JPH0729770B2 - Oxide powder and method for producing the same - Google Patents

Oxide powder and method for producing the same

Info

Publication number
JPH0729770B2
JPH0729770B2 JP2044440A JP4444090A JPH0729770B2 JP H0729770 B2 JPH0729770 B2 JP H0729770B2 JP 2044440 A JP2044440 A JP 2044440A JP 4444090 A JP4444090 A JP 4444090A JP H0729770 B2 JPH0729770 B2 JP H0729770B2
Authority
JP
Japan
Prior art keywords
powder
ito
indium oxide
sintered body
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2044440A
Other languages
Japanese (ja)
Other versions
JPH03218924A (en
Inventor
展弘 小川
了治 吉村
隆 毛利
哲志 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2044440A priority Critical patent/JPH0729770B2/en
Publication of JPH03218924A publication Critical patent/JPH03218924A/en
Publication of JPH0729770B2 publication Critical patent/JPH0729770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化インジウム粉末又は酸化インジウム・酸化
錫(以下ITO)粉末及びその製造方法に関する。
The present invention relates to indium oxide powder or indium oxide / tin oxide (hereinafter referred to as ITO) powder and a method for producing the same.

[従来の技術] 近年、太陽電池や液晶ディスプレーの透明電極やタッチ
パネルなどの用いる透明導電性膜としてITO薄膜の需要
が急増している。このようなITO薄膜を形成する方法に
はITO微粒子を基材に塗布する方法、ITO前駆体を基材に
塗布した後熱分解する方法、又はITO合金ターゲットあ
るいはITO焼結体ターゲットのスパッタリングにより基
材面にITO膜を形成させる方法等が知られているが、現
在では特にITO焼結体のスパッタリング法が最も一般的
である。
[Prior Art] In recent years, there has been a rapid increase in demand for ITO thin films as transparent conductive films used for transparent electrodes of solar cells and liquid crystal displays, touch panels and the like. The method for forming such an ITO thin film is a method of applying ITO fine particles to a base material, a method of applying an ITO precursor to a base material and then thermally decomposing it, or sputtering an ITO alloy target or an ITO sintered body target. Although a method of forming an ITO film on the material surface is known, at present, the sputtering method of an ITO sintered body is the most common.

本発明による酸化インジウム及びITO粉末は、このよう
なスパッタリング法によって透明導電膜を作成する際に
用いられるスパッタリングターゲット(ITO焼結体)の
原料として、極めて優れた性能を有するものである。
The indium oxide and the ITO powder according to the present invention have extremely excellent performance as a raw material for a sputtering target (ITO sintered body) used when forming a transparent conductive film by such a sputtering method.

従来、酸化インジウム、酸化錫粉末又はITO粉末は、各
々の金属水酸化物、酸化物水和物、有機金属塩又は無機
金属塩の粉末、あるいはそれぞれのゾル又はゲルを加熱
脱水あるいは熱分解する方法や、インジウム塩とスズ塩
の混合水溶液に沈殿剤を添加して沈殿を生成(特開昭62
-7627、特開昭60-186416)、又は加水分解により生成
(特開昭58-36925)した生成物を加熱分解する方法が知
られている。また本発明者等が先に提案したインジウム
と錫の混合有機酸水溶液から得られる混合有機酸塩を熱
分解する方法(特開昭63-195101)も、高純度なITO粉末
を提供する方法である。
Conventionally, indium oxide, tin oxide powder or ITO powder is a method of thermally dehydrating or thermally decomposing each metal hydroxide, oxide hydrate, organic metal salt or inorganic metal salt powder, or each sol or gel. Alternatively, a precipitant is added to a mixed aqueous solution of an indium salt and a tin salt to generate a precipitate (JP-A-62-62).
No. 7627, JP-A-60-186416), or a method of thermally decomposing a product formed by hydrolysis (JP-A-58-36925) is known. The method of thermally decomposing a mixed organic acid salt obtained from an aqueous solution of a mixed organic acid of indium and tin, which the present inventors previously proposed (Japanese Patent Laid-Open No. 63-195101), is also a method of providing highly pure ITO powder. is there.

通常ITO焼結体は、上記の方法で得た酸化インジウムと
酸化錫の混合粉末(ITO粉末)を加圧成型後焼結して製
造されているが、ITO粉末は難焼結性のため高密度な焼
結体を得ることは非常に困難であった。
Usually, the ITO sintered body is manufactured by pressure-molding and sintering the mixed powder of indium oxide and tin oxide (ITO powder) obtained by the above method. It was very difficult to obtain a dense sintered body.

従来の粉末を用いたITO焼結体の多くは焼結密度が理論
密度の65%程度(〜4.6g/cm3)の低密度の焼結体でしか
なかく、又電気抵抗も高い。
Most of the ITO sintered bodies using conventional powders are low density sintered bodies having a sintered density of about 65% of the theoretical density (up to 4.6 g / cm 3 ), and also have high electric resistance.

尚、ITO焼結体の焼結密度は理論密度100%で約7.1g/cm3
である。
The sintered density of the ITO sintered body is about 7.1 g / cm 3 at a theoretical density of 100%.
Is.

このような低密度なITO焼結体は割れやすく、又導電性
及び熱伝導性が低いためにこれをターゲットとして用い
てスパッタリング成膜を行う際、投入可能な電力が著し
く小さくなるために成膜速度が遅く、放電状態も不安定
であるという欠点を有していた。さらに低密度なITO焼
結体ではスパッタリング時に焼結体表面に還元物質(黒
色物質)が生成し、このものが基材表面に生成する透明
導電膜に混在し膜の質低下をもたらすので焼結体表面に
還元性物質が生成する毎に運転を停止してこれを除去し
なければならなかった。そしてこのことがスパッタリン
グの連続運転において著しい障害となっていた。
Such a low-density ITO sintered body is easily cracked, and its electrical conductivity and thermal conductivity are low, so when using this as a target for sputtering film formation, the power that can be input is significantly reduced, so the film formation It has the drawbacks of low speed and unstable discharge state. Furthermore, in a low density ITO sintered body, a reducing substance (black substance) is generated on the surface of the sintered body during sputtering, and this substance is mixed with the transparent conductive film generated on the surface of the base material and causes deterioration of the film quality. Every time a reducing substance was generated on the body surface, the operation had to be stopped and removed. And this has been a serious obstacle to the continuous operation of sputtering.

そこで、このような問題を解決するため、高密度なITO
焼結体の製造を可能とする原料ITO粉末の製造方法ある
いは処理方法がいくつか提案されている。例えば酸化イ
ンジウム又は酸化錫粉末の内、少なくとも酸化インジウ
ム粉末を仮焼し平均粒径が3〜6μmの酸化インジウム
又は酸化錫としこれを用いる方法がある(特開昭62-217
51)。
Therefore, in order to solve such problems, high density ITO
Several methods for producing or treating raw material ITO powder that enables production of a sintered body have been proposed. For example, there is a method in which at least indium oxide powder out of indium oxide or tin oxide powder is calcined to form indium oxide or tin oxide having an average particle size of 3 to 6 μm, which is used (Japanese Patent Laid-Open No. 62-217).
51).

しかしこのような比較的大粒径の原料によって得られる
ITO焼結体の密度は、同公開公報記載の実施例から判る
とうり、たかだか5g/cm3で、十分に高密度とは言えな
い。また沈殿剤を使用した共沈ITO粉末を焼結体原料に
用いる方法が提案されている(特開昭62-12009)。しか
しこの方法でも得られる焼結体の焼結密度は理論密度の
70%(5g/cm3)程度で、十分に高密度とは言えない。
However, it is possible to obtain with such a relatively large particle size raw material.
The density of the ITO sintered body is at most 5 g / cm 3 , as can be seen from the examples described in the publication, which is not a sufficiently high density. Further, a method of using a coprecipitated ITO powder containing a precipitating agent as a raw material for a sintered body has been proposed (Japanese Patent Laid-Open No. 62-12009). However, the sintered density of the sintered body obtained by this method is
In 70% (5g / cm 3) degree, not sufficiently dense.

[発明が解決しようとする課題] 以上説明したように、これまで工業的な方法によって高
密度な焼結体が製造可能な酸化インジウム粉末あるいは
ITO粉末は得られていないのが現状である。本発明の目
的は、理論密度の75%以上すなわち、焼結密度5.3g/cm3
以上もの、さらに理論密度の85%以上すなわち、焼結密
度6g/cm3以上もの高密度ITO焼結体が製造可能な酸化イ
ンジウム粉末あるいはITO粉末及びそれらの製造方法を
提供することにある。
[Problems to be Solved by the Invention] As described above, the indium oxide powder or the indium oxide powder capable of producing a high-density sintered body by an industrial method has been used.
Currently, no ITO powder has been obtained. The object of the present invention is 75% or more of the theoretical density, that is, the sintered density of 5.3 g / cm 3
The object is to provide an indium oxide powder or an ITO powder capable of producing a high density ITO sintered body having a sintered density of 85% or more of the theoretical density, that is, a sintered density of 6 g / cm 3 or more, and a production method thereof.

[問題点を解決する手段] 本発明者等は、高密度なITO焼結体を製造する際の原料I
TO粉末に関し鋭意検討を重ねた結果、一次粒径が1μm
以下の微細で、BET表面積が15m2/g以上、粒度分布から
求めた比表面積が2m2/g以上の分散性の高いITO粉末で
は、理論密度の75%以上の焼結密度、即ち、5.3g/cm3
上の焼結密度、さらに多くは理論密度の85%以上すなわ
ち、6g/cm3以上の高密度な焼結体が得られること、また
そのような粉末は、一次粒径が1μm以下のITO粉末
を、粉砕容器径が振動振幅の10倍未満の条件を満足する
振動型粉砕器を用いて粉砕処理することによって得られ
ることを見出し本発明を完成するに至ったものである。
[Means for Solving Problems] The inventors of the present invention have made a raw material I for producing a high density ITO sintered body.
As a result of extensive studies on TO powder, the primary particle size is 1 μm
In the following fine ITO powder having a BET surface area of 15 m 2 / g or more and a specific surface area determined from the particle size distribution of 2 m 2 / g or more and high dispersibility, the sintered density of 75% or more of the theoretical density, that is, 5.3 Sintered density of g / cm 3 or more, more than 85% of theoretical density, that is, high density sintered body of 6 g / cm 3 or more can be obtained, and such powder has a primary particle size of 1 μm. The inventors have found that the following ITO powder can be obtained by pulverizing by using a vibrating pulverizer satisfying the condition that the diameter of the pulverizing container is less than 10 times the vibration amplitude, and have completed the present invention.

本発明の粉末においてITO粉末の場合、粉末中の酸化イ
ンジウムと酸化錫の比率は、重量比で酸化インジウム/
酸化錫=98/2〜80/20、特に92/8〜85/15の範囲が好まし
い。酸化錫の含有量が2%よりも小又は、20%よりも大
では、これを用いて焼結体とした場合、高い導電性を持
つものが得られない。本発明の酸化インジウム粉末、あ
るいはITO粉末の一次粒径は1μm以下でなくてはなら
ず、1μm〜0.01μm、特に0.5μmから0.03μmの範
囲のものが好ましい。一次粒径が1より大のものは分散
性が高くても焼結性が上がらず、一方一次粒径が0.01μ
mより小では凝集を抑制することが極めて困難となり、
焼結性の良い粉末とはなりにくい。
In the case of ITO powder in the powder of the present invention, the ratio of indium oxide to tin oxide in the powder is indium oxide / weight ratio.
Tin oxide = 98/2 to 80/20, particularly preferably 92/8 to 85/15. When the content of tin oxide is smaller than 2% or larger than 20%, a sintered body made of this cannot have a high conductivity. The primary particle diameter of the indium oxide powder or ITO powder of the present invention must be 1 μm or less, preferably 1 μm to 0.01 μm, and particularly preferably 0.5 μm to 0.03 μm. If the primary particle size is greater than 1, the sinterability does not increase even if the dispersibility is high, while the primary particle size is 0.01μ.
If it is smaller than m, it becomes extremely difficult to suppress aggregation,
It does not easily become a powder with good sinterability.

従来の技術による粉末でも上記一次粒径を満足するもの
は得られるが、それらは凝集しており、焼結性の良い粉
末ではない。本発明の酸化インジウム粉末及びITO粉末
はこのような一次粒径を有し、なおかつ高分散、すなわ
ち凝集していないことが特徴である。粉末の分散性を評
価する一般的な手段としては、BET表面積、粒度分布が
あるが、本発明の粉末はBET表面積から求めた比表面積
が15m2/g以上、即ち15m2/g〜50m2/gであり、粒度分布か
ら求められる比表面積では2m2/g以上即ち2m2/g〜5m2
/g、さらに好ましくは3m2/g以上である。BET表面積が1
5m2/g未満の粉末は凝集した粉末であり焼結性が悪い。
一方BET表面積が必要以上に大きい粉末は多孔質、ある
いは表面状態の荒い粉末であり、逆に焼結性が悪くな
る。従って、BET表面積は50m2/g以下が好ましい。
Although powders according to the conventional technique which satisfy the above-mentioned primary particle size can be obtained, they are aggregated and are not powders having good sinterability. The indium oxide powder and the ITO powder of the present invention are characterized by having such a primary particle size and yet being highly dispersed, that is, not agglomerated. The common means of assessing the dispersibility of the powder, BET surface area, there is a particle size distribution, powder of the present invention the specific surface area determined from the BET surface area of 15 m 2 / g or more, i.e. 15m 2 / g~50m 2 / g, and a specific surface area as determined from the particle size distribution is 2m 2 / g or more words 2m 2 / g~5m 2
/ g, more preferably 3 m 2 / g or more. BET surface area is 1
The powder of less than 5 m 2 / g is an agglomerated powder and has poor sinterability.
On the other hand, a powder having a BET surface area larger than necessary is porous or has a rough surface, and on the contrary, the sinterability is deteriorated. Therefore, the BET surface area is preferably 50 m 2 / g or less.

これまで上述の条件を全て満足するITO粉末は提案され
た例はなく、又これらの条件の内いずれの条件を満たさ
なくても粉末の焼結性は不十分であり好ましくない。
Up to now, no ITO powder has been proposed that satisfies all the above-mentioned conditions, and if any of these conditions is not satisfied, the sinterability of the powder is insufficient, which is not preferable.

上記したような条件を全て満足するITO粉末を製造する
方法は、一次粒径が1μm以下のITO粉末を製造した後
にある条件下で機械的に解砕(粉砕)する方法である。
セラミックス粉末の焼結性を向上させる方法として、粉
末を機械的に粉砕することは一般に公知であるが、特に
酸化インジウム及びITO粉末の場合、どのような粉砕方
法で得たものでも焼結性が向上するわけではない。
The method for producing an ITO powder satisfying all of the above conditions is a method for producing an ITO powder having a primary particle size of 1 μm or less and then mechanically crushing (pulverizing) it under certain conditions.
As a method of improving the sinterability of the ceramic powder, it is generally known to mechanically pulverize the powder, but particularly in the case of indium oxide and ITO powder, sinterability is obtained by any pulverization method. It does not improve.

酸化物粉末の機械的な粉砕方法としては、一般的にボー
ルミル、ダイノミル、サンドミル、ホモジナイザー、振
動ミル等があるが、本発明の効果が得られる粉末の粉砕
方法としては粉砕効率の高い粉砕機、例えば振動ミル等
の振動型の粉砕機を用いて粉砕することが必要である。
粉砕効率の低いもの、例えば回転ボールミル等では、本
発明の条件を満足するものは得られない。
As a mechanical pulverizing method of the oxide powder, there are generally a ball mill, a dyno mill, a sand mill, a homogenizer, a vibrating mill, and the like, but as a pulverizing method of the powder capable of obtaining the effects of the present invention, a pulverizer having a high pulverizing efficiency, For example, it is necessary to grind using a vibration type grinder such as a vibration mill.
It is not possible to obtain, with a low pulverization efficiency, for example, a rotary ball mill that satisfies the conditions of the present invention.

本発明における振動粉砕器を用いた粉砕において最も重
要な点は、振動粉砕器の振動振幅に対して粉砕容器径が
10倍未満のものを用いることである。粉砕容器の径が振
動粉砕器の振幅の10倍よりも大きくなると、粉砕容器内
部における粉砕媒体の運動が不規則となるだけでなく、
粉砕媒体の多くが粉砕中に粉砕容器の下部で小さな振動
あるいはしゅう動するだけで、粉砕効率は著しく低下す
る。このような現象は特に粉砕媒体が小さい場合、例え
ば微粉砕に用いる直径2mm程度の粉砕媒体を使用した場
合に顕著である。さらにこの様な状態で粉末を粉砕する
と、分散より粉末のアモルファス化、すなわち結晶の破
壊が選択的に進行するためこの様な条件での粉砕処理は
粉末の焼結性をかえって低下させる。
The most important point in the pulverization using the vibration pulverizer in the present invention is that the diameter of the pulverization container depends on the vibration amplitude of the vibration pulverizer.
Use less than 10 times. When the diameter of the crushing container becomes larger than 10 times the amplitude of the vibration crusher, not only the movement of the crushing medium inside the crushing container becomes irregular, but also
Most of the grinding media only make small vibrations or slides in the lower part of the grinding container during grinding, which significantly reduces the grinding efficiency. Such a phenomenon is particularly remarkable when the grinding medium is small, for example, when a grinding medium having a diameter of about 2 mm used for fine grinding is used. Further, if the powder is pulverized in such a state, the powder becomes amorphous rather than dispersed, that is, the crystal breaks selectively. Therefore, the pulverization treatment under such conditions rather reduces the sinterability of the powder.

一方振動粉砕器の振幅に対して粉砕容器の径が10倍未満
のもので粉砕処理を施した場合、粉砕容器内部における
粉砕媒体の運動は極めて均一となり、粉末の凝集の解砕
が効率的に解消される。またこの様な粉砕処理では、粉
砕による粉末の結晶破壊も抑制される。加えて、このよ
うな効率的な粉砕では粉砕媒体の磨耗が著しく抑制され
るため、処理粉末を高純度に保つことも可能である。
On the other hand, if the diameter of the crushing container is less than 10 times the amplitude of the vibration crusher and the crushing process is performed, the movement of the crushing medium inside the crushing container becomes extremely uniform, and the crushing of the powder agglomerates efficiently Will be resolved. In addition, such a crushing treatment also suppresses the crystal destruction of the powder due to the crushing. In addition, since abrasion of the grinding medium is remarkably suppressed by such efficient grinding, it is possible to maintain the processed powder in high purity.

また粉砕に用いる粉砕媒体は重要であり、粉砕効率の点
から高比重のものを使用することが好ましい。又このよ
うな粉砕処理の際の粉末への不純物混入は、これを用い
たITO焼結体の導電性の低下をもたらすため、本発明で
用いる粉砕媒体としては高比重でなおかつ耐磨耗性に優
れたものを用いることが好ましい。高比重で耐磨耗性に
優れた分散媒体として、例えば、ジルコニアビーズや硬
質炭素コーティングビーズ、ダイヤモンドコーティング
ビーズ等が優れている。特に硬質炭素コーティングビー
ズ、ダイヤモンドコーティングビーズでは仮に磨耗して
も、ITO粉末の焼結温度において不純物炭素は炭酸ガス
として除去されるため何等問題を生じない。一方アルミ
ナビーズやガラスビーズでは磨耗による不純物が問題と
なり、樹脂ビーズでは軽すぎるために粉砕効果が得られ
ない。本発明で用いる粉砕媒体の大きさは直径5mm以
下、特に微粉砕が可能な直径2mm以下のものを用いるこ
とが望ましい。また粉砕効率及び粉末の分散性を向上さ
せるため、粉砕対象となる粉末に液体を添加し、スラリ
ー状態にすることが好ましい。ここで添加する液体とし
ては水、各種有機溶媒を用いることが考えられるが、特
に分散媒体の耐磨耗性の面で水を用いることが好まし
い。さらに当該スラリーに各種の分散剤を添加すること
も効果的である。上記スラリーとするのに添加する水の
量は、粉砕効率の点からスラリーの粘度が50cpsから500
0cpsの範囲となるように添加することが好ましい。この
スラリーの粘度がそれ以上でもそれ以下でも粉砕効率は
低下する。このようなスラリーを調製するために添加す
る水の量は、被処理粉末の粒度等の性質及び粉砕に用い
る粉砕媒体によって異なるが、一般に粉末/水=80/20
〜10/90の範囲である。また粉砕時間は1時間から100時
間程度で、特に5時間から30時間の範囲が好ましい。
Further, the grinding medium used for grinding is important, and it is preferable to use one having a high specific gravity from the viewpoint of grinding efficiency. In addition, since the mixing of impurities into the powder during such a pulverizing treatment brings about a decrease in the conductivity of the ITO sintered body using the same, the pulverizing medium used in the present invention has a high specific gravity and is resistant to abrasion. It is preferable to use excellent ones. As a dispersion medium having a high specific gravity and excellent abrasion resistance, for example, zirconia beads, hard carbon coated beads, diamond coated beads and the like are excellent. In particular, even if the hard carbon-coated beads and the diamond-coated beads are worn, no problem occurs because the impurity carbon is removed as carbon dioxide at the sintering temperature of the ITO powder. On the other hand, alumina beads and glass beads pose a problem of impurities due to abrasion, and resin beads are too light to obtain a crushing effect. The size of the grinding medium used in the present invention is preferably 5 mm or less, and particularly preferably 2 mm or less, which enables fine grinding. Further, in order to improve the pulverization efficiency and the dispersibility of the powder, it is preferable to add a liquid to the powder to be pulverized to form a slurry state. As the liquid to be added here, it is possible to use water and various organic solvents, but it is particularly preferable to use water in terms of abrasion resistance of the dispersion medium. It is also effective to add various dispersants to the slurry. The amount of water added to form the above slurry has a viscosity of 50 cps to 500 cps from the viewpoint of grinding efficiency.
It is preferable to add it in the range of 0 cps. If the viscosity of this slurry is higher or lower, the pulverization efficiency will decrease. The amount of water added to prepare such a slurry depends on the properties such as the particle size of the powder to be treated and the grinding medium used for grinding, but generally powder / water = 80/20
The range is up to 10/90. The crushing time is about 1 hour to 100 hours, and particularly preferably 5 hours to 30 hours.

更に、本発明のITO粉末は、原料として用いるインジウ
ム、錫を含む溶液から、これらを共沈させて得た物を仮
焼し酸化物としたものを前記した方法で粉砕して得たも
のが均一な組成を持ち、従ってこれを焼結しターゲット
として用いた場合、均一な膜を形成する。上記方法は前
記した一般的な方法で良く、又、仮焼は300〜800℃で行
なう。上述の粉砕処理をすることによりITO粉末は高度
に分散したものとなり、本発明で限定した条件を満足す
るITO粉末が得られる。即ち、一次粒径が1μm以下
で、BET表面積が15m2/g以上、粒度分布から求めた比表
面積が2m2/g以上のものとなる。
Furthermore, the ITO powder of the present invention is obtained by pulverizing the product obtained by co-precipitating the solution containing indium and tin used as raw materials and calcining it to obtain an oxide by the above-mentioned method. It has a uniform composition and thus forms a uniform film when sintered and used as a target. The above method may be the general method described above, and the calcination is performed at 300 to 800 ° C. By performing the above-mentioned pulverization treatment, the ITO powder becomes highly dispersed, and the ITO powder satisfying the conditions defined in the present invention can be obtained. That is, the primary particle diameter is 1 μm or less, the BET surface area is 15 m 2 / g or more, and the specific surface area obtained from the particle size distribution is 2 m 2 / g or more.

[発明の効果] 本発明のITO粉末を焼結体原料として用いると、焼結時
に焼結体内部の気孔が低減し、焼結収縮の大きい焼結
体、即ち焼結密度5.3g/cm3以上、多くは焼結密度6g/cm3
以上の焼結体形成が可能となる。従来のITO粉末から得
た焼結体はITO粉末の二次粒子内で凝集している部分と
していない部分で焼結の進行が不均一であるため、焼結
粒子は不定形であり、焼結粒子間に多くの空孔を有して
いるが、本発明のITO粉末による焼結体は、均一に焼結
が進行するため、緻密に充填した焼結粒子が形成され高
密度となると考えられる。
[Advantages of the Invention] When the ITO powder of the present invention is used as a raw material for a sintered body, the pores inside the sintered body are reduced during sintering, and the sintered body has a large sintering shrinkage, that is, a sintered density of 5.3 g / cm 3 Above, most are sintered density 6g / cm 3
The above sintered body can be formed. Sintered particles obtained from conventional ITO powder have an irregular shape because the sintering progresses unevenly in the parts that are not agglomerated in the secondary particles of the ITO powder and in the parts that are not agglomerated. Although it has many pores between the particles, the sintered body of the ITO powder of the present invention is considered to be dense because densely packed sintered particles are formed because the sintering proceeds uniformly. .

このような高密度ITO焼結体をターゲットとして用いる
と、得られる透明導電膜も極めて高品質となるため、ス
パッタリングターゲット用焼結体原料粉末として極めて
優れた性能が期待できる。
When such a high density ITO sintered body is used as a target, the obtained transparent conductive film also has extremely high quality, and therefore, extremely excellent performance can be expected as a sintered body raw material powder for a sputtering target.

また特に共沈ITOでは焼結体中の錫の分布が均一である
ため、広い範囲で均一な透明導電膜が得られる。
In particular, since co-precipitated ITO has a uniform distribution of tin in the sintered body, a uniform transparent conductive film can be obtained in a wide range.

[実施例] 以下、実施例に基づき本発明を説明するが、本発明はこ
れに限定されるものではない。
[Examples] Hereinafter, the present invention will be described based on Examples, but the present invention is not limited thereto.

実施例1 インジウム/錫比が90/10の割合でこれらを含む酢酸水
溶液を濃縮し、インジウム・錫混合酢酸塩を得、この酢
酸塩を熱分解することによりITO粉末を調製した。この
粉末に水を添加して50%スラリーとし、直径2mmの硬質
炭素コーティング金属ビーズを粉砕媒体とした振動ミル
(振動振幅10mm、粉砕容器径50mm)で20時間粉砕した。
処理後の粉末は電子顕微鏡観察による粉末の一次粒径は
約0.3μm、BET表面積は17m2/g、粒度分布から求めた比
表面積は3.5m2/gであり、本発明の特許請求の範囲一項
の条件を全て満足した。
Example 1 An indium / tin mixed acetic acid solution containing indium / tin at a ratio of 90/10 was concentrated to obtain an indium / tin mixed acetic acid salt, and the acetic acid salt was thermally decomposed to prepare an ITO powder. Water was added to this powder to make a 50% slurry, which was then ground for 20 hours in a vibration mill (vibration amplitude 10 mm, grinding container diameter 50 mm) using hard carbon-coated metal beads having a diameter of 2 mm as a grinding medium.
The powder after treatment has a primary particle size of about 0.3 μm, a BET surface area of 17 m 2 / g, and a specific surface area determined from a particle size distribution of 3.5 m 2 / g by electron microscopic observation. All the conditions in paragraph 1 were satisfied.

当該粉末を金型で加圧成型し、3.7g/cm3の成型体とした
後、常圧大気中で1400℃で焼結させた。焼結における昇
温速度は100℃/時間、1400℃では10時間保持、降温速
度は100℃/時間とした。このような焼結条件で、焼結
密度5.7g/cm3、比抵抗3×10-4Ω・cmの焼結体が得られ
た。
The powder was pressure-molded with a mold to obtain a 3.7 g / cm 3 molded body, which was then sintered at 1400 ° C. in atmospheric air. The temperature rising rate in sintering was 100 ° C./hour, the temperature holding rate was 1400 ° C. for 10 hours, and the temperature lowering rate was 100 ° C./hour. Under these sintering conditions, a sintered body having a sintered density of 5.7 g / cm 3 and a specific resistance of 3 × 10 −4 Ω · cm was obtained.

図1に焼結体の表面の粒子構造を示す走査型電子顕微鏡
写真(2000倍)を示した。
FIG. 1 shows a scanning electron micrograph (× 2000) showing the grain structure on the surface of the sintered body.

実施例2 実施例1で得られた焼結体を用い、DCマグネトロンスパ
ッタリングによる成膜を行った(条件は、投入電力:4w/
cm2、圧力:0.6Pa(5×10-3torr)、基板温度:350℃)
結果、表1に示したように極めて低抵抗な透明導電膜が
得られた。
Example 2 The sintered body obtained in Example 1 was used to form a film by DC magnetron sputtering (condition is input power: 4 w /
cm 2 , pressure: 0.6 Pa (5 × 10 -3 torr), substrate temperature: 350 ° C)
As a result, as shown in Table 1, a transparent conductive film having an extremely low resistance was obtained.

実施例3 酢酸インジウムと酢酸錫をそれぞれ熱分解し、酸化イン
ジウムと酸化錫をそれぞれ調製した後、酸化インジウム
/酸化錫比が90/10となるように混合した。その後は実
施例1と同様の条件で焼結体を調製し焼結密度5.4g/c
m3、比抵抗9×10-4Ω・cmの焼結体が得られた。
Example 3 Indium acetate and tin acetate were pyrolyzed to prepare indium oxide and tin oxide, respectively, and then mixed so that the indium oxide / tin oxide ratio was 90/10. Thereafter, a sintered body was prepared under the same conditions as in Example 1 and had a sintered density of 5.4 g / c.
A sintered body having m 3 and a specific resistance of 9 × 10 −4 Ω · cm was obtained.

当該混合粉末の電子顕微鏡観察による一次粒径は0.3μ
m、BET表面積は17m2/g、粒度分布から求めた比表面積
は3.5m2/gであった。
The primary particle size of the mixed powder observed by an electron microscope is 0.3μ.
m, BET surface area was 17 m 2 / g, and the specific surface area determined from the particle size distribution was 3.5 m 2 / g.

実施例4 実施例3で得られた焼結体を用い、DCマグネトロンスパ
ッタリングによる成膜を行った(条件は実施例2と同
様)結果、表1に示したように実施例2と同様に極めて
低抵抗な透明導電膜が得られた。
Example 4 The sintered body obtained in Example 3 was used to form a film by DC magnetron sputtering (conditions are the same as in Example 2). As a result, as shown in Table 1, it was extremely similar to Example 2. A transparent conductive film having low resistance was obtained.

比較例1 市販の酸化インジウム粉末と酸化錫粉末(試薬)を)9
0:10となるように混合後、実施例1と同様の条件で成
型、焼結したところ焼結密度4.7g/cm3、比抵抗2×10-3
Ω・cmの焼結体が得られた。
Comparative Example 1 Commercially available indium oxide powder and tin oxide powder (reagent) 9
After mixing so as to be 0:10, the mixture was molded and sintered under the same conditions as in Example 1. When sintered, the sintered density was 4.7 g / cm 3 , and the specific resistance was 2 × 10 −3.
A Ω · cm sintered body was obtained.

当該混合粉末の電子顕微鏡観察による一次粒径は0.05μ
mで本発明の条件を満足しているが、粒度分布から求め
た比表面積は2m2/g、BET表面積は8m2/gであった。
The primary particle diameter of the mixed powder observed by an electron microscope is 0.05μ.
Although m satisfies the condition of the present invention, the specific surface area determined from the particle size distribution was 2 m 2 / g and the BET surface area was 8 m 2 / g.

比較例2 比較例1で得られた焼結体を用い、実施例2と同様の条
件でDCマグネトロンスパッタリングによって成膜を行っ
た。生成被膜の比抵抗を表1に示す。表1に示した様に
実施例のような低抵抗な透明導電膜は得られなかった。
Comparative Example 2 Using the sintered body obtained in Comparative Example 1, a film was formed by DC magnetron sputtering under the same conditions as in Example 2. Table 1 shows the specific resistance of the formed film. As shown in Table 1, a transparent conductive film having a low resistance as in Examples was not obtained.

表1 比 抵 抗 (×10-4Ω・cm) 実施例2 2.1 実施例4 2.2 比較例3 3.5Table 1 Comparative resistance (× 10 −4 Ω · cm) Example 2 2.1 Example 4 2.2 Comparative example 3 3.5

【図面の簡単な説明】[Brief description of drawings]

図1は実施例1で得た焼結体の表面の粒子構造を示す図
面代用の走査型電子顕微鏡写真(2000倍)である。
FIG. 1 is a scanning electron micrograph (2000 times) as a substitute for a drawing, which shows the particle structure of the surface of the sintered body obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一次粒径が1μm以下、BET表面積が15m2/
g以上、粒度分布から求めた比表面積が2m2/g以上の条
件を全て満足することを特徴とする酸化インジウム及び
/又は酸化インジウム・酸化錫粉末。
1. A primary particle size of 1 μm or less and a BET surface area of 15 m 2 /
An indium oxide powder and / or an indium oxide / tin oxide powder satisfying all the conditions that the specific surface area determined from the particle size distribution is 2 m 2 / g or more.
【請求項2】酸化インジウム・酸化錫粉末が共沈法によ
って調製されたものである特許請求の範囲第一項記載の
粉末。
2. The powder according to claim 1, wherein the indium oxide / tin oxide powder is prepared by a coprecipitation method.
【請求項3】一次粒径が1μm以下の酸化インジウム・
酸化錫粉末又は酸化インジウム粉末を粉砕容器径が振動
振幅の10倍未満の振動型粉砕機を用いて機械的に粉砕す
ることを特徴とする酸化インジウム又は酸化インジウム
・酸化錫粉末の製造方法。
3. Indium oxide having a primary particle size of 1 μm or less
A method for producing indium oxide or indium oxide / tin oxide powder, which comprises mechanically crushing tin oxide powder or indium oxide powder using a vibration type crusher having a crushing container diameter of less than 10 times the vibration amplitude.
JP2044440A 1989-02-28 1990-02-27 Oxide powder and method for producing the same Expired - Fee Related JPH0729770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044440A JPH0729770B2 (en) 1989-02-28 1990-02-27 Oxide powder and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1-45458 1989-02-28
JP4545789 1989-02-28
JP1-45457 1989-02-28
JP4545889 1989-02-28
JP2044440A JPH0729770B2 (en) 1989-02-28 1990-02-27 Oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03218924A JPH03218924A (en) 1991-09-26
JPH0729770B2 true JPH0729770B2 (en) 1995-04-05

Family

ID=27291904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044440A Expired - Fee Related JPH0729770B2 (en) 1989-02-28 1990-02-27 Oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0729770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP4959582B2 (en) * 2005-12-19 2012-06-27 三井金属鉱業株式会社 ITO sintered compact raw material mixed powder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004635C2 (en) * 1995-12-06 1999-01-12 Sumitomo Chemical Co Indium oxide tin oxide powders and method of producing them.
EP1277703B1 (en) * 2001-03-28 2009-12-09 Nippon Mining & Metals Co., Ltd. Manufacturing method of ito powder with thin dissolved in indium oxide, and manufacturing method of ito target
JP4707448B2 (en) * 2005-04-28 2011-06-22 三井金属鉱業株式会社 Method for producing indium oxide powder
CN102066287A (en) * 2008-06-18 2011-05-18 住友化学株式会社 Method for producing aluminum titanate-based ceramic

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627627A (en) * 1985-07-04 1987-01-14 Showa Denko Kk Production of indium oxide-tin oxide powder
JP2679008B2 (en) * 1987-11-26 1997-11-19 工業技術院長 Method for producing indium oxide-tin oxide powder
JPH0238184A (en) * 1988-07-29 1990-02-07 Mazda Motor Corp Rear-wheel steering device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP4959582B2 (en) * 2005-12-19 2012-06-27 三井金属鉱業株式会社 ITO sintered compact raw material mixed powder

Also Published As

Publication number Publication date
JPH03218924A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
KR950010806B1 (en) Oxide powder sintered body process for preparation thereof and target composed thereof
EP0584672B1 (en) Method of manufacturing an indium oxide powder useful as material of a high-density ITO sintered body
JP2006264989A (en) Indium oxide powder and method for producing the same
JP3936655B2 (en) Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP2003277053A (en) Tin oxide powder and method for manufacturing the same, and method for manufacturing high-density indium tin oxide target using the same
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
JP4758697B2 (en) Manufacturing method of IZO sputtering target
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
WO2011052160A1 (en) Method for producing ito sintered body and method for producing ito sputtering target
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
WO2007004473A1 (en) Process for producing izo sputtering target
JPH0729770B2 (en) Oxide powder and method for producing the same
JPH0668935B2 (en) Oxide sintered body, method for producing the same, and target using the same
JPH02297812A (en) Sintered body of oxide, manufacture thereof, and target using same
CN109694078B (en) Preparation method of fluorine crystal mica and application of fluorine crystal mica in preparation of two-dimensional crystal
JPH05193939A (en) Indium oxide powder and production of ito sintered body
JP3324164B2 (en) Indium oxide powder, method for producing the same, and method for producing ITO sintered body
JP3878867B2 (en) Indium hydroxide and oxide
JPH03215318A (en) Oxide powder and its production
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JP2558173B2 (en) Method for producing carbon material having fine pores
JP4755453B2 (en) Manufacturing method of IZO sputtering target
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
KR20100079321A (en) Metaloxide target for amorphous oxide layer comprising alumium and method for preparing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees