and tin salts (
JP-A-62-7627, JP-A-60-186416),
Or produced by hydrolysis (Japanese Patent Application Laid-open No. 58-36925)
A method of thermally decomposing the resulting product is known.

【0005】通常、ITO焼結体は、酸化インジウムと
酸化スズの混合粉末(ITO粉末)を加圧成型後焼結し
て製造されているが、酸化インジウムのみでは、100
0℃付近から焼結し、比較的易焼結性であるが、ITO
粉末は難焼結性の酸化スズが焼結疎外剤となり焼結しに
くくなり、従来の方法では高密度な焼結体を得ることは
非常に困難であった。
[0005] Normally, ITO sintered bodies are manufactured by press-molding a mixed powder of indium oxide and tin oxide (ITO powder) and then sintering it.
It sinters from around 0°C and is relatively easy to sinter, but ITO
In the powder, tin oxide, which is difficult to sinter, acts as a sintering alienating agent, making it difficult to sinter, and it has been extremely difficult to obtain a high-density sintered body using conventional methods.

【0006】従来の粉末を用いた場合、ITO焼結体の
多くは焼結密度が理論密度の65%程度(〜4.6g/
cm3  )の低密度の焼結体でしかなく、また電気抵
抗も高い。  尚、ITO焼結体の焼結密度は、100
%で7.1g/cm3  である。
When conventional powder is used, most of the ITO sintered bodies have a sintered density of about 65% of the theoretical density (~4.6 g/
cm3), it is a sintered body with a low density, and also has high electrical resistance. The sintered density of the ITO sintered body is 100
% is 7.1 g/cm3.

【0007】このような低密度なITOタ−ゲットは導
電性、熱伝導性及び抗折力が低く、スパッタリング時、
成膜速度が遅く、タ−ゲット表面は還元され易くさらに
は、放電が不安定であった。
[0007] Such a low-density ITO target has low electrical conductivity, low thermal conductivity, and low transverse rupture strength, and during sputtering,
The film formation rate was slow, the target surface was easily reduced, and furthermore, the discharge was unstable.

【0008】そこで、このような問題を解決するために
、高密度ITO焼結体の製造を可能にする原料粉末の製
造方法がいくつか提案されている。例えば、酸化インジ
ウム粉末を仮焼し、平均粒径が3〜6μmの酸化インジ
ウム又は酸化スズとしこれを用いる方法がある(特開昭
62−21751)。
[0008] In order to solve these problems, several methods have been proposed for producing raw material powders that make it possible to produce high-density ITO sintered bodies. For example, there is a method in which indium oxide powder is calcined to produce indium oxide or tin oxide having an average particle size of 3 to 6 μm (Japanese Unexamined Patent Publication No. 62-21751).

【0009】しかし、このような比較的大粒径の原料粉
末によって得られるITO焼結体は、たかだか5g/c
m3  で、十分に高密度とは言えない。また、沈殿剤
を使用した共沈ITO粉末を焼結体原料に用いる方法が
提案されている。(特開昭62−12009)。しかし
、この方法でも得られる焼結体の焼結密度は、理論密度
の70%(5g/cm3  )程度で、十分に高密度と
は言えない。
[0009] However, the ITO sintered body obtained from such a raw material powder with a relatively large particle size is at most 5 g/c.
m3, which cannot be said to be sufficiently high density. Furthermore, a method has been proposed in which coprecipitated ITO powder using a precipitant is used as a raw material for a sintered body. (Japanese Patent Application Laid-Open No. 62-12009). However, the sintered density of the sintered body obtained by this method is about 70% (5 g/cm3) of the theoretical density, which cannot be said to be a sufficiently high density.

【0010】0010

【発明が解決しようとする課題】本発明の目的は、理論
密度5.3g/cm3  以上の高密度焼結体が製造可
能な酸化インジウム粉末及びその前駆体である水酸化イ
ンジム粉末。さらに、その酸化インジウム粉末及び水酸
化インジム粉末の製造方法並びにその用途を提供するも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an indium oxide powder and its precursor, an indium hydroxide powder, which can produce a high-density sintered body with a theoretical density of 5.3 g/cm3 or more. Furthermore, the present invention provides a method for producing the indium oxide powder and indium hydroxide powder, and uses thereof.

【0011】[0011]

【課題を解決するための手段】本発明者らは、高密度I
TO焼結体を製造する際の原料粉末に関し鋭意検討した
結果、酸化インジウム粉末の粉末物性は、その前駆体で
ある水酸化インジウムにより、影響されることを見出し
本発明を完成するに至った。
[Means for Solving the Problems] The present inventors have developed a high-density I
As a result of intensive studies regarding the raw material powder for manufacturing TO sintered bodies, it was discovered that the powder physical properties of indium oxide powder are affected by its precursor, indium hydroxide, and the present invention was completed.

