JPH01119593A - Crystal growing device - Google Patents

Crystal growing device

Info

Publication number
JPH01119593A
JPH01119593A JP27789487A JP27789487A JPH01119593A JP H01119593 A JPH01119593 A JP H01119593A JP 27789487 A JP27789487 A JP 27789487A JP 27789487 A JP27789487 A JP 27789487A JP H01119593 A JPH01119593 A JP H01119593A
Authority
JP
Japan
Prior art keywords
molten metal
raw materials
time
stagnating
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27789487A
Other languages
Japanese (ja)
Other versions
JPH0764672B2 (en
Inventor
Naoki Ono
直樹 小野
Michio Kida
喜田 道夫
Yoshiaki Arai
義明 新井
Tateaki Sahira
佐平 健彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62277894A priority Critical patent/JPH0764672B2/en
Priority to EP88118267A priority patent/EP0315156B1/en
Priority to DE8888118267T priority patent/DE3865628D1/en
Publication of JPH01119593A publication Critical patent/JPH01119593A/en
Priority to US07/521,683 priority patent/US5080873A/en
Publication of JPH0764672B2 publication Critical patent/JPH0764672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the drop of a molten metal temp. arising from charging of raw materials by providing a stagnating part for stagnating the raw materials for a specified period of time to a supplying pipe for supplying the raw materials to the molten metal in a crucible. CONSTITUTION:Polycrystals are melted to form the molten metal Y in the crucible 6 and a pulling up wire 7 is raised to pull up an Si single crystal, etc., from the molten metal Y. The raw materials are supplied to the molten metal through the supplying pipe 10 according to the pulling up amt. of the crystal. The stagnating part 11 which is, for example, a T-pipe part is formed to the bottom end of the supplying pipe 10 and the horizontal length and bore of said part are so set that the raw materials coming down in the pipe 10 stagnate for the desired period of time in the stagnating part 11 and are then dropped successively to the molten metal Y without allowing only the part thereof to remain. The raw materials are thereby stagnated for the prescribed period of time in the stagnating part 11 and are dropped to the molten metal; therefore, the time when the raw materials receive radiant heat during this time is long and the raw materials are subjected to efficient heat transfer by the contact with the inside base of the stagnating part 11. The raw materials are therefore largely heated up before the raw materials fall to the molten metal Y.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高純度シリコン単結晶等の製造に用いられろ
結晶育成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a crystal growth apparatus used for producing high-purity silicon single crystals and the like.

「従来の技術」 CZ法によるシリコン単結晶の製造においては、結晶引
き上げによろ溶湯m減少に伴い、溶湯と石英ルツボとの
接触面積が変化し、ルツボからの酸素溶出mが変化する
。しかし最近では、半導体素子基板としてのシリコン単
結晶に、酸素濃度とドーパント濃度の双方に厳しい許容
規格が設けられており、このため、引き上げられた単結
晶のうち半導体素子、として使用可能なのは一部分にし
か過ぎず、原料の歩留まりが悪い問題があった。
"Prior Art" In the production of silicon single crystals by the CZ method, as the molten metal m decreases due to crystal pulling, the contact area between the molten metal and the quartz crucible changes, and the oxygen elution m from the crucible changes. However, recently, strict tolerance standards have been set for both oxygen concentration and dopant concentration for silicon single crystals used as semiconductor device substrates, and for this reason, only a portion of the pulled single crystal can be used as semiconductor devices. However, there was a problem that the yield of raw materials was poor.

そこでこの問題を改善するため、結晶の引き上げ量に応
じて、顆粒状シリコン原料を供給管を通じてルツボ内に
順次供給して溶?n rAを一定に保ち、溶出条件の変
化を防ぐようにした装置が従来より各種提案されている
(例えば特公昭57−40119号)。
Therefore, in order to improve this problem, granular silicon raw materials are sequentially supplied into the crucible through the supply pipe depending on the amount of crystals to be pulled. Various devices have been proposed in the past that maintain n rA constant and prevent changes in elution conditions (for example, Japanese Patent Publication No. 57-40119).

「発明が解決しようとする問題点」 しかし上記の装置では、温度の低い原料が直接高温の溶
湯(約1400℃)に投入されるため、溶湯温度が低下
し、結晶成長に悪影響を与えるという問題があった。特
に、ルツボが小形の場合や、単結晶の成長を速めるため
に引上速度を通常より大きくしている場合には、溶湯温
度低下が大きく、投入された原料が溶けきらなかったり
、溶湯表面周縁から溶l易が凝固し始めろという欠点が
ある。
"Problems to be Solved by the Invention" However, in the above-mentioned apparatus, the low-temperature raw material is directly charged into the high-temperature molten metal (approximately 1400°C), which lowers the molten metal temperature and has a negative effect on crystal growth. was there. In particular, when the crucible is small or when the pulling speed is set higher than usual to speed up the growth of the single crystal, the temperature of the molten metal may drop significantly, and the raw materials introduced may not be completely melted or the periphery of the molten metal may The drawback is that the soluble material starts to solidify.

そこで、原料供給機構にヒータを付設し、投入前に原料
を予熱しておく構成も提案されているが、その分、装置
が高価になり、複雑化・大形化が避けられなかった。
Therefore, a configuration has been proposed in which a heater is attached to the raw material supply mechanism to preheat the raw material before inputting the raw material, but this increases the cost of the device and inevitably increases the complexity and size of the device.

「問題点を解決する手段」 本発明は上記問題を解決するためになされたもので、ル
ツボ内の溶湯に原料を供給するための供給管に原料を一
定時間滞留させる滞留部を設けたことを特徴とし、これ
により炉内雰囲気で原料を昇温させ、原料投入に伴う溶
湯温度の低下を防ぐ。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and includes providing a retention section for retaining the raw materials for a certain period of time in the supply pipe for supplying the raw materials to the molten metal in the crucible. This is characterized by raising the temperature of the raw material in the furnace atmosphere and preventing the temperature of the molten metal from decreasing as the raw material is introduced.

「実施例」 第1図は、本発明に係わる結晶育成装置の一実施例を示
す縦断面図である。
Embodiment FIG. 1 is a longitudinal sectional view showing an embodiment of a crystal growth apparatus according to the present invention.

図中符号lは炉体、2は断熱材、3は加熱ヒータ、4は
回転軸5の上端に固定された黒鉛サセプタ、6は黒鉛サ
セプタ4にはめ込まれた石英ルツボであり、このルツボ
6の上方には、下端にシードSを固定した引上ワイヤ7
を昇降する引上機構(図示略)が設けられている。
In the figure, reference numeral 1 denotes a furnace body, 2 a heat insulator, 3 a heater, 4 a graphite susceptor fixed to the upper end of the rotating shaft 5, and 6 a quartz crucible fitted in the graphite susceptor 4. Above is a pulling wire 7 with a seed S fixed to its lower end.
A lifting mechanism (not shown) is provided to raise and lower the.

以上の構成は従来のものと同様で、本発明の特徴は符号
10に示す原料供給管にある。
The above configuration is similar to the conventional one, and the feature of the present invention lies in the raw material supply pipe indicated by the reference numeral 10.

この供給管lOは、基端側か原料供給機構(図示略)に
連結された石英製断面円形のもので、炉体壁を貫通して
固定され、炉体1内で下方に屈折し、その下端がルツボ
6の内周面近傍かっ溶湯Yの若干上方に位置決めされて
いる。そして、原料供給機構から導入される顆粒状シリ
コン原料を溶湯Yに落とし込む構成となっている。この
供給管10の下端にはT字管部(滞留部)11が形成さ
れており、この1字管部11の水平長および口径は、供
給管IOを下って来た原料がこのT字管部IIで所望時
間滞留したうえ、一部のみが残ることなく順次溶湯Yへ
落下するように設定されている。
This supply pipe IO is made of quartz and has a circular cross section connected to the raw material supply mechanism (not shown) at the base end, is fixed through the wall of the furnace body, is bent downward within the furnace body 1, and is The lower end is positioned near the inner peripheral surface of the crucible 6 and slightly above the molten metal Y. Then, the granular silicon raw material introduced from the raw material supply mechanism is dropped into the molten metal Y. A T-shaped pipe section (retention section) 11 is formed at the lower end of this supply pipe 10, and the horizontal length and diameter of this single-shaped pipe section 11 are such that the raw material coming down the supply pipe IO is It is set so that it stays in Part II for a desired time and then falls into the molten metal Y one after another without leaving any part of it behind.

上記構成の結晶育成装置においては、原料供給機構が供
給する原料が供給管10の下端に形成された1字管部1
1で所定時間滞留したのち溶湯に落下するので、この間
に放射熱を受ける時間が長く、しかも1字管部11の内
底面との接触により効率良く伝熱される。このため、溶
湯Yへ落下するまでに原料を大幅に昇温さ仕ることがで
き、溶l易Yとの温度差を小さくして、原料投入による
溶湯温度の変化を効果的に低減することができる。
In the crystal growth apparatus having the above configuration, the raw material supplied by the raw material supply mechanism is supplied to the single-shaped pipe portion 1 formed at the lower end of the supply pipe 10.
1 for a predetermined time and then fall into the molten metal, the time for receiving radiant heat during this time is long, and the heat is efficiently transferred through contact with the inner bottom surface of the single-shaped tube portion 11. Therefore, the temperature of the raw material can be significantly raised before it falls into the molten metal Y, reducing the temperature difference between the raw material and the molten metal Y, effectively reducing changes in the temperature of the molten metal due to raw material input. Can be done.

したがって、投入された原料が溶けきらなかったり、溶
湯Yが凝固するといった問題がなく、単結晶成長部の温
度変化による結晶欠陥の発生等も防げる。
Therefore, there is no problem that the input raw material is not completely melted or the molten metal Y is solidified, and the occurrence of crystal defects due to temperature changes in the single crystal growth area can be prevented.

なお以下に、放射伝熱によるシリコン原料粒子の温度上
昇を試算して、本発明の効果を明確にする。粒子粒径D
=1mm、シリコン粒子の輻射率ε= 0.45とする
と、粒子の各パラメータは次のようになる。
In the following, the effect of the present invention will be clarified by calculating the temperature rise of silicon raw material particles due to radiant heat transfer. Particle size D
= 1 mm, and the emissivity ε of the silicon particle is 0.45, each parameter of the particle is as follows.

表面積S=4πD ”= 3.142X 1O−8(R
’)体積V = 4/3π(D /2)3= 5.24
X 10−” (m’)質量M=V−グ= 1.22X
 10−’ (kg)熱容量C= M−Cp= 8.3
x 10−’ (J/℃)粒子の温度T ’C1Ar雰
囲気温度1000℃とすると、を秒間で粒子の受ける放
射伝熱1kQ =4.88S  ε ((1273/100)’−((
T +273)/+00)’)・103・4.187・
1/60”・t (J)粒子の温度上昇ΔT=Q/C(
℃) 上式により放射伝熱による粒子温度の経時変化を算出す
ると、次の結果が得られる。
Surface area S=4πD”=3.142X 1O-8(R
') Volume V = 4/3π(D /2)3 = 5.24
X 10-” (m') Mass M=V-g=1.22X
10-' (kg) Heat capacity C= M-Cp= 8.3
x 10-' (J/°C) Particle temperature T 'C1If the Ar atmosphere temperature is 1000°C, then the radiation heat transfer received by the particles per second is 1kQ = 4.88S ε ((1273/100)'-((
T +273)/+00)')・103・4.187・
1/60”・t (J) Particle temperature rise ΔT=Q/C(
℃) When calculating the change in particle temperature over time due to radiant heat transfer using the above formula, the following result is obtained.

初期温度25°C1秒後・・・276°C2秒後・・・
510℃3秒後・・・704604秒後・・・840°
C5秒後・・・920606秒後・・・962℃ 7秒
後・・・982°C8秒後・・・992°C9秒後・・
・996°C10秒後・・・998℃一方、シリコン粒
子を50cm自由落下させた場合は0.32秒で溶湯に
落下し、この間に約100°C(上記式より算出)にし
か昇温しないため、落下時間を数秒延ばすことにより、
粒子を大幅に昇温できることが明らかである。しかも上
記計算は放射伝熱のみを考慮したもので、実際には供給
管IO内の高温雰囲気ガスと接触するための伝熱や、供
給管IO内面との接触による伝熱も起こるため、滞留時
間延長による昇温効果はいっそう顕杼であると予想され
る。
Initial temperature 25°C 1 second later... 276°C 2 seconds later...
510°C 3 seconds later...704604 seconds later...840°
C5 seconds later...920606 seconds later...962°C 7 seconds later...982°C8 seconds later...992°C9 seconds later...
・996°C 10 seconds later...998°C On the other hand, if a silicon particle is allowed to fall 50cm freely, it will fall into the molten metal in 0.32 seconds, and the temperature will only rise to about 100°C (calculated from the above formula) during this time. Therefore, by extending the falling time by a few seconds,
It is clear that the particles can be heated significantly. Moreover, the above calculation takes only radiant heat transfer into consideration; in reality, heat transfer due to contact with the high-temperature atmospheric gas inside the supply pipe IO and heat transfer due to contact with the inner surface of the supply pipe IO also occurs, so the residence time It is expected that the temperature increase effect due to extension will be even more pronounced.

また、この装置では、原料供給機構に予熱用ヒーターを
付設したものに比べ、供給管IOを加工するだけでよい
から実施コストが安く、しかも装置が小形かつ単純で済
むという利点がある。
Moreover, compared to a device in which a preheating heater is attached to the raw material supply mechanism, this device has the advantage that the implementation cost is low because it is only necessary to process the supply pipe IO, and the device is small and simple.

さらに、この装置では、1字管部11との衝突により粒
子の落下速度が小さくなるので、原料投入時の溶湯Yの
振動が小さく、振動により単結晶の結晶成長部に転位等
の欠陥を引き起こすおそれがない。よって、この点から
も良質な単結晶を製造できるという効果が得られる。
Furthermore, in this device, the falling speed of the particles decreases due to collision with the single-shaped tube part 11, so the vibration of the molten metal Y when the raw material is introduced is small, and the vibration causes defects such as dislocations in the crystal growth part of the single crystal. There is no fear. Therefore, from this point as well, it is possible to produce a high-quality single crystal.

なお、本発明の供給管は上記実施例のみに限られず、第
3図ないし第5図のようなものも実施可能である。
It should be noted that the supply pipe of the present invention is not limited to the above-mentioned embodiment, but can also be implemented as shown in FIGS. 3 to 5.

第3図は、供給管10の下端にルツボ6の内周方向に延
びる一定長の緩傾斜部12を形成し、その下端開口部を
再び下方に向けたもので、管内を落下してきた原料を、
前記緩傾斜部12に沿ってゆっくり移動させる。これに
よれば、緩傾斜部12の角度や長さを変更するだけで滞
留時間を簡単に調節できるうえ、緩傾斜部12が溶湯に
近いため供給管IO内の原料が受ける放射熱量が大きい
利点がある。
FIG. 3 shows a configuration in which a gently sloped portion 12 of a constant length extending in the inner peripheral direction of the crucible 6 is formed at the lower end of the supply pipe 10, and the lower end opening is directed downward again, so that the raw material falling inside the pipe is ,
It is moved slowly along the gently sloped portion 12. According to this, the retention time can be easily adjusted by simply changing the angle and length of the gently sloped part 12, and since the gently sloped part 12 is close to the molten metal, the raw material in the supply pipe IO receives a large amount of radiant heat. There is.

第4図は、供給管10の下端を半球状に塞ぎ、ここに多
数の孔13を形成したものである。
In FIG. 4, the lower end of the supply pipe 10 is closed in a hemispherical shape, and a large number of holes 13 are formed therein.

第5図は、供給管IOの下端部を球状に膨らま什て貯留
部14を形成し、その下端面に小さな孔15を形成した
もので、貯留部14に一定量の原料か溜まるように各部
首法を設定すれば、原料の滞留時間を大幅に長くできる
In FIG. 5, the lower end of the supply pipe IO is swollen into a spherical shape to form a reservoir 14, and a small hole 15 is formed in the lower end surface of the supply pipe IO. By setting the neck method, the residence time of raw materials can be significantly extended.

なお、本発明は上記実施例のみに限られず、上記各実施
例の組み合わや、適宜変形ら可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and the above-mentioned embodiments can be combined or modified as appropriate.

「発明の効果」 以上説明したように、本発明の結晶育成装置においては
、滞留部の作用により供給管内を原料が時間をかけて降
下するため、原料が受ける放射熱量およびその他の伝熱
mが大きい。したがって、溶湯へ落下するまでに原料を
大幅に昇温さ仕ることができ、原料投入によろ溶湯温度
の変化を効果的に低減することが可能で、原料が溶けき
らなかったり、溶湯Yが凝固するといった問題かなく、
単結晶成長部の温度変化による結晶欠陥の発生等ら防げ
ろ。
"Effects of the Invention" As explained above, in the crystal growth apparatus of the present invention, the raw material descends in the supply pipe over time due to the action of the retention section, so that the amount of radiant heat received by the raw material and other heat transfer m are reduced. big. Therefore, it is possible to significantly raise the temperature of the raw material before it falls into the molten metal, and it is possible to effectively reduce changes in the temperature of the molten metal by adding the raw material, so that the raw material does not completely melt or the molten metal Y There is no problem of solidification,
Prevent crystal defects from occurring due to temperature changes in the single crystal growth area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のシリコン結晶育成装置を示
す縦断面図、第2図は同装置に使用した供給管の縦断面
図、第3図ないし第5図はそれぞれ本発明の他の実施例
の供給管を示す縦断面図である。 1・・・炉体、      6・・・ルツボ、7・・・
引き上げワイヤ、10・・・供給管、(以下、いずれも
滞留部) 11・・・T字管部、   12・・・緩傾斜部、13
・・・孔、  14・・・貯留部、  15・・・孔。
FIG. 1 is a longitudinal sectional view showing a silicon crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a supply pipe used in the same apparatus, and FIGS. FIG. 1...furnace body, 6...crucible, 7...
Pulling wire, 10... Supply pipe, (hereinafter referred to as retention part) 11... T-shaped pipe part, 12... Gentle slope part, 13
...hole, 14...reservoir, 15...hole.

Claims (1)

【特許請求の範囲】  多結晶を溶融して溶湯とするルツボと、前記溶湯に多
結晶原料を供給するための供給管と、前記ルツボ内の溶
湯から単結晶を引き上げる引上機構とを備えた結晶育成
装置において、 前記供給管の下部に、原料を一定時間滞留させる滞留部
を設けたことを特徴とする結晶育成装置。
[Scope of Claims] A crucible for melting polycrystals into a molten metal, a supply pipe for supplying a polycrystalline raw material to the molten metal, and a pulling mechanism for pulling up a single crystal from the molten metal in the crucible. A crystal growth apparatus, characterized in that a retention section for retaining the raw material for a certain period of time is provided at the lower part of the supply pipe.
JP62277894A 1987-11-02 1987-11-02 Crystal growth equipment Expired - Fee Related JPH0764672B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62277894A JPH0764672B2 (en) 1987-11-02 1987-11-02 Crystal growth equipment
EP88118267A EP0315156B1 (en) 1987-11-02 1988-11-02 Apparatus for growing crystals
DE8888118267T DE3865628D1 (en) 1987-11-02 1988-11-02 CRYSTAL GROWING DEVICE.
US07/521,683 US5080873A (en) 1987-11-02 1990-05-10 Apparatus for growing crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277894A JPH0764672B2 (en) 1987-11-02 1987-11-02 Crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH01119593A true JPH01119593A (en) 1989-05-11
JPH0764672B2 JPH0764672B2 (en) 1995-07-12

Family

ID=17589767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277894A Expired - Fee Related JPH0764672B2 (en) 1987-11-02 1987-11-02 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JPH0764672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566072U (en) * 1992-02-18 1993-08-31 コマツ電子金属株式会社 Single crystal manufacturing equipment
KR970062082A (en) * 1996-02-08 1997-09-12 와다 다다시 Method of supplying granular silicon raw material and method of manufacturing supply pipe and silicon single crystal used in the method
JP2005035802A (en) * 2003-07-15 2005-02-10 Sumitomo Mitsubishi Silicon Corp Method and device for feeding raw material
JP2006021973A (en) * 2004-07-09 2006-01-26 Sumco Corp Raw material feeding device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321335B1 (en) 1998-10-30 2001-11-20 Acqis Technology, Inc. Password protected modular computer method and device
US6718415B1 (en) 1999-05-14 2004-04-06 Acqis Technology, Inc. Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers
US6643777B1 (en) 1999-05-14 2003-11-04 Acquis Technology, Inc. Data security method and device for computer modules

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611675A (en) * 1979-07-04 1981-02-05 Marantz Japan Inc Key-touch strength changing circuit for automatic playing piano
JPS5688896A (en) * 1979-12-22 1981-07-18 Fujitsu Ltd Growth of single crystal
JPS56164097A (en) * 1980-05-23 1981-12-16 Ricoh Co Ltd Device for pulling up single crystal
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS57179095A (en) * 1981-04-28 1982-11-04 Tohoku Metal Ind Ltd Method and apparatus for manufacturing single crystal
JPS5933552A (en) * 1982-08-18 1984-02-23 Toshiba Corp Data processor
JPS62277895A (en) * 1986-05-26 1987-12-02 Matsushita Electric Works Ltd Remote supervisory and controlling equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611675A (en) * 1979-07-04 1981-02-05 Marantz Japan Inc Key-touch strength changing circuit for automatic playing piano
JPS5688896A (en) * 1979-12-22 1981-07-18 Fujitsu Ltd Growth of single crystal
JPS56164097A (en) * 1980-05-23 1981-12-16 Ricoh Co Ltd Device for pulling up single crystal
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS57179095A (en) * 1981-04-28 1982-11-04 Tohoku Metal Ind Ltd Method and apparatus for manufacturing single crystal
JPS5933552A (en) * 1982-08-18 1984-02-23 Toshiba Corp Data processor
JPS62277895A (en) * 1986-05-26 1987-12-02 Matsushita Electric Works Ltd Remote supervisory and controlling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566072U (en) * 1992-02-18 1993-08-31 コマツ電子金属株式会社 Single crystal manufacturing equipment
KR970062082A (en) * 1996-02-08 1997-09-12 와다 다다시 Method of supplying granular silicon raw material and method of manufacturing supply pipe and silicon single crystal used in the method
JP2005035802A (en) * 2003-07-15 2005-02-10 Sumitomo Mitsubishi Silicon Corp Method and device for feeding raw material
JP2006021973A (en) * 2004-07-09 2006-01-26 Sumco Corp Raw material feeding device

Also Published As

Publication number Publication date
JPH0764672B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US5690733A (en) Method for recharging of silicon granules in a Czochralski single crystal growing operation
JPH076972A (en) Growth method and device of silicon single crystal
JPH01119593A (en) Crystal growing device
US2998335A (en) Method and apparatusfor growing single crystals from molten bodies
JPS6259594A (en) Pulling up method of crystal and apparatus therefor
JPH09249486A (en) Method for pulling up single crystal
JP3050120B2 (en) Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
JPH09249482A (en) Method for pulling up single crystal
JP3016126B2 (en) Single crystal pulling method
JPH04104988A (en) Growth of single crystal
JPH08295591A (en) Doping device
JP3085567B2 (en) Polycrystalline recharge apparatus and recharge method
JPH04139092A (en) Production of silicon single crystal and seed crystal
JPS63303894A (en) Method for growing silicon single crystal
JP2531415B2 (en) Crystal growth method
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2990661B2 (en) Single crystal growth method
JPH01119594A (en) Crystal growing device
JP2599306B2 (en) Crystal manufacturing method and manufacturing equipment
JPH09208366A (en) Charging of raw material in single crystal pulling up device
JP2982053B2 (en) Single crystal pulling method
JPS5938189B2 (en) Single crystal manufacturing method
JPH09227280A (en) Method for growing single crystal
JPH0733583A (en) Apparatus for growing semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees