JPS6335571B2 - - Google Patents

Info

Publication number
JPS6335571B2
JPS6335571B2 JP1240080A JP1240080A JPS6335571B2 JP S6335571 B2 JPS6335571 B2 JP S6335571B2 JP 1240080 A JP1240080 A JP 1240080A JP 1240080 A JP1240080 A JP 1240080A JP S6335571 B2 JPS6335571 B2 JP S6335571B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
mgo
raw material
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1240080A
Other languages
Japanese (ja)
Other versions
JPS56109820A (en
Inventor
Yoichi Takamya
Yasuo Suzuki
Takao Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP1240080A priority Critical patent/JPS56109820A/en
Publication of JPS56109820A publication Critical patent/JPS56109820A/en
Publication of JPS6335571B2 publication Critical patent/JPS6335571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合成樹脂の充填剤等フアイン分野で
使用される水酸化マグネシウムの製造法に関する
ものであり、さらに詳しくは、1400℃以上に焼成
した酸化マグネシウムを無機酸基あるいは有機酸
基が共存する水溶液中で水和することにより、結
晶形状、結晶の大きさ、分散性を改善した水酸化
マグネシウムの製造法に関する。 水酸化マグネシウムの主要な用途にマグネシア
クリンカーがあり、苦土肥料や排煙脱硫剤にもす
でに大量に用いられている。上記用途に比較する
と少量であるが、水酸化マグネシウムの優れた特
性を利用した分野がある。例えば、合成樹脂の充
填剤、難燃剤、サイジング剤、医薬用制酸剤に用
いられ、さらにこれを焼成した酸化マグネシウム
は、活性マグネシアとして種々な用途に用いられ
ている。 すでに公知の水酸化マグネシウムの製造方法
は、海水、苦汁のようなMgイオンを含む水溶液
に、消石灰あるいは苛性アルカリを反応させて水
酸化マグネシウムを沈澱させる方法が一般的であ
る。 しかしながら、公知方法による水酸化マグネシ
ウムは、粒子を構成する最小単位の結晶が0.1μ以
下であり、反応時の温度を上げたり、反応速度を
厳密に調節しても結晶の大きさは0.2μ程度しかな
らず、水酸化マグネシウムの結晶を大きくするこ
とは非常に難しい。また、従来の水酸化マグネシ
ウムは結晶が不規則な比較的強く絡み合つた凝集
体を形成し、数μm〜数10μmの二次粒子となつ
ており、これが水酸化マグネシウムの基本的な粒
子径として観察される。さらに公知方法の水酸化
マグネシウムは原料に由来して各種イオン
(Na+、K+、Cl-、SO2- 4Ca2+、B2O3 2- 3)の包含、
吸着などによる不純物が多く、高純度な水酸化マ
グネシウムを得ることが困難である。このような
水酸化マグネシウムは、例えば合成樹脂と混合し
た場合、粒子細部への樹脂の浸透が悪く、均質な
組成物が得にくいので、得られた成形物表面にま
だら模様を生じさせる原因となる。 このため、フアイン分野で使用される水酸化マ
グネシウムは、化学的に高純度であることは勿
論、その最小単位である結晶の大きさ、形状、粒
度分布、分散性などに特殊な物性が要求されてい
る。しかし、これらの物理的な性質(特に結晶形
状)を変化させ、あるいは求められる値の中にコ
ントロールすることが極めて難しいことゝされて
いた。 従来知られているフアイン分野に使用される水
酸化マグネシウムの製造方法としては、公知の水
酸化マグネシウムを高温高圧処理したり、アルカ
リ処理する方法、あるいは水酸化マグネシウムを
反応沈澱させる際に、消石灰の一部を塩化マグネ
シウムで反応させ水酸化マグネシウムの生成速度
をコントロールする方法等が提供されている。し
かし、これらの方法は各々の目的に則した水酸化
マグネシウムを得る方法として優れているが、高
価な装置と複雑な工程を要し、一つの装置と方法
で巾広い水酸化マグネシウムの用途を網羅できな
い欠点がある。 本発明者らは、上記従来技術の欠点を解決する
ため鋭意研究した結果、1400℃以上の温度で焼成
した不活性な酸化マグネシウムを一定量の酸基の
存在下で水和させることによつて、上記目的が達
成されることを見出し、本発明を完成するに至つ
た。 すなわち、本発明は、1400℃以上で焼成した酸
化マグネシウムを、原料酸化マグネシウムの原料
中の酸化カルシウムの当量数を超える量に相当す
る酸基の量を酸またはマグネシウム塩として含む
水けん濁スラリー状態中で水和することを特徴と
する水酸化マグネシウムの製造法である。 本発明によれば、水酸化マグネシウムの物理的
な性質を変化させる方法として、酸化マグネシウ
ムを酸基の種類と温度をコントロールした状態の
下で水和反応させることにより、同一の装置で同
一の原料から後記実施例の電子顕微鏡写真に示し
たような水酸化マグネシウムの物理的な性質の基
本となる結晶形状、結晶の大きさ、分散性等を制
御することができる。 本発明で得られる結晶は、従来の方法では生成
が極めて困難であつた「角柱状結晶」あるいは著
しく結晶の発達した「六角板状結晶」であり、単
一結晶が従来の水酸化マグネシウムに比べ著しく
均一で、かつ分散性と配向性に優れている。した
がつて、本発明方法で得られる水酸化マグネシウ
ムは、例えば合成樹脂と混合した際、樹脂の浸透
が良好で、均質な組成物が得られる、あるいは配
向性に優れていることから物質表面に塗布した
際、被膜性に富んでいる等の特徴を持つている。 マグネシウム化合物を加熱分解した活性マグネ
シアは、水と反応してMgO+H2O→Mg(OH)2
により容易に水酸化マグネシウムを生成するが、
この酸化マグネシウムは焼成温度のわずかな上昇
によつても急激に化学反応性を失い、水との水和
反応速度が著しく遅くなることが知られている。
そのため酸化マグネシウムを水和して水酸化マグ
ネシウムを製造するに適当なマグネシアの焼成温
度は、従来の技術においては1000℃内外とされ、
この程度に焼成された活性マグネシアを水あるい
は海水またはMgCl2、MgSO4水溶液で水和させ
る方法(特公昭49−40602号、フランス特許第
975099号)が既に公表されている。しかし、これ
らの方法の目的は、水に可溶な不純物の除去ある
いは活性の高い水酸化マグネシウムの回収を意図
したものであつて、このような方法では生成する
水酸化マグネシウムの結晶形状を変化させたり、
結晶を大きくしたりすることは非常に困難なこ
とゝ考えられていた。 本発明者らは、従来水和反応速度が極めて遅
く、工業的に水酸化マグネシウムを製造する条件
としては不利とみられていた1400℃以内で焼成し
た酸化マグネシウムにつき検討した結果、その水
和反応を行う際に酸基を共存させると、その酸基
の種類により、例えばNO- 3、Cl-、SO2- 4の存在に
よつて水酸化マグネシウムの結晶が「角柱状」と
なり、酢酸イオン等有機酸基の存在によつて「六
角板状」となるなど、結晶の形状が著しく変化し
て種々の異つた物理的性質を有する水酸化マグネ
シウムが生成すること、ならびに酸基の濃度を調
整し、かつ水和反応温度を適度に高めることによ
つて結晶の大きさをコントロールでき、さらに水
和速度が工業的に実施可能な程度に加速でき、そ
の目的が達成できることを見い出した。この際、
原則的に水和反応温度が高いほど小結晶となる
が、酸基の濃度と水和反応温度を調整することに
よつて、結晶の大きさをコントロールすると同時
に、分散性の良い単一結晶を生成させることがで
きる。そして、水酸化マグネシウムが酸基の種類
によつて結晶形状を異にする事実は、本発明で初
めて明らかにされたことである。 本発明に用いる酸化マグネシウムは、どのよう
なマグネシウム化合物から生成したものでもよい
が、その焼成温度が1400℃以上、好ましくは1700
℃以上であることが必要である。焼成温度が1400
℃より低いと通常ペリクレーズと呼ばれるマグネ
シアの発達が少なく、このような酸化マグネシウ
ムは水和反応速度が速すぎて微細結晶となり、不
規則な凝集体を生成するので、本発明の方法に用
いるには不適当である。また、1400℃よりも低い
温度で焼成して酸化した酸化マグネシウムを原料
とした場合には、酸基の種類および添加量を変化
させても、分散性のよい水酸化マグネシウムが得
られるように反応をコントロールすることが困難
である。 酸化マグネシウム中に不純物が多いと水和反応
時にこれらイオンが溶出し、結晶成長を阻害する
ので、原料中のMgO純度が96%以上であること
が好ましく、さらに97.5%以上であることがとく
に好ましい。 現在製鋼の耐火物として大量に用いられている
高純度マグネシアクリンカーは、上記要件を具備
するばかりでなく、反応に供する原料の粒度を任
意に調製できるので、本発明の原料として好適で
ある。 水和反応は、酸化マグネシウムを水酸化マグネ
シウムとするに必要な水量よりはるかに過剰の水
が共存したスラリー状態で行うことが必要で、そ
の濃度は特に制限はないが、200〜300g/で行
うのが適当である。このスラリーの水和反応は撹
拌と加熱の可能な反応器内で行い、添加する酸基
としては、硝酸、塩酸、硫酸等の無機酸あるいは
これらのマグネシウム塩、また錯酸、蟻酸、くえ
ん酸等の有機酸あるいはこれらのマグネシウム塩
が用いられる。 添加する酸基の量は、原料中の酸化カルシウム
の量によつて変化するが、好ましくは原料酸化マ
グネシウムの当量数の0.5%以上の当量数に相当
する酸基(好ましくは0.5%以上5%以下、さら
に好ましくは1%以上3%以下の当量数に相当す
る酸基)および酸化カルシウムの当量数に相当す
る酸基の合計量である。原料酸化マグネシウムに
対する酸基の量が0.5%当量より少ないと水酸化
マグネシウムの結晶成長を制御する効果が少なく
なり、かつ水和反応速度が遅くなる。また酸基の
量が多くなりすぎると酸化マグネシウムの水和反
応速度が必要以上に早くなり、結晶が微細になつ
たり、粒度が不揃いになる等の不都合が生じる
他、酸基の増大によるコストが上昇するので、得
策ではない。 酸化マグネシウムのスラリー中にMgイオン以
外の陽イオンがMgイオン濃度と同濃度以上存在
すると、結晶形状をコントロールする作用を著し
く阻害するので、これらのイオンの存在量はでき
る限り少いことが望ましい。特にナトリウム、カ
リウム等のイオンの共存をできるかぎり少くする
必要があるので、添加する酸基は原料の酸化マグ
ネシウムと反応してMgイオンを生成する無機、
有機の酸あるいはスラリー中で溶解してMgイオ
ンと酸基を生成するマグネシウム塩がよい。 酸化マグネシウムの粒度は、水酸化マグネシウ
ムの生成速度に大きな影響を及ぼす。粒子が大き
いと当然ながら水和反応の完結が遅くなるので、
長時間水和反応をする必要があり、水和反応設備
が大きくなつたり、水和した水酸化マグネシウム
スラリーから未水和の粗粒物を分離する工程が必
要となる。このような水和設備の生産性や製造工
程の簡略化のために、好ましくは250μm以下、
さらに好ましくは100μm以下の原料酸化マグネ
シウムを使用する。 また、水酸化マグネシウムの生成速度は、水和
反応温度によつて著しく影響される。温度が低い
方が結晶のコントロールは容易になるが、水和反
応速度が著しく遅くなるために、水和設備が大型
化し、未水和の酸化マグネシウムを生成水酸化マ
グネシウムから分離する工程を必要とする。水和
反応速度は特に60℃より低い温度で著しく遅くな
るので、水和反応温度を60℃以上にすることが望
ましい。 反応中は、本発明の効果を確実にし、反応を均
一にするため適度の撹拌を行うことが好ましい。 反応して生成した水酸化マグネシウムは、必要
に応じ水洗精製などの工程を経て製品とするが、
この水洗から乾燥までの工程を利用して必要な成
分を吸着混合すること、あるいは噴霧乾燥法など
を利用して水酸化マグネシウムに適当な物理的な
性質を付加することも可能である。 以下実施例によつて本発明の効果を説明する。 実施例 1 表1に示す市販マグネシアクリンカーをフレツ
トミルで粉砕し、105μを全通する粉末となし、
水と混合してMgO200g/lのスラリーとして撹
拌機と加熱装置を備えた反応器に20供給した。 このスラリーのMgO中に含まれる酸化カルシ
ウム40.8gと当量になる硝酸マグネシウムおよび
原料MgOのモル数の1%に相当する当量数の硝
酸マグネシウム(無水塩換算255g)を加え、十
分な撹拌の下で100℃に加熱し、17時間反応させ
た後44μmのスクリーンで分級した。44μmスク
リーン通過率は原料MgO基準で96%であり、ス
クリーンで篩つた篩下生成物の水和率は99.6%で
あつた。 この生成物を水洗過乾燥して得た水酸化マグ
ネシウムの組成および性状を表3に、走査型電子
顕微鏡(5000倍)で撮影した結晶の形状を第1図
に示す。第1図に示すように、本方法で製造した
水酸化マグネシウムは1μm〜0.5μmに粒径の中心
を持つた、結晶粒子が均一な角柱状結晶であつ
た。 実施例 2 実施例1と同様な操作で調整したMgOスラリ
ーを反応器に20供給した。このスラリーの
MgO中に含まれる酸化カルシウム40.8gと当量
になる塩酸および原料MgOのモル数の2%に相
当する当量数の塩酸(純分換算198g)を加え、
十分な撹拌の下で100℃に加熱し、17時間反応さ
せた後、44μmのスクリーンで分級した。44μm
スクリーン通過率は原料MgO基準で94%であり、
篩下生成物の水和率は99.8%であつた。 実施例1と同様な操作で処理した水酸化マグネ
シウムの組成および性状を表3に、走査型電子顕
微鏡(5000倍)で撮影した結晶の形状を第2図に
示す。第2図に示すように、本方法で製造した水
酸化マグネシウムは0.5μm〜1μm程度に粒径の中
心を持つた、結晶粒子が均一な角柱状結晶であつ
た。 なお、実施例1、実施例2で得られた水酸化マ
グネシウムは合成樹脂充填剤として好適であつ
た。 実施例 3 実施例1と同様な操作で調整したMgOスラリ
ーを反応器に20供給した。このスラリーの
MgO中に含まれる酸化カルシウム40.8gと当量
になる酢酸マグネシウムおよび原料MgOのモル
数の1%に相当する当量数の酢酸マグネシウム
(無水塩換算245g)を加え、十分な撹拌の下で
100℃に加熱し、14時間反応させた後、44μmの
スクリーンで分級した。44μmスクリーン通過率
は原料MgO基準で96%であり、篩下生成物の水
和率は99.8%であつた。 実施例1と同様な操作で処理した水酸化マグネ
シウムの組成および性状を表3に、透過型電子顕
微鏡(10000倍)で撮影した結晶の形状を第3図
に示す。第3図に示すように、本方法で製造した
水酸化マグネシウムは1μm程度に発達した六角
平板状結晶であり、著しく配向性に富んだもので
あつた。 実施例 4 実施例1と同様な操作で調整したMgOスラリ
ーを反応器に20供給した。このスラリーの
MgO中に含まれる酸化カルシウム40.8gに当量
となる蟻酸および原料MgOのモル数の2%に相
当する当量数の蟻酸(純分換算250g)を加え、
十分な撹拌の下で100℃に加熱し、14時間反応さ
せた後、44μmのスクリーンで分級した。44μm
スクリーン通過率は原料MgO基準で90%であり、
篩下生成物の水和率は99.1%であつた。 実施例1と同様な操作で処理した水酸化マグネ
シウムの組成および性状を表3に、透過型電子顕
微鏡(10000倍)で撮影した結晶の形状を第4図
に示す。第4図に示すように、本方法で製造した
水酸化マグネシウムは1μm程度に発達した六角
平板状結晶であつた。 比較例 1 実施例1と同様な操作で調整したMgOスラリ
ーを添加剤を加えず水和反応器に供給した。この
スラリーを十分な撹拌の下で100℃に加熱して40
時間反応させた後、44μmのスクリーンで分級し
た。44μmスクリーン通過率は原料のMgO基準で
75%であり、篩下生成物の水和率は90%であつ
た。 水洗、過、乾燥した水酸化マグネシウムの組
成および性状を表2に、走査型電子顕微鏡(5000
倍)で撮影した結晶の形状を第5図に示す。第5
図に示すように、添加剤を用いないで水和させた
水酸化マグネシウムは結晶の形状が不定であり、
分散性も悪いものであつた。 以上の実施例および比較例で明らかな如く、酸
基の効果は水酸化マグネシウムの結晶成長制御作
用が著しいばかりでなく、水和反応を促進する触
媒的作用を果すことが認められた。 実施例 5 実施例1と同様な操作で調製したMgOスラリ
ーを反応器に20供給した。このスラリーの
MgO中に含まれる酸化カルシウム40.8gに当量
となる酢酸マグネシウムおよび原料MgOのモル
数の0.1、0.5、1、5%に相当する当量数の酢酸
マグネシウムを加え、十分な撹拌の下で100℃に
加熱し、反応時間の経過によるMgOのMg
(OH)2転化率を測定した。その結果を第7図に
示す。第7図中、イは0.1%当量、ロは0.5%当
量、ハは1%当量、ニは5%当量加えたものを表
わす。 第7図に示すように酸基の添加量によつて水和
速度が大きく変化し、0.5%当量以下の酸基では
水和反応が著しく遅くなり、5当量以上では水和
反応速度が早くなるが結晶の微細化が認められ
る。
The present invention relates to a method for producing magnesium hydroxide used in the field of fine materials such as fillers for synthetic resins. This invention relates to a method for producing magnesium hydroxide with improved crystal shape, crystal size, and dispersibility by hydration in an aqueous solution. Magnesium clinker is a major use of magnesium hydroxide, and it is already used in large quantities in magnesia fertilizers and flue gas desulfurization agents. There is a field in which the excellent properties of magnesium hydroxide are utilized, although the amount is small compared to the above-mentioned uses. For example, magnesium oxide is used as a filler for synthetic resins, a flame retardant, a sizing agent, and a pharmaceutical antacid, and the calcined magnesium oxide is used in various applications as activated magnesia. A commonly known method for producing magnesium hydroxide is to precipitate magnesium hydroxide by reacting slaked lime or caustic alkali with an aqueous solution containing Mg ions, such as seawater or bittern. However, in the case of magnesium hydroxide produced by known methods, the smallest unit of crystal that makes up the particles is less than 0.1μ, and even if the reaction temperature is raised or the reaction rate is strictly controlled, the crystal size is only about 0.2μ. However, it is extremely difficult to increase the size of magnesium hydroxide crystals. In addition, conventional magnesium hydroxide forms relatively strongly entangled aggregates with irregular crystals, resulting in secondary particles ranging from several micrometers to several tens of micrometers, and this is the basic particle size of magnesium hydroxide. be observed. Furthermore, the magnesium hydroxide of the known method contains various ions (Na + , K + , Cl - , SO 2- 4 Ca 2+ , B 2 O 3 2- 3 ) derived from the raw materials;
There are many impurities due to adsorption, etc., making it difficult to obtain highly pure magnesium hydroxide. For example, when such magnesium hydroxide is mixed with a synthetic resin, the resin does not penetrate into the details of the particles, making it difficult to obtain a homogeneous composition, which causes a mottled pattern on the surface of the resulting molded product. . For this reason, magnesium hydroxide used in the fine arts field not only has high chemical purity, but also requires special physical properties such as the size, shape, particle size distribution, and dispersibility of the crystal, which is the smallest unit. ing. However, it has been extremely difficult to change these physical properties (particularly the crystal shape) or to control them within desired values. Conventionally known methods for producing magnesium hydroxide used in the fines field include high-temperature, high-pressure treatment of magnesium hydroxide, alkali treatment, or reaction precipitation of magnesium hydroxide using slaked lime. A method has been proposed in which a portion of the magnesium hydroxide is reacted with magnesium chloride to control the production rate of magnesium hydroxide. However, although these methods are excellent for obtaining magnesium hydroxide suitable for each purpose, they require expensive equipment and complicated processes, and cannot cover a wide range of uses of magnesium hydroxide with one equipment and method. There is a drawback that it cannot be done. As a result of intensive research in order to solve the above-mentioned drawbacks of the conventional technology, the present inventors found that by hydrating inert magnesium oxide calcined at a temperature of 1400°C or higher in the presence of a certain amount of acid groups, The inventors have discovered that the above object can be achieved, and have completed the present invention. That is, the present invention provides magnesium oxide calcined at 1400° C. or higher in a water-suspended slurry state containing an amount of acid groups as an acid or a magnesium salt corresponding to an amount exceeding the number of equivalents of calcium oxide in the raw material of the raw magnesium oxide. This is a method for producing magnesium hydroxide, which is characterized by hydration in a medium. According to the present invention, as a method of changing the physical properties of magnesium hydroxide, magnesium oxide is subjected to a hydration reaction under conditions where the type of acid group and temperature are controlled. From this, it is possible to control the crystal shape, crystal size, dispersibility, etc., which are the basic physical properties of magnesium hydroxide, as shown in the electron micrographs in Examples below. The crystals obtained by the present invention are ``prismatic crystals'' that are extremely difficult to produce using conventional methods, or ``hexagonal plate-shaped crystals'' with significantly developed crystals, and the single crystals are larger than those of conventional magnesium hydroxide. It is extremely uniform and has excellent dispersibility and orientation. Therefore, when magnesium hydroxide obtained by the method of the present invention is mixed with, for example, a synthetic resin, the resin penetrates well and a homogeneous composition can be obtained. It has characteristics such as excellent film properties when applied. Activated magnesia, which is obtained by thermally decomposing a magnesium compound, reacts with water to easily produce magnesium hydroxide through the formula MgO + H 2 O → Mg (OH).
It is known that this magnesium oxide rapidly loses its chemical reactivity even with a slight increase in firing temperature, and the rate of hydration reaction with water becomes extremely slow.
Therefore, in conventional technology, the appropriate firing temperature for magnesia to produce magnesium hydroxide by hydrating magnesium oxide is around 1000℃.
A method of hydrating activated magnesia calcined to this degree with water, seawater, or an aqueous solution of MgCl 2 or MgSO 4 (Japanese Patent Publication No. 49-40602, French Patent No.
975099) has already been published. However, the purpose of these methods is to remove water-soluble impurities or recover highly active magnesium hydroxide, and these methods do not change the crystal shape of the magnesium hydroxide produced. Or,
It was thought that it would be extremely difficult to make crystals larger. The present inventors investigated magnesium oxide calcined at temperatures below 1400°C, which had previously been considered disadvantageous as conditions for producing magnesium hydroxide industrially due to its extremely slow hydration reaction rate. If acid groups are present during the process, depending on the type of acid group, for example, due to the presence of NO - 3 , Cl - , SO 2- 4 , magnesium hydroxide crystals become prismatic, and organic compounds such as acetate ions form. Due to the presence of acid groups, the shape of the crystal changes significantly, such as becoming "hexagonal plate-like", producing magnesium hydroxide with various different physical properties, and by adjusting the concentration of acid groups, It was also discovered that by appropriately increasing the hydration reaction temperature, the size of the crystals can be controlled, and the hydration rate can be accelerated to an industrially practicable level, thereby achieving the objective. On this occasion,
In principle, the higher the hydration reaction temperature, the smaller the crystals will be, but by adjusting the concentration of acid groups and the hydration reaction temperature, it is possible to control the crystal size and at the same time form single crystals with good dispersibility. can be generated. The present invention revealed for the first time that magnesium hydroxide has different crystal shapes depending on the type of acid group. The magnesium oxide used in the present invention may be produced from any magnesium compound, but the calcination temperature is 1400°C or higher, preferably 1700°C or higher.
The temperature must be above ℃. Firing temperature is 1400
If the temperature is lower than ℃, there is little development of magnesia, which is usually called periclase, and the hydration reaction rate of such magnesium oxide is too fast, resulting in fine crystals and irregular aggregates, so it is not suitable for use in the method of the present invention. It's inappropriate. In addition, when magnesium oxide that has been oxidized by firing at a temperature lower than 1400°C is used as a raw material, the reaction is such that magnesium hydroxide with good dispersibility can be obtained even if the type and amount of acid groups added are changed. is difficult to control. If there are many impurities in magnesium oxide, these ions will elute during the hydration reaction and inhibit crystal growth, so it is preferable that the MgO purity in the raw material is 96% or more, and more preferably 97.5% or more. . High-purity magnesia clinker, which is currently used in large quantities as a refractory in steel manufacturing, not only meets the above requirements, but also allows the particle size of the raw material to be subjected to the reaction to be adjusted arbitrarily, and is therefore suitable as a raw material for the present invention. The hydration reaction needs to be carried out in a slurry state in which much excess water is coexisting than the amount of water required to convert magnesium oxide to magnesium hydroxide, and the concentration is not particularly limited, but it is carried out at a concentration of 200 to 300 g. is appropriate. The hydration reaction of this slurry is carried out in a reactor capable of stirring and heating, and the acid groups to be added include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid, or their magnesium salts, as well as complex acids, formic acid, citric acid, etc. organic acids or their magnesium salts are used. The amount of acid groups to be added varies depending on the amount of calcium oxide in the raw material, but preferably acid groups equivalent to 0.5% or more of the equivalent number of raw material magnesium oxide (preferably 0.5% to 5%) Hereinafter, it is more preferably the total amount of acid groups corresponding to the number of equivalents of 1% or more and 3% or less) and the acid groups corresponding to the number of equivalents of calcium oxide. If the amount of acid groups is less than 0.5% equivalent to the raw material magnesium oxide, the effect of controlling crystal growth of magnesium hydroxide will be reduced and the hydration reaction rate will be slow. In addition, if the amount of acid groups is too large, the hydration reaction rate of magnesium oxide will be faster than necessary, causing problems such as finer crystals and uneven particle sizes, as well as increased costs due to the increase in acid groups. It's not a good idea because it will increase. If cations other than Mg ions are present in the magnesium oxide slurry at a concentration equal to or higher than the Mg ion concentration, the effect of controlling the crystal shape will be significantly inhibited, so it is desirable that the amount of these ions present be as small as possible. In particular, it is necessary to minimize the coexistence of ions such as sodium and potassium, so the acid groups to be added are inorganic and
Magnesium salts that dissolve in organic acids or slurries to generate Mg ions and acid groups are preferred. The particle size of magnesium oxide has a significant effect on the rate of magnesium hydroxide formation. Naturally, if the particles are large, the completion of the hydration reaction will be delayed, so
It is necessary to carry out the hydration reaction for a long time, which increases the size of the hydration reaction equipment and requires a step to separate unhydrated coarse particles from the hydrated magnesium hydroxide slurry. In order to improve the productivity of such hydration equipment and simplify the manufacturing process, the thickness is preferably 250 μm or less,
More preferably, raw material magnesium oxide with a diameter of 100 μm or less is used. Furthermore, the production rate of magnesium hydroxide is significantly influenced by the hydration reaction temperature. Lower temperatures make it easier to control crystallization, but the hydration reaction rate is significantly slower, requiring larger hydration equipment and a process to separate unhydrated magnesium oxide from produced magnesium hydroxide. do. Since the hydration reaction rate is particularly slow at temperatures lower than 60°C, it is desirable to set the hydration reaction temperature to 60°C or higher. During the reaction, it is preferable to perform appropriate stirring in order to ensure the effects of the present invention and to make the reaction uniform. The magnesium hydroxide produced by the reaction is made into a product through processes such as water washing and purification as necessary.
It is also possible to adsorb and mix necessary components using this process from washing with water to drying, or to add appropriate physical properties to magnesium hydroxide using a spray drying method or the like. The effects of the present invention will be explained below with reference to Examples. Example 1 The commercially available magnesia clinker shown in Table 1 was ground with a fret mill to form a powder that passed through 105μ,
It was mixed with water and fed as a slurry of 200 g/l of MgO into a reactor equipped with a stirrer and a heating device. Magnesium nitrate equivalent to 40.8 g of calcium oxide contained in the MgO of this slurry and magnesium nitrate (255 g in anhydrous salt equivalent) equivalent to 1% of the mole of raw material MgO were added, and the mixture was stirred thoroughly. After heating to 100°C and reacting for 17 hours, the mixture was classified using a 44 μm screen. The rate of passage through the 44 μm screen was 96% based on the raw material MgO, and the hydration rate of the under-sieve product sieved through the screen was 99.6%. The composition and properties of magnesium hydroxide obtained by washing and drying this product are shown in Table 3, and the shape of the crystals taken with a scanning electron microscope (5000x magnification) is shown in Figure 1. As shown in FIG. 1, the magnesium hydroxide produced by this method had a center particle diameter of 1 μm to 0.5 μm, and the crystal grains were uniform prismatic crystals. Example 2 Twenty minutes of MgO slurry prepared in the same manner as in Example 1 was fed to a reactor. of this slurry
Add hydrochloric acid equivalent to 40.8 g of calcium oxide contained in MgO and equivalent number of hydrochloric acid equivalent to 2% of the number of moles of raw material MgO (198 g in pure terms),
The mixture was heated to 100° C. with sufficient stirring, reacted for 17 hours, and then classified using a 44 μm screen. 44μm
The screen passing rate is 94% based on raw material MgO,
The hydration rate of the undersieve product was 99.8%. The composition and properties of magnesium hydroxide treated in the same manner as in Example 1 are shown in Table 3, and the shape of the crystals taken with a scanning electron microscope (5000x magnification) is shown in FIG. As shown in FIG. 2, the magnesium hydroxide produced by this method had a center particle diameter of about 0.5 μm to 1 μm, and the crystal particles were uniform prismatic crystals. Note that the magnesium hydroxide obtained in Examples 1 and 2 was suitable as a synthetic resin filler. Example 3 Twenty minutes of MgO slurry prepared in the same manner as in Example 1 was fed to a reactor. of this slurry
Add magnesium acetate equivalent to 40.8 g of calcium oxide contained in MgO and magnesium acetate (245 g in terms of anhydrous salt) equivalent to 1% of the mole of raw material MgO, and stir well.
After heating to 100°C and reacting for 14 hours, the mixture was classified using a 44 μm screen. The rate of passage through the 44 μm screen was 96% based on raw material MgO, and the hydration rate of the product under the sieve was 99.8%. The composition and properties of magnesium hydroxide treated in the same manner as in Example 1 are shown in Table 3, and the shape of the crystals photographed with a transmission electron microscope (10,000x magnification) is shown in FIG. As shown in FIG. 3, the magnesium hydroxide produced by this method was a hexagonal tabular crystal with a diameter of about 1 μm, and was extremely highly oriented. Example 4 Twenty minutes of MgO slurry prepared in the same manner as in Example 1 was supplied to a reactor. of this slurry
Add an equivalent amount of formic acid to 40.8 g of calcium oxide contained in MgO and an equivalent number of formic acid equivalent to 2% of the number of moles of raw material MgO (250 g in terms of pure content),
The mixture was heated to 100° C. under sufficient stirring, reacted for 14 hours, and then classified using a 44 μm screen. 44μm
The screen passing rate is 90% based on raw material MgO,
The hydration rate of the undersieve product was 99.1%. The composition and properties of magnesium hydroxide treated in the same manner as in Example 1 are shown in Table 3, and the shape of the crystals photographed with a transmission electron microscope (10,000x magnification) is shown in FIG. As shown in FIG. 4, the magnesium hydroxide produced by this method was a hexagonal tabular crystal with a diameter of about 1 μm. Comparative Example 1 A MgO slurry prepared in the same manner as in Example 1 was supplied to a hydration reactor without adding any additives. This slurry was heated to 100 °C under good stirring for 40 min.
After reacting for a period of time, the mixture was classified using a 44 μm screen. 44μm screen passing rate is based on raw material MgO
The hydration rate of the product under the sieve was 90%. Table 2 shows the composition and properties of magnesium hydroxide that has been washed, filtered, and dried.
Figure 5 shows the shape of the crystal photographed at 100% magnification. Fifth
As shown in the figure, magnesium hydroxide hydrated without additives has irregular crystal shapes;
The dispersibility was also poor. As is clear from the above Examples and Comparative Examples, it was recognized that the acid group not only has a remarkable effect of controlling the crystal growth of magnesium hydroxide, but also has a catalytic effect of promoting the hydration reaction. Example 5 Twenty minutes of MgO slurry prepared in the same manner as in Example 1 was fed to a reactor. of this slurry
Add an equivalent amount of magnesium acetate to 40.8 g of calcium oxide contained in MgO and an equivalent number of magnesium acetate equivalent to 0.1, 0.5, 1, or 5% of the number of moles of raw material MgO, and heat to 100°C with sufficient stirring. Mg of MgO by heating and reaction time lapse
(OH) 2 conversion rate was measured. The results are shown in FIG. In Figure 7, A represents 0.1% equivalent, B represents 0.5% equivalent, C represents 1% equivalent, and D represents 5% equivalent. As shown in Figure 7, the hydration rate changes greatly depending on the amount of acid groups added, with acid groups below 0.5% equivalent the hydration reaction slows down significantly, and amounts over 5 equivalents the hydration reaction speeds up. However, finer crystals are observed.

【表】 比較例 2 海水と消石灰を反応させて得られた沈殿を精
製、水洗、過し、ヘレフシヨフ炉で1100℃前後
で焼成した軽焼マグネシアを原料とした。 原料の組成を表2に示す。
[Table] Comparative Example 2 The raw material was light calcined magnesia, which was obtained by refining the precipitate obtained by reacting seawater and slaked lime, washing with water, filtering, and firing at around 1100°C in a Herefschoff furnace. The composition of the raw materials is shown in Table 2.

【表】 実施例1と同様に原料MgOを200g/のスラ
リーとし、20を反応器に供給した。このスラリ
ーのMgO中に含まれる酸化カルシウム45.2gに
当量となる塩化マグネシウム、および原料MgO
のモル数の2%に相当する当量数の塩化マグネシ
ウム(無水塩化マグネシウム換算237g)を加え、
十分な撹拌の下で70℃に加熱し、3時間反応させ
た後、44μmのスクリーンで分級した。44μmス
クリーン通過率は、原料MgO基準で98.8%であ
り、篩下生成物の水和率は約100%であつた。 実施例1と同様な操作で処理した水酸化マグネ
シウムの組成および性状を表3に、第6図に走査
型電子顕微鏡で撮影した結晶の形状を示す。第6
図で示すように、本方法で製造した水酸化マグネ
シウムは、実施例で示すような単一分散結晶とな
らず、凝集体であり、分散性が極めて悪い。
[Table] In the same manner as in Example 1, raw material MgO was made into a slurry of 200 g/mt, and 20 g/m of slurry was supplied to the reactor. Magnesium chloride equivalent to 45.2g of calcium oxide contained in MgO of this slurry, and raw material MgO
Add equivalent number of magnesium chloride (237 g in terms of anhydrous magnesium chloride) corresponding to 2% of the number of moles of
The mixture was heated to 70° C. under sufficient stirring, reacted for 3 hours, and then classified using a 44 μm screen. The rate of passage through the 44 μm screen was 98.8% based on raw material MgO, and the hydration rate of the product under the sieve was approximately 100%. Table 3 shows the composition and properties of magnesium hydroxide treated in the same manner as in Example 1, and FIG. 6 shows the shape of the crystals photographed with a scanning electron microscope. 6th
As shown in the figure, the magnesium hydroxide produced by this method does not form monodispersed crystals as shown in the examples, but is an aggregate, and has extremely poor dispersibility.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で製造した水酸化マグネシウ
ムの走査型電子顕微鏡写真、第2図は実施例2で
製造した水酸化マグネシウムの走査型電子顕微鏡
写真、第3図は実施例3で製造した水酸化マグネ
シウムの透過型電子顕微鏡写真、第4図は実施例
4で製造した水酸化マグネシウムの透過型電子顕
微鏡写真、第5図は比較例1で製造した水酸化マ
グネシウムの走査型電子顕微鏡写真、第6図は比
較例2で製造した水酸化マグネシウムの走査型電
子顕微鏡写真、第7図は酸基の添加量と反応時間
の経過によるMgOのMg(OH)2転化率との関係を
示すグラフである。
Fig. 1 is a scanning electron micrograph of the magnesium hydroxide produced in Example 1, Fig. 2 is a scanning electron micrograph of the magnesium hydroxide produced in Example 2, and Fig. 3 is a scanning electron micrograph of the magnesium hydroxide produced in Example 3. A transmission electron micrograph of magnesium hydroxide, FIG. 4 is a transmission electron micrograph of magnesium hydroxide produced in Example 4, and FIG. 5 is a scanning electron micrograph of magnesium hydroxide produced in Comparative Example 1. Figure 6 is a scanning electron micrograph of magnesium hydroxide produced in Comparative Example 2, and Figure 7 is a graph showing the relationship between the amount of acid groups added and the Mg(OH) 2 conversion rate of MgO over reaction time. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 1400℃以上で焼成した酸化マグネシウムを、
原料酸化マグネシウムの原料中の酸化カルシウム
の当量数を超える量に相当する酸基の量を酸また
はマグネシウム塩として含む水けん濁スラリー状
態中で水和することを特徴とする水酸化マグネシ
ウムの製造法。
1 Magnesium oxide calcined at 1400℃ or higher,
A method for producing magnesium hydroxide, which comprises hydration in a water-suspended slurry state containing acid or magnesium salt in an amount of acid groups corresponding to an amount exceeding the number of equivalents of calcium oxide in the raw material of magnesium oxide. .
JP1240080A 1980-02-06 1980-02-06 Manufacture of magnesium hydroxide Granted JPS56109820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240080A JPS56109820A (en) 1980-02-06 1980-02-06 Manufacture of magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240080A JPS56109820A (en) 1980-02-06 1980-02-06 Manufacture of magnesium hydroxide

Publications (2)

Publication Number Publication Date
JPS56109820A JPS56109820A (en) 1981-08-31
JPS6335571B2 true JPS6335571B2 (en) 1988-07-15

Family

ID=11804206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240080A Granted JPS56109820A (en) 1980-02-06 1980-02-06 Manufacture of magnesium hydroxide

Country Status (1)

Country Link
JP (1) JPS56109820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268713A (en) * 1995-03-02 1996-10-15 Tateho Chem Ind Co Ltd Refining method of magnesium oxide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275715A (en) * 1983-04-12 1990-11-09 Ube Chem Ind Co Ltd High purity magnesium hydroxide and its production
US4695445A (en) * 1985-08-14 1987-09-22 Asahi Glass Company Ltd. Magnesium hydroxide and process for its production
JPS63190708A (en) * 1987-02-02 1988-08-08 Kawatetsu Kogyo Kk Production of magnesium hydroxide for neutralizing waste acid
JPH11343187A (en) * 1998-06-01 1999-12-14 Tosoh Corp Granular magnesium hydroxide fertilizer and its production
KR100395610B1 (en) * 2000-09-29 2003-08-21 태성화학(주) Method for preparing magnesium hydroxide slurries
TW200710161A (en) * 2005-07-13 2007-03-16 Hitachi Chemical Co Ltd Epoxy resin composition for encapsulation and electronic part device
JP5793912B2 (en) * 2011-03-29 2015-10-14 吉澤石灰工業株式会社 Flame retardant comprising highly hydrated mafic slaked lime as an active ingredient, method for producing the same, and thermoplastic polymer containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268713A (en) * 1995-03-02 1996-10-15 Tateho Chem Ind Co Ltd Refining method of magnesium oxide

Also Published As

Publication number Publication date
JPS56109820A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
KR100922919B1 (en) Process for preparing zirconium-cerium-based mixed oxides
US9061919B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
JPH0137331B2 (en)
JPH11505798A (en) Ospheroidally agglomerated basic cobalt (II) carbonates and spheroidally agglomerated cobalt (II) hydroxides, their preparation and use
JPS6335571B2 (en)
JPS5830248B2 (en) Fibrous magnesium hydroxide and its manufacturing method
JPH1121125A (en) Fine thin platy boehmite particles and their production
JPH0140768B2 (en)
JPH03170325A (en) Production of magnesium hydroxide
KR100283527B1 (en) Method of preparing calcium carbonate
JP2007254193A (en) Anhydrous magnesium carbonate powder and its manufacturing method
JP3906352B2 (en) Method for producing YAG transparent sintered body
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP4157202B2 (en) Process for producing spindle-shaped calcium carbonate
KR0152972B1 (en) Method of calcium carbonate
JP2008137845A (en) Method of producing magnesium oxide
JPH02293318A (en) Production of magnesite, its use for produc- tion of magnesium fluoride and magnesium fluoride obtained by this method
JPH09315865A (en) Production of transparent yttrium oxide sintered compact
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH06191846A (en) Indium oxide powder, its production and production of ito sintered compact
CN114314618B (en) Magnesium carbonate double salt crystal, amorphous carbonate containing magnesium and preparation method of active magnesium oxide
JPH06102542B2 (en) Method for producing spherical particle calcium carbonate
KR101656035B1 (en) A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust
JP2001114514A (en) Method for producing fusiform calcium carbonate with high dispersibility
CN115340126B (en) Rare earth zirconate particles and preparation method thereof