JPH03170325A - Production of magnesium hydroxide - Google Patents

Production of magnesium hydroxide

Info

Publication number
JPH03170325A
JPH03170325A JP30706689A JP30706689A JPH03170325A JP H03170325 A JPH03170325 A JP H03170325A JP 30706689 A JP30706689 A JP 30706689A JP 30706689 A JP30706689 A JP 30706689A JP H03170325 A JPH03170325 A JP H03170325A
Authority
JP
Japan
Prior art keywords
surface area
specific surface
magnesium hydroxide
aqueous solution
mgcl2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30706689A
Other languages
Japanese (ja)
Inventor
Yukinori Omote
表 征則
Atsushi Kidera
木寺 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP30706689A priority Critical patent/JPH03170325A/en
Publication of JPH03170325A publication Critical patent/JPH03170325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain Mg(OH)2 having small specific surface area and large crystal diameter in a low cost by filtering Mg(OH)2 having specific surface area larger than a fixed value obtained from reaction of Mg<2+>-containing solution with alkali, dehydrating, adding to aqueous solution of MgCl2 and subjecting to hydrothermal synthesis in a fixed condition. CONSTITUTION:A solution containing Mg<2+> such as bittern, sea water or aqueous solution of MgCl2 is reacted with alkali such as slaked lime or caustic alkali to obtain Mg(OH)2 having >=20m<2>/g specific surface area measured by BET method. Next, said Mg(OH)2 is filtered and dehydrated, then added to >=0.5wt.% aqueous solution of MgCl2. Thus, resultant MgCl2-containing Mg(OH)2 slurry is charged to a pressure-resistant vessel and subjected to hydrothermal synthesis in a condition of >=2.0kg/cm<2> pressure at >=120 deg.C with stirring. As the result, Mg(OH)2 having <=10m<2>/g specific surface area measured by BET method and hexagonal-frismatic crystal is obtained. said Mg(OH)2 has low reactivity and stable state is kept for a long period of time as the effect to other substance coexisting in a case of mixing with resin, etc., is small, therefore, said Mg(OH)2 is able to be effectively utilized as a non-halogen fire retardant filler, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水酸化マグネシウム( M g (OH) 2
)の製造方法に係り、詳しくは、BET法による比表面
積(以下単に比表面積と称することがある。)が10r
n”/g以下で、六角柱状結晶の水酸化マグネシウムを
低コストに、かつ工業的に有利に製造することができる
水酸化マグネシウムの製造方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention provides magnesium hydroxide (M g (OH) 2
), specifically, the specific surface area (hereinafter sometimes simply referred to as specific surface area) by the BET method is 10r.
The present invention relates to a method for producing magnesium hydroxide, which can produce magnesium hydroxide in the form of hexagonal columnar crystals at low cost and industrially advantageously.

[従来の技術] 水酸化マグネシウムは各種分野において幅広い用途を有
している。その中の一つとして、熱可塑性樹脂の非ハロ
ゲン難燃剤としての利用が注目を集めている。このよう
な難燃剤フィラーとして水酸化マグネシウムを使用する
場合、水酸化マグネシウムの表面を表面処理剤などでコ
ーティングを行なうため、比表面積値が10rn”/g
以下で結晶粒径が大きく、しかも、フィラーとして、製
品強度を向上させるという意味において混練時に均一に
分散されるものか好ましい。このため、二次凝集の少な
い水酸化マグネシウムが要望されている。即ち、比表面
積が1orr?/gを超えるものでは、結晶径が小さい
ために二次凝集粒子を形成し易く、樹脂との混糾の際、
樹脂に対する分散性が極めて悪く、加工+1.、難燃性
、機械強度、耐水絶縁性等の諸物性に悪影響を及ぼす。
[Prior Art] Magnesium hydroxide has a wide range of uses in various fields. As one of these, the use of thermoplastic resins as non-halogen flame retardants is attracting attention. When magnesium hydroxide is used as such a flame retardant filler, the surface of the magnesium hydroxide is coated with a surface treatment agent, so the specific surface area value is 10rn"/g.
It is preferable that the crystal grain size is large and that the filler can be uniformly dispersed during kneading in order to improve the strength of the product. For this reason, magnesium hydroxide with less secondary aggregation is desired. That is, the specific surface area is 1orr? /g, the crystal size is small and it is easy to form secondary agglomerated particles, and when mixed with resin,
The dispersibility in resin is extremely poor, and processing +1. , which has an adverse effect on various physical properties such as flame retardancy, mechanical strength, and water resistance and insulation properties.

従来、比表面積の小さい、即ち結晶径の大きい水酸化マ
グネシウム又は、六角柱状結晶を有する水酸化マグネシ
ウムを製造する方法としては、■ 水酸化マグネシウム
にそのマグネシア量に対し、0.15〜3重量%の水酸
化ナトリウムを添加し、1、5 k g / c m’
以上の圧力下、120℃以上の温度に加熱することによ
り比表面積値の小さな水酸化マグネシウムを製造する方
法(特公昭50−23680号)。
Conventionally, methods for producing magnesium hydroxide with a small specific surface area, that is, a large crystal diameter, or magnesium hydroxide having hexagonal columnar crystals include: (1) adding 0.15 to 3% by weight of magnesium hydroxide to the amount of magnesia; of sodium hydroxide, 1,5 kg/cm'
A method for producing magnesium hydroxide having a small specific surface area value by heating to a temperature of 120° C. or higher under the above pressure (Japanese Patent Publication No. 50-23680).

■ 塩基性塩化マグネシウム又は塩基性硝酸マグネシウ
ム含有反応生成物を加圧条件下にて加熱して比表面積値
の小さな水酸化マグネシウムを製造する方法(特公昭6
3−48809号) などが提案されている。また、 ■ 六方晶系の鮎晶を得るためには、アルカリ溶液中で
加圧加熱条件が必要である(化学大辞典編集委員会編「
化学大辞典」共立出版(1964)、No.5、第37
頁 ことが知られ、その他 ■ 比表面積が30〜60m2/gの水酸化マグネシウ
ムを10〜40重量%濃度の塩化カルシウム水溶液中に
加え、高温高圧下のオートクレープ養牛によって、比表
面積が10m’/g以下の水酸化マグネシウムを製造す
る方法(特開昭57−100918号)。
■ A method for producing magnesium hydroxide with a small specific surface area value by heating a reaction product containing basic magnesium chloride or basic magnesium nitrate under pressurized conditions.
3-48809) have been proposed. In addition, ■ To obtain hexagonal Ayu crystals, pressurized heating conditions are required in an alkaline solution (edited by the Chemistry Encyclopedia Editorial Committee).
Chemistry Dictionary” Kyoritsu Shuppan (1964), No. 5. 37th
It is known that magnesium hydroxide with a specific surface area of 30 to 60 m2/g is added to a calcium chloride aqueous solution with a concentration of 10 to 40% by weight, and the specific surface area is reduced to 10 m' by autoclave feeding under high temperature and high pressure. /g or less (Japanese Patent Application Laid-open No. 100918/1983).

が}是案されている。is recommended.

[発明が解決しようとする課題] 上記従来の方法幻、高濃度の塩化カルシウム水溶液を用
いて処理ずるため、オートクレープが腐食し易いという
問題がある。また、水酸化ナトリウム水溶液中にて木熱
合成を行なうため、製造コストが高くなるという問題も
ある。
[Problems to be Solved by the Invention] The conventional method described above has a problem in that the autoclave is susceptible to corrosion because the treatment is performed using a highly concentrated calcium chloride aqueous solution. Furthermore, since wood thermal synthesis is carried out in an aqueous sodium hydroxide solution, there is also the problem of increased manufacturing costs.

本発明は上記従来の装置腐食の問題等を解決し、粒子径
の大きな六角柱状結晶で二次凝集の問題が改善された水
酸化マグネシウムであって、しかも、比表面積がIOm
2/g以下と小さく、結晶径の大きい水酸化マグネシウ
ムを、低コストにかつ工業的に有利に製造する方法を提
供することを目的とする。
The present invention solves the problems of conventional equipment corrosion, etc., and provides magnesium hydroxide that has hexagonal columnar crystals with a large particle size and improves the problem of secondary aggregation, and has a specific surface area of IOm.
It is an object of the present invention to provide a method for producing magnesium hydroxide having a small crystal size of 2/g or less and a large crystal size at low cost and industrially advantageously.

[課題を解決するための手段] 本発明の水酸化マグネシウムの製造方法は、マグネシウ
ムイオン含有液とアルカリとの反応によりBET法によ
る比表面積20d/g以上の水酸化マグネシウムを得、
得られた水酸化マグネシウムを濾過脱水した後、0.5
重量%以上の塩化マグネシウム水溶液に加えて、水酸化
マグネシウム濃度5重量%以上、温度120℃以上、圧
力2.0kg/m’以上の条件下で水熱合成することに
よりBET法による比表面積が1orr?/g以下で、
かつ六角柱状帖晶の水酸化マグネシウムを得ることを特
徴とする 以下に本発明を訂細に説明する。
[Means for Solving the Problems] The method for producing magnesium hydroxide of the present invention includes obtaining magnesium hydroxide having a specific surface area of 20 d/g or more by the BET method by reacting a magnesium ion-containing liquid with an alkali,
After filtering and dehydrating the obtained magnesium hydroxide, 0.5
In addition to a magnesium chloride aqueous solution of % by weight or more, hydrothermal synthesis is performed under the conditions of a magnesium hydroxide concentration of 5% by weight or more, a temperature of 120°C or more, and a pressure of 2.0 kg/m' or more, so that the specific surface area by the BET method is 1 orr. ? /g or less,
The present invention, which is characterized in that magnesium hydroxide is obtained in the form of hexagonal columnar crystals, will be described in detail below.

本発明の方法においては、まず、マグネシウムイオン(
Mg”)含有液とアルカリとの反応により、BET法の
よる比表面積が20m2/g以上の水酸化マグネシウム
(Mg (OH)2 )を製造する。ここで、M g 
2”含有液としては、苦汁、海水又は塩化マグネシウム
(MgCJ22)水溶液等を用いることができる。アル
カリとしては消石灰又は苛性アルカリ、アンモニア等を
用いることができる。
In the method of the present invention, first, magnesium ions (
Magnesium hydroxide (Mg(OH)2) having a specific surface area of 20 m2/g or more by the BET method is produced by reacting a liquid containing Mg") with an alkali. Here, Mg
As the 2"-containing liquid, bittern, seawater, or an aqueous magnesium chloride (MgCJ22) solution can be used. As the alkali, slaked lime, caustic alkali, ammonia, etc. can be used.

これら海水又は苦汁のようなMg2+を含む水溶液とア
ルカリとは、公知の方法によって反応させることができ
、反紀、液を濾過してMg(OH)2湿潤ケーキを得る
。得られたMg (OH)2を電子顕微鏡にて観察する
とO、1〜0.5μm程度の小さく崩れた不規則な板状
結晶を有しており、また、多くのMg(OH)2粒子が
凝集して数μm〜数10μmの二次粒子を形成している
。反応液を濾過、洗浄、乾燥するなどして、母液の存在
しない状態とし、必要に応じて一部粉砕して得られるM
g(OH)2粉末は、通常、比表面積20〜100rn
”/Hの不規則な板状結晶である。
These aqueous solutions containing Mg2+, such as seawater or bittern, can be reacted with an alkali by a known method, and the liquid is then filtered to obtain a Mg(OH)2 wet cake. When the obtained Mg(OH)2 was observed under an electron microscope, it was found that it had small irregular plate-shaped crystals of about 1 to 0.5 μm in size, and many Mg(OH)2 particles. They aggregate to form secondary particles of several micrometers to several tens of micrometers. The reaction solution is filtered, washed, dried, etc. to make it free of mother liquor, and if necessary, a part of it is pulverized to obtain M.
g(OH)2 powder usually has a specific surface area of 20 to 100rn
”/H irregular plate-like crystals.

本発明においては、このようにして得られる比表面積2
0〜100m”/gのMg(OH)2を0.5重量%以
上、好ましくは0.5〜10.0重量%、より好ましく
は1.0〜5.0重量%のM g C It 2水溶液
に添加する。ここで、MgCIt2水溶液のMgCj2
2濃度がO、5重量%未満では、比表面積10rr?/
g以下で六角柱状結晶を有するMg (OH)2は得ら
れない。また、MgCA2濃度が10.0重量%を超え
ても得られるMg(OH)2の比表面積がそれ以上小さ
くなることは殆となく、装置腐食のおそれが生じ、好ま
しくない。
In the present invention, the specific surface area 2 obtained in this way is
0 to 100 m"/g of Mg(OH)2 at 0.5% by weight or more, preferably 0.5 to 10.0% by weight, more preferably 1.0 to 5.0% by weight Mg C It 2 Add to the aqueous solution.Here, the MgCj2 of the MgCIt2 aqueous solution
2 concentration is less than 5% by weight of O, the specific surface area is 10rr? /
Mg (OH)2 having hexagonal columnar crystals cannot be obtained at less than 100 g. Further, even if the MgCA2 concentration exceeds 10.0% by weight, the specific surface area of Mg(OH)2 obtained will hardly become smaller any further, which is not preferable since there is a risk of equipment corrosion.

なお、このMg(01{)2を添加した、MgCu2水
溶液中のMg(OH)2濃度は、5〜30重量%、q,
Sに10〜20重量%の濃度に調整することが好ましい
。Mg (OH)2濃度が5重量%未満では/!(濃度
であるため、生産性に劣る。30重量%を超えると、反
応液スラリーの流動性が著しく低下し、スラリー移送や
、攪拌など装置の運転が困難になる。
Note that the Mg(OH)2 concentration in the MgCu2 aqueous solution to which Mg(01{)2 is added is 5 to 30% by weight, q,
It is preferable to adjust the concentration of S to 10 to 20% by weight. If the Mg (OH)2 concentration is less than 5% by weight, /! (Due to the concentration, productivity is poor. If it exceeds 30% by weight, the fluidity of the reaction liquid slurry will decrease significantly, making it difficult to transport the slurry, stir, and operate the device.

次いで、このようにして得られた、MgCA2含有Mg
(OH)2スラリーを耐圧容器中に入れ2.0kg/c
rn”以上、好ましくは3.0k g / c m’以
上の圧力で、120℃以上、好ましくは130℃以上の
温度で、攪拌下において加圧加温する。処理時間はMg
CjZ2の濃度、圧力や温度等の条件により若干異なる
が、通常、30分から数時間を要する。なお、圧力や温
度はあまり心高過ぎても処理コストが高くつくことから
、圧力は、2 0 k g / c m2以下、温度は
200℃以下で処理するのが好ましい。
Then, the thus obtained MgCA2-containing Mg
Put the (OH)2 slurry into a pressure container and weigh 2.0kg/c.
Pressurize and heat under stirring at a pressure of at least 3.0 kg/cm', preferably at least 3.0 kg/cm', and at a temperature of at least 120°C, preferably at least 130°C.The treatment time is Mg
Although it varies slightly depending on the concentration of CjZ2, pressure, temperature, etc., it usually takes 30 minutes to several hours. Note that if the pressure or temperature is too high, the processing cost will be high, so it is preferable to perform the processing at a pressure of 20 kg/cm 2 or less and a temperature of 200° C. or less.

本発明を工業的に実施する手段としては、特定濃度のM
gCIta水溶液を入れたオートクレープに上記範囲内
のMg (OH)2を添加し、温度、圧力を上昇させ数
時間保持する。
As a means of implementing the present invention industrially, a specific concentration of M
Mg (OH)2 within the above range is added to an autoclave containing an aqueous solution of gCIta, and the temperature and pressure are raised and maintained for several hours.

このような加圧加温下の水熱処理を行なうことはより、
比表面積zom”/g以下で、六角柱状結晶を有するM
g(OH)2が得られる。得られたMg(OH)2は、
例えば濾過、脱水、乾燥及び粉砕等の処理を経て製品と
される。
Hydrothermal treatment under pressure and heating is more effective.
M having a specific surface area of zom"/g or less and hexagonal columnar crystals
g(OH)2 is obtained. The obtained Mg(OH)2 is
For example, it is made into a product through treatments such as filtration, dehydration, drying, and pulverization.

[作用] 通常、海水又は苦汁のようなMg 24−を含む水溶液
から得られたMg(OH)2は、そのX線回折における
2θが38.0度のピークの方が18.6度のピークよ
り高いが、本発明の方法により得られるMg(OH)2
はx#i!回折における2θが18.6度のピークの方
が38.0度のピークより高くなっている。即ち、X線
回折における2θが18.6度のピーク強度I186と
20が38.0度のピーク強度IBB.Oの比I+a.
a/138.0が1よりも大きいという特徴を示す。
[Effect] Usually, Mg(OH)2 obtained from an aqueous solution containing Mg24-, such as seawater or bittern, has a peak at 2θ of 38.0 degrees in its X-ray diffraction rather than a peak at 18.6 degrees. Although higher, Mg(OH)2 obtained by the method of the invention
Hax#i! The peak at 2θ of 18.6 degrees in diffraction is higher than the peak at 38.0 degrees. That is, in X-ray diffraction, the peak intensity I186 at 2θ is 18.6 degrees and the peak intensity IBB.20 is 38.0 degrees. The ratio of O I+a.
It shows the characteristic that a/138.0 is larger than 1.

このことは、従来の方法で得られたM g (OH)2
を、本発明方法により、高温高圧下において処理するこ
とにより、溶解、析出を繰り返すこととなり、これによ
り規則正しい格子配列をもつ結晶が形成されることを示
すものと考えられる。
This indicates that M g (OH)2 obtained by the conventional method
This is thought to indicate that by treating the compound under high temperature and high pressure according to the method of the present invention, melting and precipitation are repeated, thereby forming crystals with a regular lattice arrangement.

このようなことから、本発明の方法で得られたMg(0
1{)2を、電子顕微鏡下に観察すると、従来の方法で
得られたMg (OH)2と異なる、結晶の二次凝集の
少ない粒径のそろった六角柱状結晶を示している。また
、従来の方法により得られたMg(OH)2のBET法
による比表面積は20〜100m”/gであるのに対し
、本発明で得られるMg(OH)2は10rrIf/g
以下という非常に小さい値を示す。
For this reason, Mg(0
When 1{)2 is observed under an electron microscope, it shows hexagonal columnar crystals with uniform grain size and little secondary aggregation of crystals, which is different from Mg (OH)2 obtained by conventional methods. Furthermore, the specific surface area of Mg(OH)2 obtained by the conventional method by the BET method is 20 to 100 m''/g, whereas the Mg(OH)2 obtained by the present invention has a specific surface area of 10rrIf/g.
It shows a very small value below.

[実施例] 以下に製造例、実施例及び比較例を挙げて本発明を更に
具体的に説明するが、本発明はその要旨を超えない限り
、以下の実施例に限定されるものではない。
[Examples] The present invention will be described in more detail below with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

なお、各例におけるX線回折の測定条件は次の通りであ
る。
Note that the measurement conditions for X-ray diffraction in each example are as follows.

ターゲット:Cu−Ka フィルター:Ni 電    圧:   40kV 電    流:   25mA スキャンスピード:2”2θ/ m i n製造例1 公知の方法により苦汁と石灰乳をC a C It 2
 /MgCJ22=Q.98 (モル比)の割合で反応
させてMg (C)H)2スラリーを得、これを濾過し
てMg(OH)2湿潤ケーキを得た。このMg(OH)
2を電子顕微鏡にて観察したところ、得られたMg(O
H)2は粒径0.1〜0.5μm程度の小さく崩れた不
規則な板状結晶であることがわかる。またX線回折の結
果、2θ、18.6度の強度■186、38.0度の強
度ISB.Oとしたときの強度比I II s/ I 
38. 6は、0.66であり、BET法による比表面
積値は25.3rn”/gであった。
Target: Cu-Ka Filter: Ni Voltage: 40kV Current: 25mA Scanning speed: 2”2θ/min Production Example 1 Bittern and milk of lime were mixed with CaCIt2 by a known method.
/MgCJ22=Q. 98 (molar ratio) to obtain a Mg(C)H)2 slurry, which was filtered to obtain a Mg(OH)2 wet cake. This Mg(OH)
2 was observed with an electron microscope, the obtained Mg(O
It can be seen that H)2 is a small, collapsed, irregular plate-like crystal with a grain size of about 0.1 to 0.5 μm. Also, as a result of X-ray diffraction, the intensity of 2θ, 18.6 degrees is 186, the intensity of 38.0 degrees is ISB. Intensity ratio I II s/I when O
38. 6 was 0.66, and the specific surface area value determined by the BET method was 25.3 rn''/g.

製造例2 公知の方法により、反応温度50℃で苦汁とアンモニア
水から製造したN H 4 0 H / M g C 
Jil 2=0.82 (モル比)の割合で反応させ、
得られたMg (OH) 2スラリーを濾過し、Mg 
(OH)2湿潤ケーキを得た。得られたMg (01{
)2を電子顕微鏡にて観察したところ、粒径0.05〜
0.3μm程度の小さく崩れた不規則な板状結晶が0.
5〜1μm程度の二次凝集粒子を形成していた。また、
X線回折の結果2θ、18.6度のピーク強度I166
、38.0度のピーク強度I31!1.0とした時の強
度比1+a.a/131(+は0.82であり、BET
法による比表面積値は45.2m2/gであった。
Production Example 2 N H 4 O H / M g C produced from bittern and aqueous ammonia at a reaction temperature of 50° C. by a known method.
React at a ratio of Jil 2 = 0.82 (molar ratio),
The resulting Mg(OH)2 slurry was filtered and Mg
A (OH)2 wet cake was obtained. The obtained Mg (01{
)2 was observed with an electron microscope, and the particle size was 0.05~
0.3 μm small broken irregular plate crystals.
Secondary agglomerated particles of about 5 to 1 μm were formed. Also,
X-ray diffraction result 2θ, peak intensity of 18.6 degrees I166
, the intensity ratio 1+a. when the peak intensity of 38.0 degrees is I31!1.0. a/131 (+ is 0.82, BET
The specific surface area value determined by the method was 45.2 m2/g.

実施例1 製造例1にて製造したMg (OH)2湿潤ケーキに5
重量%Mg’Cj!2水溶液を添加し、MgCu2を含
有するMg (OH)2スラリーを製造した。なお、ス
ラリー中のMg(’OH)2濃度は20重量%濃度にな
るよう調整した。
Example 1 5 to the Mg(OH)2 wet cake produced in Production Example 1
Weight% Mg'Cj! 2 aqueous solution was added to produce a Mg(OH)2 slurry containing MgCu2. The Mg('OH)2 concentration in the slurry was adjusted to 20% by weight.

オートクレープ中にこのMg(OH)2スラリ−10℃
を入れ、2.8kg/crrI″、130℃で3時間、
十分攪拌しながら水熱処理した後8o℃まで徐冷した。
This Mg(OH)2 slurry in an autoclave at −10°C
and 2.8 kg/crrI″ at 130°C for 3 hours.
The mixture was hydrothermally treated with sufficient stirring and then slowly cooled to 8°C.

水熱処理後のスラリーを濾過し、得られたMg (OH
)2ケーキを10倍量の水で洗浄し、乾燥、粉砕した。
The slurry after the hydrothermal treatment was filtered, and the obtained Mg (OH
) 2 cakes were washed with 10 times the amount of water, dried and ground.

得られたMg (OH)2粉末を電子顕微鏡にて観察し
たところ、二次凝集の少ない粒径のそろった六角柱状結
晶が得られたことが確認された。また、X線回折の結果
、2θ、18.6度の強度をI18.6、38.0度の
強度をrsa.oとしたときの強度比1 +a. e/
 I 3a. oは1.11であり、BET11 法による比表面積値は8.2d/gであった。
When the obtained Mg (OH) 2 powder was observed under an electron microscope, it was confirmed that hexagonal columnar crystals with uniform particle size and little secondary aggregation were obtained. In addition, as a result of X-ray diffraction, the intensity at 2θ, 18.6 degrees is I18.6, and the intensity at 38.0 degrees is rsa. Intensity ratio 1 when o + a. e/
I 3a. o was 1.11, and the specific surface area value according to the BET11 method was 8.2 d/g.

実施例2 実施例1と同様な方法で製造したMgCA2を含有する
Mg(OH)2スラリ−10f!.をオートクレープ中
に入れ、6.3kg/cm”,1 60℃で2時間水熱
処理したこと以外は実施例1と同様にしてMg(OH)
2粉末を製造した。
Example 2 Mg(OH)2 slurry containing MgCA2 produced in the same manner as in Example 1 - 10f! .. Mg(OH) was prepared in the same manner as in Example 1 except that 6.3 kg/cm'' was placed in an autoclave and hydrothermally treated at 160°C for 2 hours.
Two powders were produced.

得られたMg(OH)2粉末を電子顕微鏡にて観察した
ところ、実施例lと同様に二次凝集の少ない粒径のそろ
った六角柱状結晶が得られたことが確認された。また、
X線回折の結果、2θ、18.6度のピーク強度を■1
86、38.0度のピーク強度を■38.。とじたとき
の強度比1+a.s/I38。は1.92であり、BE
T法による比表面積値は5.8rr?/gであった。
When the obtained Mg(OH)2 powder was observed under an electron microscope, it was confirmed that hexagonal columnar crystals with uniform particle size and little secondary agglomeration were obtained as in Example 1. Also,
As a result of X-ray diffraction, the peak intensity at 2θ, 18.6 degrees is ■1
86, the peak intensity of 38.0 degrees ■38. . Strength ratio when closed: 1+a. s/I38. is 1.92, and BE
The specific surface area value by T method is 5.8rr? /g.

実施例3 製造例2にて製造したMg (OH)2を用いて実施例
1と同様にしてMg (OH)2粉末を得た。
Example 3 Using the Mg (OH) 2 produced in Production Example 2, Mg (OH) 2 powder was obtained in the same manner as in Example 1.

得られたMg(OH)z粉末を電子顕微鏡にて1 2 観察したところ、実施例1、2と同様に、二次凝集の少
ない粒径のそろった六角柱状結晶が得られたことが確認
された。また、X線回折の結果、2θ、18.6度のピ
ーク強度をIl11.8、38.0度のピーク強度を1
38.0としたときの強度比I +a. a/ I s
a. oは1.88であり、BET法による比表面積値
は6.2rn”/gであった。
When the obtained Mg(OH)z powder was observed under an electron microscope, it was confirmed that, as in Examples 1 and 2, hexagonal columnar crystals with a uniform particle size and little secondary aggregation were obtained. Ta. In addition, as a result of X-ray diffraction, the peak intensity at 2θ, 18.6 degrees was 11.8, and the peak intensity at 38.0 degrees was 1
Intensity ratio I +a. when set to 38.0. a/Is
a. o was 1.88, and the specific surface area value determined by the BET method was 6.2 rn''/g.

比較例1 製造例2にて製造したMg (OH)2湿潤ケーキに5
重量%MgCJZ2水溶液を添加し、MgCu2を含有
するMg (OH)2スラリーを製造した。スラリー中
のMg (OH)2濃度は20重量%濃度となるよう調
整した。
Comparative Example 1 Mg (OH) 2 wet cake produced in Production Example 2 was added with 5
A wt% MgCJZ2 aqueous solution was added to produce a Mg(OH)2 slurry containing MgCu2. The Mg(OH)2 concentration in the slurry was adjusted to 20% by weight.

オートクレープ中にこのMg (OH)2スラリ−10
j2を入れ、1,.5kg/cm2、110’eで3時
間、十分攪拌しながら水熱処理した後8o℃まで徐冷し
た。
This Mg(OH)2 slurry in autoclave -10
Enter j2, 1, . The mixture was hydrothermally treated at 5 kg/cm2 and 110'e for 3 hours with sufficient stirring, and then slowly cooled to 8oC.

水熱処理後のスラリーを濾過し、得られたMg (OH
)2ケーキを10倍量の水で洗浄し、乾燥、粉砕した。
The slurry after the hydrothermal treatment was filtered, and the obtained Mg (OH
) 2 cakes were washed with 10 times the amount of water, dried and ground.

得られたMg(OH)2粉末を電子顕微鏡にて観察した
ところ、実施例1〜3で得られたMg(OH)2に比べ
て結晶粒子径が小さく、二次凝集粒子も多く観察された
。また、X線回折の結果、2θ、18.6度のピーク強
度を■,86、38.0度のピーク強度をrsa.oと
したときの強度比I 18. a/ I 36. 0は
0.93であり、BET法による比表面積値は14.7
m’/gであった。
When the obtained Mg(OH)2 powder was observed using an electron microscope, it was found that the crystal particle size was smaller than that of the Mg(OH)2 obtained in Examples 1 to 3, and many secondary agglomerated particles were observed. . In addition, as a result of X-ray diffraction, the peak intensity at 2θ, 18.6 degrees is 1, and the peak intensity at 86, 38.0 degrees is rsa. Intensity ratio I when o is 18. a/I 36. 0 is 0.93, and the specific surface area value by BET method is 14.7
m'/g.

比較例2 製造例2で製造したMg (OH)2湿潤ケーキに5重
量%M g C 1 2水溶液を添加し、M g C 
1 2を含有するMg (OH)2スラリーを製造した
。スラリー中の水酸化マグネシウム濃度は20重量%濃
度になるように調整した。
Comparative Example 2 A 5% by weight M g C 1 2 aqueous solution was added to the Mg (OH) 2 wet cake produced in Production Example 2, and the Mg C 1 2 aqueous solution was added.
A Mg(OH)2 slurry containing 12 was prepared. The concentration of magnesium hydroxide in the slurry was adjusted to 20% by weight.

このスラリ−10Aを大気圧下、90℃で3時間十分攪
拌しながら加熱処理した後、スラリーを濾過し、得られ
たMg (OH)2ケーキを10倍量の水で洗浄、乾燥
、粉砕した。
This slurry 10A was heat-treated at 90°C under atmospheric pressure for 3 hours with sufficient stirring, and then the slurry was filtered, and the resulting Mg(OH)2 cake was washed with 10 times the amount of water, dried, and ground. .

得られたMg(OH)2粉末を電子顕微鏡にて観察した
ところ、実施例1〜3で得られたような大きな結晶には
ならず多くの二次凝集粒子が見られた。また、X線解析
の結果、2θ、18.6度のピーク強度を工1!1.8
+ 38.0度のピーク強度を138.Oとしたときの
強度比I +a. a/ I 3a. oが0.90で
あり、BET法による比表面積値は22.8m’/gで
あった。
When the obtained Mg(OH)2 powder was observed under an electron microscope, it was found that many secondary agglomerated particles were not formed into large crystals as obtained in Examples 1 to 3. In addition, as a result of X-ray analysis, the peak intensity at 2θ, 18.6 degrees was
The peak intensity at +38.0 degrees is 138. Intensity ratio I +a. a/I 3a. o was 0.90, and the specific surface area value by BET method was 22.8 m'/g.

[発明の効果] 以上詳述した通り、本発明のMg(OH)2の製造方法
によれば、オートクレープ等の装置腐食の問題等を生起
することなく、比表面積が10rr1′/g以下と小さ
く、電子顕微鏡下で二次凝集の少ない六角柱状結晶かつ
規則正しい格子配列を有するMg(OH)2を容易かつ
効率的に低コストに製造することができる。
[Effects of the Invention] As detailed above, according to the method for producing Mg(OH)2 of the present invention, the specific surface area can be reduced to 10rr1'/g or less without causing problems such as corrosion of equipment such as autoclaving. Mg(OH)2, which is small and has a hexagonal columnar crystal with little secondary aggregation under an electron microscope and a regular lattice arrangement, can be easily and efficiently produced at low cost.

しかして、得られたMg(OH)2は反応性が低いため
、樹脂等に配合した場合に共存する他物質への影響が少
なく、長期間にわたって安定した状態を維持できること
から、前述の非ハロゲン難燃剤フィラー等として有効に
利用することができる。また、これを焼成して酸化マグ
ネシウム15 (MgO)とした場合、活性度、その他の諸物性の経時
変化が少ないMgOが得られるため、FRP用及び電磁
鋼板用の原料水酸化マグネシウムとしても好適である。
Since the obtained Mg(OH)2 has low reactivity, it has little effect on other coexisting substances when blended with resin etc., and can maintain a stable state for a long period of time. It can be effectively used as a flame retardant filler, etc. Furthermore, when this is fired to produce magnesium oxide 15 (MgO), MgO with little change in activity and other physical properties over time is obtained, so it is suitable as magnesium hydroxide as a raw material for FRP and electrical steel sheets. be.

Claims (1)

【特許請求の範囲】[Claims] (1)マグネシウムイオン含有液とアルカリとの反応に
よりBET法による比表面積20m^2/g以上の水酸
化マグネシウムを得、得られた水酸化マグネシウムを濾
過脱水した後、0.5重量%以上の塩化マグネシウム水
溶液に加えて、水酸化マグネシウム濃度5重量%以上、
温度120℃以上、圧力2.0kg/m^2以上の条件
下で水熱合成することによりBET法による比表面積が
10m^2/g以下で、かつ六角柱状結晶の水酸化マグ
ネシウムを得ることを特徴とする水酸化マグネシウムの
製造方法。
(1) Magnesium hydroxide with a specific surface area of 20 m^2/g or more is obtained by the BET method by the reaction of a magnesium ion-containing liquid and an alkali, and after filtering and dehydrating the obtained magnesium hydroxide, a concentration of 0.5% by weight or more is obtained. In addition to the magnesium chloride aqueous solution, a magnesium hydroxide concentration of 5% by weight or more,
By hydrothermal synthesis at a temperature of 120°C or higher and a pressure of 2.0 kg/m^2 or higher, magnesium hydroxide with a specific surface area of 10 m^2/g or less by the BET method and a hexagonal columnar crystal can be obtained. Characteristic manufacturing method of magnesium hydroxide.
JP30706689A 1989-11-27 1989-11-27 Production of magnesium hydroxide Pending JPH03170325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30706689A JPH03170325A (en) 1989-11-27 1989-11-27 Production of magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30706689A JPH03170325A (en) 1989-11-27 1989-11-27 Production of magnesium hydroxide

Publications (1)

Publication Number Publication Date
JPH03170325A true JPH03170325A (en) 1991-07-23

Family

ID=17964635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30706689A Pending JPH03170325A (en) 1989-11-27 1989-11-27 Production of magnesium hydroxide

Country Status (1)

Country Link
JP (1) JPH03170325A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740643A1 (en) * 1994-01-21 1996-11-06 Flamemag International Gie Magnesium process
JPH10512535A (en) * 1995-01-19 1998-12-02 マーティン・マリエッタ・マグネシア・スペシャルティーズ・インコーポレイテッド Process for producing stabilized magnesium hydroxide slurry
EP0794925A4 (en) * 1994-12-02 1998-12-23 Flamemag International Gie Magnesium process
JP2003129056A (en) * 2001-10-25 2003-05-08 Sakai Chem Ind Co Ltd Flame retardant having high effective surface area, production method therefor and flame-retardant resin composition containing the same
EP1063199A4 (en) * 1998-12-14 2003-07-23 Kyowa Chem Ind Co Ltd Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
WO2007007843A1 (en) * 2005-07-13 2007-01-18 Hitachi Chemical Co., Ltd. Epoxy resin composition for encapsulation and electronic part device
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same
KR100843874B1 (en) * 2005-04-28 2008-07-03 다테호 가가쿠 고교 가부시키가이샤 Magnesium hydroxide particle, manufacturing method thereof and resin composition containing the particle
CN104528775A (en) * 2014-12-28 2015-04-22 北京工业大学 Method for preparing porous magnesium hydroxide and magnesium oxide hexagonal plates
JP2016515988A (en) * 2013-10-29 2016-06-02 オトクリトエ アクツィオネルノエ オブシェストヴォ “カウスティク” Magnesium hydroxide flame retardant nanoparticles and production method thereof
JP2017122029A (en) * 2016-01-07 2017-07-13 協和化学工業株式会社 Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same
CN110359317A (en) * 2019-07-03 2019-10-22 复旦大学 A kind of thin layer Nanometer hydroxide multifunctional protective agent and its preparation method and application
CN114655971A (en) * 2021-12-30 2022-06-24 南京大学 Preparation method of magnesium hydroxide nanotube

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740643A1 (en) * 1994-01-21 1996-11-06 Flamemag International Gie Magnesium process
EP0740643A4 (en) * 1994-01-21 1997-07-09 Flamemag International Gie Magnesium process
US5843389A (en) * 1994-01-21 1998-12-01 Flamemag International Gie Magnesium process
EP0794925A4 (en) * 1994-12-02 1998-12-23 Flamemag International Gie Magnesium process
JPH10512535A (en) * 1995-01-19 1998-12-02 マーティン・マリエッタ・マグネシア・スペシャルティーズ・インコーポレイテッド Process for producing stabilized magnesium hydroxide slurry
US7060246B2 (en) 1998-12-14 2006-06-13 Kyowa Chemical Industry, Co., Ltd. Magnesium hydroxide particles, method of the production thereof, and resin composition containing the same
US6676920B1 (en) * 1998-12-14 2004-01-13 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
EP1063199A4 (en) * 1998-12-14 2003-07-23 Kyowa Chem Ind Co Ltd Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2003129056A (en) * 2001-10-25 2003-05-08 Sakai Chem Ind Co Ltd Flame retardant having high effective surface area, production method therefor and flame-retardant resin composition containing the same
KR100843874B1 (en) * 2005-04-28 2008-07-03 다테호 가가쿠 고교 가부시키가이샤 Magnesium hydroxide particle, manufacturing method thereof and resin composition containing the particle
WO2007007843A1 (en) * 2005-07-13 2007-01-18 Hitachi Chemical Co., Ltd. Epoxy resin composition for encapsulation and electronic part device
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same
US10822544B2 (en) 2013-10-29 2020-11-03 Joint Stock Company Kaustik Nanoparticles of flame retardant magnesium hydroxide and method of production the same
JP2016515988A (en) * 2013-10-29 2016-06-02 オトクリトエ アクツィオネルノエ オブシェストヴォ “カウスティク” Magnesium hydroxide flame retardant nanoparticles and production method thereof
JP2017036449A (en) * 2013-10-29 2017-02-16 ジョイント ストック カンパニー カウスティク Flame retardant magnesium hydroxide nanoparticles and method of production thereof
CN104528775A (en) * 2014-12-28 2015-04-22 北京工业大学 Method for preparing porous magnesium hydroxide and magnesium oxide hexagonal plates
JP2017122029A (en) * 2016-01-07 2017-07-13 協和化学工業株式会社 Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same
CN110359317A (en) * 2019-07-03 2019-10-22 复旦大学 A kind of thin layer Nanometer hydroxide multifunctional protective agent and its preparation method and application
CN114655971A (en) * 2021-12-30 2022-06-24 南京大学 Preparation method of magnesium hydroxide nanotube

Similar Documents

Publication Publication Date Title
Song et al. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization
Zhao et al. Synthesis and characterization of CaTiO 3 particles with controlled shape and size
US9061919B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
EP0722422B1 (en) Preparation of spheroidal aggregates of platy synthetic hydrotalcite
Ma et al. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method
JPH03170325A (en) Production of magnesium hydroxide
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
CN112714751B (en) Active high-purity magnesium oxide and production method thereof
AU2006329592A1 (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparationsproduced thereby
KR20080082135A (en) A particle of magnesium hydroxide for flame retardant and the method for manufacturing the same, the method for surface treating the particle of magnesium hydroxide
HU187981B (en) Process for producing of medium granulated aluminium-hydroxide free choosable between 2 and 100 micron
JPS5830248B2 (en) Fibrous magnesium hydroxide and its manufacturing method
US7022302B2 (en) Process for preparing hydrotalcite and brucite type posite charged layers
JP4944466B2 (en) Anhydrous magnesium carbonate powder and method for producing the same
JPH0137331B2 (en)
DE69618806T2 (en) METHOD FOR PRODUCING CALCIUM BORATE
CA2195649C (en) Magnesium hydroxide slurries
JPH04362012A (en) Production of high-dispersive magnesium hydroxide
JPH01320220A (en) Magnesium hydroxide and its production
JPH02164713A (en) Production of magnesium hydroxide
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH0248414A (en) Production of magnesium hydroxide
JPH0262487B2 (en)
JPH03122012A (en) Production of fibrous basic magnesium sulfate
CN114314618B (en) Magnesium carbonate double salt crystal, amorphous carbonate containing magnesium and preparation method of active magnesium oxide