【0012】すなわち、本発明は、水酸化インジウムを
針状結晶とすることにより、水酸化インジウムの状態で
凝集を抑制し、さらには、該針状結晶の粒子径を制御す
ることにより、仮焼して得られる酸化インジウム粉末の
凝集及び粒子径を制御することを基礎とする。
That is, the present invention suppresses agglomeration in the indium hydroxide state by forming indium hydroxide into needle-like crystals, and furthermore, by controlling the particle size of the needle-like crystals, calcining is performed. The basic idea is to control the agglomeration and particle size of the indium oxide powder obtained.

【0013】本発明の水酸化インジウムは、針状結晶で
あることを必須とする。針状結晶であることにより、球
状粒子に比べ凝集を抑制することが可能となる。針状の
平均の長さは0.03〜0.3μmであり、これ以上長
いと仮焼して得られる酸化インジウム粉末の結晶子径が
大きくなり、焼結性が低下する。これ以上小さい場合、
粉末の凝集が激しくなり、粉末の分散性が低下し、焼結
性が低下する。
[0013] The indium hydroxide of the present invention must be in the form of needle-like crystals. The needle-like crystals make it possible to suppress aggregation compared to spherical particles. The average length of the acicular shape is 0.03 to 0.3 μm, and if the length is longer than this, the crystallite diameter of the indium oxide powder obtained by calcination becomes large and the sinterability deteriorates. If it is smaller than this,
The agglomeration of the powder becomes intense, the dispersibility of the powder decreases, and the sinterability decreases.

【0014】針状結晶の大きさは、透過型電子顕微鏡(
TEM)観察により確認できる。
The size of the acicular crystals can be determined using a transmission electron microscope (
This can be confirmed by TEM) observation.

【0015】針状結晶の直径は、特に限定しないが、針
状であるため長さ方向よりは小さく長さに対する直径の
比が0.4〜0.05の範囲が好ましい。
The diameter of the acicular crystal is not particularly limited, but since it is acicular, it is preferably smaller than the length direction and the diameter to length ratio is in the range of 0.4 to 0.05.

【0016】また、本発明の水酸化インジウムは、X線
回折のミラ−指数でいう(200)面に配向した結晶で
あり、(200)面ピ−ク強度に対して、(220)面
のピ−ク強度が20%以下である事が好ましい。結晶の
配向性はX線回折パタ−ンとHanawalt  in
dex(ASTM)により確認することができ、(20
0)の回折ピ−クは、2θ=22.28度付近に、また
、(220)面は31.71度付近に出現する。水酸化
物によっては、(200)の回折ピ−ク以外に、2θ=
23〜26度に(200)の回折ピ−ク強度に対して5
%以上の強度を持つ結晶性のピ−クが出現することがあ
るが、このような水酸化インジウム粉末は、結晶に乱れ
が生じているためか、凝集性の粉末となり、高密度IT
O焼結体を与えないため好ましくない。
In addition, the indium hydroxide of the present invention is a crystal oriented in the (200) plane according to the Miller index of X-ray diffraction, and the peak intensity of the (220) plane is higher than that of the (200) plane. It is preferable that the peak intensity is 20% or less. Crystal orientation can be determined by X-ray diffraction patterns and Hanawalt in
dex (ASTM), (20
The diffraction peak of 0) appears around 2θ=22.28 degrees, and the (220) diffraction peak appears around 31.71 degrees. Depending on the hydroxide, in addition to the (200) diffraction peak, 2θ=
5 for the diffraction peak intensity of (200) at 23-26 degrees.
% or more may appear, but such indium hydroxide powder becomes a cohesive powder, probably due to disordered crystals, and is not suitable for high-density IT.
This is not preferable because it does not give an O sintered body.

【0017】また、2θ=30.99度に酸化インジウ
ムの(222)面のX線回折ピ−クが出現する水酸化イ
ンジウムも好ましくない。水酸化物の酸化物への脱水反
応は、270℃付近で起こるが、この温度以下の乾燥温
度で水酸化インジム中に酸化インジウムが含まれること
は、水酸化物中に反応活性な微粒子が含まれていること
を示しており、、このような水酸化インジウムを仮焼し
て得られる酸化インジウムは凝集性の粉末となり易く、
高密度ITO焼結体用の粉末とはなりにくい。
Indium hydroxide, in which an X-ray diffraction peak of the (222) plane of indium oxide appears at 2θ=30.99 degrees, is also not preferred. The dehydration reaction of hydroxide to oxide occurs at around 270°C, but the fact that indium oxide is contained in indium hydroxide at a drying temperature below this temperature means that reactive fine particles are contained in the hydroxide. Indium oxide obtained by calcining such indium hydroxide tends to become a cohesive powder,
It is difficult to use as a powder for high-density ITO sintered bodies.

【0018】次ぎに、このような水酸化インジウムの製
造方法を説明する。
Next, a method for producing such indium hydroxide will be explained.

【0019】このような、水酸化インジウムは、インジ
ウム硝酸水溶液にアルカリ水溶液を添加することにより
合成される。アルカリ水溶液にインジウム硝酸水溶液を
添加した場合、得られる水酸化インジウムは微細な粉末
となり、凝集が激しく、仮焼して得られる酸化インジウ
ム粉末も分散性が悪く、高密度ITO焼結体の原料粉末
とはならない。
Such indium hydroxide is synthesized by adding an alkaline aqueous solution to an indium nitric acid aqueous solution. When an indium nitric acid aqueous solution is added to an alkaline aqueous solution, the resulting indium hydroxide becomes a fine powder, with severe agglomeration, and the indium oxide powder obtained by calcination also has poor dispersibility, making it a raw material powder for high-density ITO sintered bodies. It is not.

【0020】添加するアルカリ水溶液には、水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム、アンモニ
ア等の水溶液が使用できるが、水酸化インジウム中に金
属イオンが残存しないアンモニア水溶液が特に好ましい
As the alkaline aqueous solution to be added, aqueous solutions of sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, etc. can be used, but an ammonia aqueous solution in which no metal ions remain in indium hydroxide is particularly preferred.

【0021】インジウム硝酸水溶液の温度としては70
〜95℃に保ちながら、アルカリ水溶液を添加する必要
がある。70℃より反応温度が低い場合、針状結晶が成
長しにくく、凝集した粉末となる。一方、95℃より高
い温度では加圧装置が必要になり、生産設備が高価なも
のとなり、現実的でない。
The temperature of the indium nitric acid aqueous solution is 70
It is necessary to add the alkaline aqueous solution while maintaining the temperature at ~95°C. When the reaction temperature is lower than 70° C., needle-like crystals are difficult to grow, resulting in agglomerated powder. On the other hand, at temperatures higher than 95° C., a pressurizing device is required, making production equipment expensive and impractical.

【0022】インジウム硝酸水溶液にアルカリ水溶液を
添加する際、その添加時間としては、30分〜3時間が
好ましい。添加時間が短いと針状結晶が成長せず、さら
には、微細な粉末が多くなるため、凝集した粉末となる
。一方、添加時間が著しく長い場合、粒成長が起こり、
針状結晶の平均の長さが0.3μmより長くなるため、
仮焼して得られる酸化インジム粉末の結晶子径が大きく
なり、焼結性に劣る粉末となる。
When adding the alkaline aqueous solution to the indium nitric acid aqueous solution, the addition time is preferably 30 minutes to 3 hours. If the addition time is too short, needle-shaped crystals will not grow, and furthermore, the amount of fine powder will increase, resulting in agglomerated powder. On the other hand, if the addition time is significantly long, grain growth will occur;
Since the average length of the needle crystals is longer than 0.3 μm,
The crystallite size of the indium oxide powder obtained by calcining becomes large, resulting in a powder with poor sinterability.

【0023】アルカリ水溶液の添加は、インジウム硝酸
水溶液の最終pHが7〜9になるまで行う事が好ましい
。この範囲以外で、アルカリ水溶液の添加を終了した場
合、得られる水酸化インジウムスラリ−が濾過性の悪い
ものとなる。
It is preferable to add the alkaline aqueous solution until the final pH of the indium nitric acid aqueous solution reaches 7-9. If the addition of the alkaline aqueous solution is terminated outside this range, the resulting indium hydroxide slurry will have poor filterability.

【0024】また、アルカリ水溶液の添加による中和反
応は、攪拌を行いながら行うことが好ましい。攪拌を行
わない場合、添加したアルカリ水溶液が反応槽内で不均
一となる。攪拌速度は、数回転/分から数百回転/分が
好ましく、特に、30〜150回転/分が好ましい。
[0024] Furthermore, the neutralization reaction by addition of an aqueous alkali solution is preferably carried out while stirring. If stirring is not performed, the added alkaline aqueous solution will be non-uniform within the reaction tank. The stirring speed is preferably from several revolutions/minute to several hundred revolutions/minute, particularly preferably from 30 to 150 revolutions/minute.

【0025】得られたスラリ−は、室温になるまで静置
し、固液分離したのち乾燥する。
The obtained slurry is left to stand until it reaches room temperature, separated into solid and liquid, and then dried.

【0026】乾燥温度は、90〜260℃が好ましい。 乾燥温度が高すぎると一部酸化物が生成し、粉末は不均
一となり、低すぎると乾燥効率が悪くなる。
[0026] The drying temperature is preferably 90 to 260°C. If the drying temperature is too high, some oxides will be produced and the powder will be non-uniform; if the drying temperature is too low, the drying efficiency will be poor.

【0027】乾燥ケ−クは、仮焼する前に軽く解砕する
ことが好ましい。仮焼前に解砕した方が得られる酸化イ
ンジウム粉末の分散性は向上し、より高密度なITO焼
結体を製造可能にする。
[0027] The dry cake is preferably slightly crushed before calcining. Crushing before calcination improves the dispersibility of the resulting indium oxide powder, making it possible to produce a higher density ITO sintered body.

【0028】解砕方法は、特に制限しないが例えば、自
動乳鉢やハンマ−ミル等で十分である。
The crushing method is not particularly limited, but for example, an automatic mortar, hammer mill, etc. are sufficient.

【0029】解砕した水酸化インジウムは、仮焼し、酸
化インジウムとする。仮焼温度は、500〜900℃、
特に600〜800℃が好ましい。仮焼温度が低すぎる
と成型体密度が上がらず、高密度焼結体とならない。一
方、高すぎると、酸化インジウム粉末の結晶子径が大き
すぎるため焼結性は低下する。
The crushed indium hydroxide is calcined to produce indium oxide. The calcination temperature is 500-900℃,
Particularly preferred is 600 to 800°C. If the calcination temperature is too low, the density of the molded body will not increase and a high-density sintered body will not be obtained. On the other hand, if it is too high, the crystallite diameter of the indium oxide powder is too large, resulting in poor sinterability.

【0030】このようにして得られた酸化インジウム粉
末は、結晶子径が200〜500オングストロ−ムであ
り、結晶子径とBET径の違いが100オングストロ−
ム以内であり、且つ粒度分布から求めた平均粒径が0.
5μm以下である。
The indium oxide powder thus obtained has a crystallite diameter of 200 to 500 angstroms, and the difference between the crystallite diameter and the BET diameter is 100 angstroms.
and the average particle diameter determined from the particle size distribution is within 0.5mm.
It is 5 μm or less.

【0031】結晶子径が200オングストロ−ムより小
さいものは、粒径が小さすぎるため凝集粒子となり、高
密度ITO焼結体を与えない。一方、500オングスト
ロ−ムより大きいものは、粒径が大きすぎるため、焼結
性が低下し高密度ITO焼結体を与えない。
If the crystallite size is smaller than 200 angstroms, the particle size is too small and becomes agglomerated particles, and a high-density ITO sintered body cannot be obtained. On the other hand, if the particle size is larger than 500 angstroms, the particle size is too large, resulting in poor sinterability and failure to produce a high-density ITO sintered body.

【0032】また、結晶子径とBET径の違いが200
オングストロ−ムより大きい場合、粉末の一次粒径は、
多結晶となっており、凝集の激しい粉末であるため、こ
の場合も、ITO焼結体は高密度とならない。
[0032] Also, the difference between the crystallite diameter and the BET diameter is 200
If larger than angstroms, the primary particle size of the powder is
Since the powder is polycrystalline and highly agglomerated, the ITO sintered body does not have high density in this case as well.

【0033】結晶子径は、酸化インジウムの(222)
X線回折ピ−クの半価幅から求めることができる。また
、BET径は、粉末のBET値を測定し、粒子を球に近
似して求めた値である。
The crystallite diameter is (222) of indium oxide.
It can be determined from the half width of the X-ray diffraction peak. Further, the BET diameter is a value obtained by measuring the BET value of the powder and approximating the particles to a sphere.

【0034】粒度分布から求めた平均粒径は、0.5μ
m以下である。平均粒径がこれ以上大きい場合、酸化イ
ンジウム粉末は堅く凝集しており、このような粉末は、
高密度ITO焼結体を与えない。粒度分布は遠心沈降式
の粒度分布測定器によるもにが一般的である。
[0034] The average particle diameter determined from the particle size distribution is 0.5μ.
m or less. If the average particle size is larger than this, the indium oxide powder is tightly agglomerated;
Does not give a high density ITO sintered body. Particle size distribution is generally measured using a centrifugal sedimentation type particle size distribution measuring device.

【0035】本発明による酸化インジウム粉末を用いれ
ば、焼結密度が5.3g/cm3  以上の高密度で且
つ低抵抗なITO焼結体を以下の方法により製造するこ
とができる。
By using the indium oxide powder according to the present invention, a high-density, low-resistance ITO sintered body having a sintered density of 5.3 g/cm 3 or more can be produced by the following method.

【0036】ITO焼結体製造用のITO粉末は、本発
明の酸化インジウム粉末に酸化すず粉末を5〜15wt
%混合することにより得られる。この混合には、ボ−ル
ミルや振動ミル等の機器を使用する。
ITO powder for producing an ITO sintered body is made by adding 5 to 15 wt of tin oxide powder to the indium oxide powder of the present invention.
% by mixing. For this mixing, equipment such as a ball mill or a vibration mill is used.

【0037】得られたITO粉末は、所望の形に成型さ
れる。
The obtained ITO powder is molded into a desired shape.

【0038】成型は、金形プレスや冷間静水圧プレス(
CIP)による成型でもよく、複雑形状にはスリップキ
ャスト成型等が用いられる。
[0038] Molding is carried out using a mold press or cold isostatic press (
CIP) may be used, and slip cast molding or the like is used for complex shapes.

【0039】最後に、得られた成型体を、1350℃〜
1600℃の温度で焼結する。
Finally, the obtained molded body is heated to 1350°C
Sinter at a temperature of 1600°C.

【0040】[0040]

【実施例】以下実施例に基づき本発明を説明するが、本
発明はこれに限定されるものではない。
[Examples] The present invention will be explained below based on Examples, but the present invention is not limited thereto.

【0041】実施例1 インジウムイオン:0.5モル/リットル、硝酸イオン
:1.53モル/リットルを含む硝酸インジウム水溶液
2.2リットルを攪拌機付き3リットルのセパラブルフ
ラスコにとり、還流しながら85℃に加熱し、14%の
アンモニア水溶液を8.62/min.の速度で硝酸イ
ンジウム水溶液中に1時間で添加した。添加終了のpH
は8.1であった。生成した水酸化インジウムスラリ−
は濾過し、6リットルの純水で洗浄し、110℃で乾燥
した後、乳鉢で粉砕した。得られた針状水酸化インジウ
ムは、平均の長さが0.09μmであった。その針状水
酸化インジウムの粒子構造を示す透過型電子顕微鏡写真
を図1に示す。
Example 1 2.2 liters of an aqueous indium nitrate solution containing 0.5 mol/liter of indium ions and 1.53 mol/liter of nitrate ions was placed in a 3-liter separable flask equipped with a stirrer, and heated to 85° C. while refluxing. 14% ammonia aqueous solution at 8.62/min. It was added to the indium nitrate aqueous solution at a rate of 1 hour. pH at the end of addition
was 8.1. Produced indium hydroxide slurry
was filtered, washed with 6 liters of pure water, dried at 110°C, and ground in a mortar. The obtained acicular indium hydroxide had an average length of 0.09 μm. A transmission electron micrograph showing the particle structure of the acicular indium hydroxide is shown in FIG.

【0042】この水酸化インジウムを700℃で4時間
仮焼して得られた酸化インジウムは、結晶子径が380
オングストロ−ムであり、BET径が410オングスト
ロ−ムであり、粒度分布から求めた平均粒径が0.32
μmであった。
[0042] The indium oxide obtained by calcining this indium hydroxide at 700°C for 4 hours has a crystallite diameter of 380°C.
angstrom, the BET diameter is 410 angstroms, and the average particle diameter determined from the particle size distribution is 0.32 angstroms.
It was μm.

【0043】この酸化インジウム粉末135gに酸化ス
ズ15gを乳鉢で混合し、金型で加圧成型した後、常圧
大気中で1400℃で焼結させた。焼結における昇温速
度は100℃/時間、1400℃では、10時間保持、
降温速度は100℃/時間とした。このような焼結条件
で、焼結密度5.8g/cm3  ,比抵抗3×10−
4Ω・cmの焼結体が得られた。
135 g of this indium oxide powder was mixed with 15 g of tin oxide in a mortar, molded under pressure in a mold, and then sintered at 1400° C. in atmospheric pressure. Temperature increase rate during sintering is 100°C/hour, held at 1400°C for 10 hours,
The temperature decreasing rate was 100°C/hour. Under these sintering conditions, the sintered density was 5.8 g/cm3, and the specific resistance was 3 x 10-
A sintered body of 4 Ω·cm was obtained.

【0044】比較例1 インジウム水溶液の温度を50℃に設定し、実施例1と
同様に水酸化インジウムを得た。得られた針状水酸化イ
ンジウムは、平均の長さが0.02μmで非常に微細な
ものであった。その微細な針状水酸化インジウムの粒子
構造を示す透過型電子顕微鏡写真を図2に示す。
Comparative Example 1 Indium hydroxide was obtained in the same manner as in Example 1, except that the temperature of the indium aqueous solution was set at 50°C. The obtained acicular indium hydroxide was very fine with an average length of 0.02 μm. A transmission electron micrograph showing the fine acicular indium hydroxide particle structure is shown in FIG.

【0045】この水酸化インジウムを700℃で4時間
仮焼して得られた酸化インジウムの結晶子径は190オ
ングストロ−ム、BET径は230オングストロ−ムで
あり、粒度分布から求めた平均粒径は0.8μmであっ
た。
[0045] The crystallite size of indium oxide obtained by calcining this indium hydroxide at 700°C for 4 hours was 190 angstroms, the BET diameter was 230 angstroms, and the average particle size determined from the particle size distribution. was 0.8 μm.

【0046】この酸化インジウム粉末を実施例1と同様
に焼結したが、焼結密度は5.0g/cm3  であっ
た。
[0046] This indium oxide powder was sintered in the same manner as in Example 1, but the sintered density was 5.0 g/cm3.

【0047】比較例2 アンモニア水溶液の添加速度を34.48ミリリットル
/min.で15分で添加を終了する以外は、実施例1
と同様な操作をして水酸化インジウムを得た。得られた
針状水酸化インジウムは、平均の長さが0.06μmで
あったがX線回折の結果から、酸化インジウムが含まれ
ていた。この粉末を700℃で4時間仮焼して得られた
酸化インジウムの結晶子径は360オングストロ−ム、
BET径は580オングストロ−ムであり、粒度分布か
ら求めた平均粒径は0.8μmであった。
Comparative Example 2 The rate of addition of ammonia aqueous solution was 34.48 ml/min. Example 1 except that the addition was completed in 15 minutes at
Indium hydroxide was obtained in the same manner as above. The obtained acicular indium hydroxide had an average length of 0.06 μm, but the results of X-ray diffraction showed that it contained indium oxide. The crystallite diameter of indium oxide obtained by calcining this powder at 700°C for 4 hours was 360 angstroms.
The BET diameter was 580 angstroms, and the average particle diameter determined from the particle size distribution was 0.8 μm.

【0048】この酸化インジウム粉末を実施例1と同様
に焼結したが、焼結密度は5.1g/cm3  であっ
た。
[0048] This indium oxide powder was sintered in the same manner as in Example 1, but the sintered density was 5.1 g/cm3.

【0049】比較例3 アンモニア水溶液の添加速度を2.16ミリリットル/
min.とし4時間で添加を終了する以外は、実施例1
と同様な操作をして水酸化インジウムを得た。得られた
針状水酸化インジウムは、平均の長さが0.4μmであ
った。その針状水酸化インジウムの粒子構造を示す透過
型電子顕微鏡写真を図3に示す。この水酸化インジウム
を700℃で4時間仮焼して得られた酸化インジウムの
結晶子径は480オングストロ−ム、BET径は700
オングストロ−ムであり、粒度分布から求めた平均粒径
は0.8μmであった。
Comparative Example 3 The addition rate of ammonia aqueous solution was 2.16 ml/
min. Example 1 except that the addition was completed after 4 hours.
Indium hydroxide was obtained in the same manner as above. The obtained acicular indium hydroxide had an average length of 0.4 μm. A transmission electron micrograph showing the particle structure of the acicular indium hydroxide is shown in FIG. The crystallite diameter of the indium oxide obtained by calcining this indium hydroxide at 700°C for 4 hours was 480 angstroms, and the BET diameter was 700 angstroms.
angstrom, and the average particle diameter determined from the particle size distribution was 0.8 μm.

【0050】この酸化インジウム粉末を実施例1と同様
に焼結したが、焼結密度は5.1g/cm3  であっ
た。
[0050] This indium oxide powder was sintered in the same manner as in Example 1, but the sintered density was 5.1 g/cm3.

【0051】比較例4 実施例1と同様にして得られた水酸化インジウムを45
0℃で4時間仮焼して得られた酸化インジウムの結晶子
径は180オングストロ−ムであり、実施例1と同様に
焼結したが、焼結密度は4.7g/cm3  であった
Comparative Example 4 Indium hydroxide obtained in the same manner as in Example 1 was
The crystallite diameter of indium oxide obtained by calcination at 0° C. for 4 hours was 180 angstroms, and was sintered in the same manner as in Example 1, but the sintered density was 4.7 g/cm 3 .

【0052】比較例5 実施例1と同様にして得られた水酸化インジウムを10
00℃で4時間仮焼して得られた酸化インジウムの結晶
子径は810オ−ングストロ−ムであり、実施例1と同
様に焼結したが、焼結密度は4.8g/cm3  であ
った。
Comparative Example 5 Indium hydroxide obtained in the same manner as in Example 1 was
The crystallite diameter of the indium oxide obtained by calcination at 00°C for 4 hours was 810 angstroms, and the indium oxide was sintered in the same manner as in Example 1, but the sintered density was 4.8 g/cm3. Ta.

【0053】[0053]

【発明の効果】本発明の水酸化インジウムは、仮焼する
ことにより、微細で高分散な酸化インジウム粉末を与え
、該酸化インジウム粉末をITO焼結体の原料粉末とし
て使用すれば、高密度で且つ低抵抗であるITO焼結体
を製造することが可能である。
Effects of the Invention: By calcining the indium hydroxide of the present invention, a fine and highly dispersed indium oxide powder can be obtained, and if the indium oxide powder is used as a raw material powder for an ITO sintered body, Moreover, it is possible to produce an ITO sintered body with low resistance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1で得た水酸化インジウムの粒子構造を
示す透過型電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph showing the particle structure of indium hydroxide obtained in Example 1.

【図2】比較例1で得た水酸化インジウムの粒子構造を
示す透過型電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph showing the particle structure of indium hydroxide obtained in Comparative Example 1.

【図3】比較例3で得た水酸化インジウムの粒子構造を
示す透過型電子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph showing the particle structure of indium hydroxide obtained in Comparative Example 3.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】平均の長さが0.03〜0.3μmである
針状水酸化インジウム。
1. Acicular indium hydroxide having an average length of 0.03 to 0.3 μm.
【請求項2】硝酸インジウム水溶液を70〜95℃に加
熱し、該水溶液にアルカリ水溶液を添加し、水酸化イン
ジウムスラリ−を生成した後、濾過、乾燥処理すること
を特徴とする平均の長さが0.03〜0.3μmである
針状水酸化インジウムの製造方法。
2. An average length characterized in that an indium nitrate aqueous solution is heated to 70 to 95°C, an alkali aqueous solution is added to the aqueous solution, an indium hydroxide slurry is produced, and then filtered and dried. A method for producing acicular indium hydroxide having a diameter of 0.03 to 0.3 μm.
【請求項3】結晶子径が200〜500オングストロ−
ムであり、且つ粒度分布から求めた平均粒径が0.5μ
m以下である酸化インジウム粉末。
Claim 3: Crystallite diameter is 200 to 500 angstroms.
and the average particle diameter determined from the particle size distribution is 0.5μ.
Indium oxide powder having a particle size of less than m.
【請求項4】硝酸インジウム水溶液を70〜95℃に加
熱し、該水溶液にアルカリ水溶液を添加し、水酸化イン
ジウムスラリ−を生成した後、濾過、乾燥処理して得ら
れた針状水酸化インジウム粉末を仮焼することを特徴と
する結晶子径が200〜500オングストロ−ムであり
、且つ粒度分布から求めた平均粒径が0.5μm以下で
ある酸化インジウム粉末の製造方法。
4. Acicular indium hydroxide obtained by heating an aqueous indium nitrate solution to 70 to 95°C, adding an alkali aqueous solution to the aqueous solution to produce an indium hydroxide slurry, and then filtering and drying the slurry. A method for producing indium oxide powder having a crystallite diameter of 200 to 500 angstroms and an average particle diameter of 0.5 μm or less as determined from particle size distribution, the method comprising calcining the powder.
【請求項5】請求項4に記載の酸化インジウム粉末に酸
化スズを混合し、成型し、焼結する事を特徴とする焼結
密度5.3g/cm3  以上のITO焼結体の製造方
法。
5. A method for producing an ITO sintered body having a sintered density of 5.3 g/cm 3 or more, which comprises mixing tin oxide with the indium oxide powder according to claim 4, molding the powder, and sintering the mixture.
JP12288091A 1991-04-26 1991-04-26 Method for producing indium hydroxide, indium oxide and ITO sintered body Expired - Fee Related JP3314388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12288091A JP3314388B2 (en) 1991-04-26 1991-04-26 Method for producing indium hydroxide, indium oxide and ITO sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12288091A JP3314388B2 (en) 1991-04-26 1991-04-26 Method for producing indium hydroxide, indium oxide and ITO sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002054931A Division JP3878867B2 (en) 2002-01-25 2002-01-25 Indium hydroxide and oxide

Publications (2)

Publication Number Publication Date
JPH04325415A true JPH04325415A (en) 1992-11-13
JP3314388B2 JP3314388B2 (en) 2002-08-12

Family

ID=14846924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12288091A Expired - Fee Related JP3314388B2 (en) 1991-04-26 1991-04-26 Method for producing indium hydroxide, indium oxide and ITO sintered body

Country Status (1)

Country Link
JP (1) JP3314388B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
US5833941A (en) * 1993-04-05 1998-11-10 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
US6051166A (en) * 1995-12-06 2000-04-18 Sumitomo Chemical Corporation, Limited Indium oxide-tin oxide powders and method for producing the same
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
KR100477717B1 (en) * 1997-07-02 2005-07-12 삼성에스디아이 주식회사 Method for producing indium oxide particles
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP2006306669A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Method for manufacturing indium oxide powder
JP2007084432A (en) * 2006-09-26 2007-04-05 Nikko Kinzoku Kk Method for recovering indium hydroxide or indium
US8236278B2 (en) * 2007-10-25 2012-08-07 National Taiwan University Mono-dispersive spherical indium oxide-based particles and method for producing the same
WO2015136816A1 (en) * 2014-03-11 2015-09-17 住友金属鉱山株式会社 Indium hydroxide powder and indium oxide powder
JP2020066566A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2020066565A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264119B (en) 2013-05-27 2017-07-04 住友金属矿山株式会社 The manufacture method of indium hydroxide powder and the manufacture method of indium oxide powder and sputtering target material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
US5833941A (en) * 1993-04-05 1998-11-10 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
US6051166A (en) * 1995-12-06 2000-04-18 Sumitomo Chemical Corporation, Limited Indium oxide-tin oxide powders and method for producing the same
KR100477717B1 (en) * 1997-07-02 2005-07-12 삼성에스디아이 주식회사 Method for producing indium oxide particles
JP2002041243A (en) * 2000-07-21 2002-02-08 Nippon Soda Co Ltd Transparent conductive film
JP2006306669A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Method for manufacturing indium oxide powder
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP4707448B2 (en) * 2005-04-28 2011-06-22 三井金属鉱業株式会社 Method for producing indium oxide powder
JP2007084432A (en) * 2006-09-26 2007-04-05 Nikko Kinzoku Kk Method for recovering indium hydroxide or indium
US8236278B2 (en) * 2007-10-25 2012-08-07 National Taiwan University Mono-dispersive spherical indium oxide-based particles and method for producing the same
WO2015136816A1 (en) * 2014-03-11 2015-09-17 住友金属鉱山株式会社 Indium hydroxide powder and indium oxide powder
JP2015171960A (en) * 2014-03-11 2015-10-01 住友金属鉱山株式会社 indium hydroxide powder and indium oxide powder
JP2020066566A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2020066565A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder

Also Published As

Publication number Publication date
JP3314388B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
KR100205556B1 (en) High density ito sintered body ito target and method of manufacture
US5071800A (en) Oxide powder, sintered body, process for preparation thereof and targe composed thereof
JP4984204B2 (en) Indium oxide powder and method for producing the same
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP4992003B2 (en) Method for producing metal oxide fine particles
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2005519831A (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JP3936655B2 (en) Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
WO2023098706A1 (en) Zinc-doped indium oxide powder, sputtering target material, and preparation methods therefor
JPH0472774B2 (en)
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
JP3289335B2 (en) Method for producing indium oxide powder and ITO sintered body
JP3878867B2 (en) Indium hydroxide and oxide
JP3324164B2 (en) Indium oxide powder, method for producing the same, and method for producing ITO sintered body
JP5729926B2 (en) Gallium oxide powder
JP4982691B2 (en) Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film
CN110550952A (en) zirconia ceramic powder and preparation method thereof
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPH06305726A (en) Production of powdery oxide of rare earth element
JPH1017324A (en) Production of indium oxide power
JPH0668935B2 (en) Oxide sintered body, method for producing the same, and target using the same
JP4224006B2 (en) Indium oxide powder
JPH0729770B2 (en) Oxide powder and method for producing the same
JPS58213633A (en) Production of aluminum oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees