JPH01116456A - Simple insulation resistance measurement for electric circuit - Google Patents

Simple insulation resistance measurement for electric circuit

Info

Publication number
JPH01116456A
JPH01116456A JP27532187A JP27532187A JPH01116456A JP H01116456 A JPH01116456 A JP H01116456A JP 27532187 A JP27532187 A JP 27532187A JP 27532187 A JP27532187 A JP 27532187A JP H01116456 A JPH01116456 A JP H01116456A
Authority
JP
Japan
Prior art keywords
value
capacitor
transformer
current transformer
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27532187A
Other languages
Japanese (ja)
Other versions
JP2612719B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP27532187A priority Critical patent/JP2612719B2/en
Publication of JPH01116456A publication Critical patent/JPH01116456A/en
Application granted granted Critical
Publication of JP2612719B2 publication Critical patent/JP2612719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To achieve a higher measuring accuracy along with a reduction in measuring time by determining a initial value of a capacitor for adjustment, added to remove a measuring error due to an electrostatic capacitance, with an approximation to a value to be set finally. CONSTITUTION:A voltage shifted by 90 deg. in the phase from a voltage which is applied to an electric circuit with a connection line LINK not terminated by a capacitor Co to estimate a ground electrostatic capacitance from a DC component equivalent to a product of the voltage and a leakage current (i) with a frequency f1 in an output of a current transformer ZCT. Thereafter, the connection line LINK is set by inserting it with the capacitor Co almost equivalent to the ground electrostatic capacitance value estimated as initial value to reduce a value of ¦C-Co¦ in the initial state (namely, because of Capprox.=Co).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気配線等の電路の絶縁抵抗測定方法に関し、
殊に対地静電容量による測定誤差を除去した電路の簡易
絶縁抵抗測定方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for measuring insulation resistance of electrical circuits such as electrical wiring.
In particular, it relates to a simple method for measuring insulation resistance of electrical circuits that eliminates measurement errors due to ground capacitance.

(従来技術) 電気配線等の電路の絶縁抵抗を監視しておき、漏電等の
事故な未然に防止する必要がおるが、その測定方法は基
本的には被測定電路に低周波信号を印加すると共にその
漏洩成分を抽出し電路の絶縁抵抗に対応した信号電圧/
電流を得るものが一般的である。
(Prior art) It is necessary to monitor the insulation resistance of electric circuits such as electrical wiring to prevent accidents such as electric leakage, but the measurement method basically involves applying a low-frequency signal to the circuit under test. At the same time, the leakage component is extracted and the signal voltage /
Those that obtain electric current are common.

この際、電路と大地間あるいは電路に接続された負荷に
よる静電容量の大きさによって前記漏洩成分レベルが変
化しこの値が多い場合測定誤差を生ずることがある。
At this time, the leakage component level changes depending on the magnitude of the capacitance between the electric line and the ground or due to the load connected to the electric line, and if this value is large, a measurement error may occur.

静電容量の影響を排除して正確な絶縁抵抗値を測定する
方法として同一出願人は既に特開昭58−12714に
て有効な手法を拭案済みである。
The same applicant has already devised an effective method in Japanese Patent Application Laid-Open No. 12714/1983 as a method for accurately measuring insulation resistance values while eliminating the influence of capacitance.

この方法は第3図に示すように、−万が接地された電路
1,2にリング形注入トランスCTと変流器ZCTとを
結合すると共に注入トランスCT&Cは低周波発振器O
8Cを、又変流器ZCT Ktl1幅sAMP 、バン
ドパスフィル/BPF、整流回路DET及びメータMを
含む漏洩電流検出回路を夫々接続した電路の絶縁抵抗測
定装置に於いて、前記注入トランスCTと変流器ZCT
とに電路とは逆相になるように、Sらたな接続線LIN
Kを貫通しかつコンデンサCOを介してループ状に結線
した回路を付加する。
In this method, as shown in Fig. 3, a ring-type injection transformer CT and a current transformer ZCT are coupled to the electrical circuits 1 and 2, both of which are grounded, and the injection transformer CT&C is connected to a low-frequency oscillator O.
8C, and a current transformer ZCT Ktl1 width sAMP, a bandpass filter/BPF, a rectifier circuit DET, and a leakage current detection circuit including a meter M, in an insulation resistance measuring device for an electrical circuit, in which the injection transformer CT and the transformer are connected. Flushware ZCT
Connect the connecting wire LIN so that it is in opposite phase to the electrical circuit.
A circuit is added that passes through K and is connected in a loop through capacitor CO.

この絶縁抵抗測定回路の動作を説明すれば。Let me explain the operation of this insulation resistance measuring circuit.

発振器O8Cからの周波数flなる出力信号電圧Vsi
nω1t (ωt =2 w f l)は電路1.2と
大地間に印加され、その間の静電容量Cと絶縁抵抗Rと
を介して漏洩電流iが流れる。
Output signal voltage Vsi with frequency fl from oscillator O8C
nω1t (ωt = 2 w f l) is applied between the electric path 1.2 and the ground, and a leakage current i flows through the capacitance C and the insulation resistance R between them.

この漏洩電流は前記接続線LINKが無い場合には変流
器ZCT Kよって検出され、増幅器AMPと周波数f
s  のみを通過するバンドパスフィルタBPF Kよ
って次式(1)&C示す電流iが導出される。
This leakage current is detected by the current transformer ZCT K in the absence of the connection line LINK, and is detected by the amplifier AMP and the frequency f.
A current i expressed by the following equation (1) &C is derived by the bandpass filter BPF K that passes only s.

1=(V/R)siaa+xt+a+tcVcosa+
xt  =・=  (1)この漏洩電流it−?に段の
整流回路DET Ic入力すれば前記(11式右辺に含
まれる直流成分が導出されるが、この中には右辺第2項
の静電容量Cによるものも含まれること忙なシ、正確な
絶縁抵抗成分のみを抽出することができない。
1=(V/R)siaa+xt+a+tcVcosa+
xt =・= (1) This leakage current it-? By inputting the rectifier circuit DET Ic in stage 1, the DC component included in the right-hand side of Equation 11 is derived, but this also includes the component due to the capacitance C in the second term on the right-hand side. It is not possible to extract only the insulation resistance component.

そこで、この提案では上述したようにコンデンサCOを
挿入した接続線LINKを介在させ、前記静電容量CK
よる漏洩電流を該コンデンサC。
Therefore, in this proposal, as described above, the connection line LINK in which the capacitor CO is inserted is interposed, and the capacitance CK
The leakage current due to the capacitor C.

に流れる信号成分によって相殺すること罠よって前記第
(1)式右辺j%2項を零とするよう機能させる。
The j%2 term on the right-hand side of the equation (1) is made to be zero by canceling the signal component flowing through the signal component.

即ち、接続線LINKが挿入されると、前記導出される
漏洩電流isは i 1 ” (V/R)sioω1t +a+t (C
−Co ) VCO3(131<・・・・・・・・・(
2) となるから、これを整流するとその出力1111はl 
is l =V ((1/R”)+ω1” (C−Co
 )” J” −(3)となる。
That is, when the connection line LINK is inserted, the derived leakage current is is i 1 ” (V/R)sioω1t +a+t (C
-Co ) VCO3(131<・・・・・・・・・(
2) Therefore, when this is rectified, the output 1111 is l
is l =V ((1/R")+ω1" (C-Co
)"J" - (3).

そζで、前記コンデンサCoの値を調整して、メータM
の指示値を監視すれば、 C=Coのとき1itl=v
/Hと最小値となシ、この値は電路の絶縁抵抗そのもの
の逆数となる。
Then, by adjusting the value of the capacitor Co, the meter M
If you monitor the indicated value, when C=Co, 1itl=v
/H is the minimum value, and this value is the reciprocal of the insulation resistance of the electrical circuit itself.

即ち、この方法によりてメータMの指示値が最小となる
ようにコンデンサCOを調整すれば、静電容量Cの影響
を除去して、極めて正確な絶縁抵抗値を求めろことがで
きる。
That is, by adjusting the capacitor CO using this method so that the indicated value of the meter M becomes the minimum value, the influence of the capacitance C can be removed and an extremely accurate insulation resistance value can be obtained.

第2因は、コンデンサCOを変化した場合のメータMの
指示値の変化を示した図でありて。
The second factor is a diagram showing changes in the indicated value of the meter M when the capacitor CO is changed.

この図からも上述したこの提案の趣旨が理解できよう。The purpose of this proposal mentioned above can be understood from this figure as well.

しかしながら、上述した従来の方法では、コンデンサC
Oの値を調整する忙あた夛、逐次C。
However, in the conventional method described above, the capacitor C
Busy and sequential C to adjust the value of O.

の値を変更しつつ、メータMの値を監視しなければなら
ず迅速な調整が困難であった。特にCOとCとの値の隔
シが大きい場合前記第(1)式右辺に於ける1 /R”
の項よりω5(C−Co)”の方が著しく大きくなシ、
調整に要する時間が大きくなると云う問題があった。
The value of the meter M had to be monitored while changing the value of the meter M, making it difficult to make quick adjustments. Especially when the difference between the values of CO and C is large, 1/R'' on the right side of equation (1) above.
ω5(C−Co)” is significantly larger than the term
There is a problem in that the time required for adjustment increases.

(発明の目的) 本発明は上述したような従来の電路等の絶縁抵抗測定方
法の問題点を理解するためになされたものであって、静
電容量値Cの大小c−A−かわらず極めて短時間に正確
な絶縁抵抗値を得ることができるようにした電路等の絶
縁抵抗測定方法を提供することを目的とする。
(Objective of the Invention) The present invention was made in order to understand the problems of the conventional method of measuring insulation resistance of electric circuits, etc. as described above, It is an object of the present invention to provide a method for measuring insulation resistance of electric circuits, etc., which enables accurate insulation resistance values to be obtained in a short time.

(発明の概要) この目的を達成するため本発明の絶縁抵抗測定方法では
、上記接続線をコンデンサCoで終端しない状態に於て
電路に印加した電圧とは90度移相した電圧で、上記変
流器出力中の周波数f1の漏洩電流iとの積の直流分か
ら対地静電容量を推定し、しかるのち上記接続線を上記
推定された対地静電容量値とハソ等価なコンデンサCo
f初期値として挿入することによシ初期状態でのIc−
cOlの値を小さくするように設定しく即ち0字Coの
ため)、更に要する調整のための時間を短縮できると共
に、高精度な調整を可能にするものである。
(Summary of the Invention) In order to achieve this object, the insulation resistance measuring method of the present invention uses a voltage that is 90 degrees phase-shifted from the voltage applied to the electrical circuit when the connection wire is not terminated with a capacitor Co. The ground capacitance is estimated from the direct current multiplied by the leakage current i of frequency f1 in the flowmeter output, and then the above connection line is connected to a capacitor Co which is equivalent to the above estimated ground capacitance value.
By inserting f as the initial value, Ic-
By setting the value of cOl to be small (ie, because of the 0-character Co), it is possible to further shorten the time required for adjustment and to enable highly accurate adjustment.

また前もって既知の値のコンデンサCOを挿入しておい
て上記方法で対地静電容量を測定すればC−Co即ち対
地静電容量と上記コンデンサCoの値の差を得、これに
よって対地静電容量Cの近似値を得、この近似値をコン
デンサCOK設定したのち、コンデンサCoの値を微調
して前記検出された周波数flの漏洩電流が最小KL、
この時の漏洩電流の大きさで絶縁抵抗を測定してもよい
Also, if you insert a capacitor CO with a known value in advance and measure the ground capacitance using the above method, you will get the difference between C-Co, that is, the ground capacitance and the value of the capacitor Co. After obtaining an approximate value of C and setting the capacitor COK to this approximate value, the value of the capacitor Co is finely adjusted so that the leakage current at the detected frequency fl is the minimum KL,
The insulation resistance may be measured based on the magnitude of the leakage current at this time.

(実施例) 本発明の絶縁抵抗測定方法を図示した実施例に基づき詳
細忙説明する。
(Example) The insulation resistance measuring method of the present invention will be explained in detail based on an illustrated example.

第1図は本発明の絶縁抵抗測定方法を実施する場合の装
置の実施例を示すブロック図であり、第3図と同一の記
号は同一の意味をもつものとする。
FIG. 1 is a block diagram showing an embodiment of an apparatus for implementing the insulation resistance measuring method of the present invention, and the same symbols as in FIG. 3 have the same meanings.

同第1図に於いて、Tは高圧電気を低圧に変換するトラ
ンス、l、2は該トランスTの2次コイルに接続された
電路でありて、その−万2には接地線Lmが接続されて
いる。
In the same Figure 1, T is a transformer that converts high voltage electricity into low voltage, l and 2 are electrical circuits connected to the secondary coil of the transformer T, and a grounding wire Lm is connected to -12. has been done.

この実施例ではこのような電路の絶縁抵抗を測定する場
合の装置を示したもので、電路l。
This embodiment shows an apparatus for measuring the insulation resistance of such an electric line.

2両者を一括して貫通せしめたリング形注入トランスC
Tと変流器ZCTと、該両者に電路と互いに逆相となる
如く貫通した接続線LINKとを備え、かつこの接続線
LINKは断続用スーイツチSWと可変コンデンサCO
とを直列に挿入してリング状に接続する。
2. Ring-shaped injection transformer C that penetrates both at once.
T, a current transformer ZCT, and a connecting line LINK that passes through both of them so that they are in opposite phases to each other, and this connecting line LINK is connected to an on/off switch SW and a variable capacitor CO.
Insert them in series and connect them in a ring shape.

更に、注入トランスCTKは2つの2次巻線Nl、N!
を設け、その一方NIKは低周波発振器O8Cを、又他
方N3には移相器PS、掛算器MLILT、低周波フィ
ルタLPF及びMCから成る直列回路を接続する。
Furthermore, the injection transformer CTK has two secondary windings Nl, N!
NIK is provided with a low frequency oscillator O8C, and the other N3 is connected with a series circuit consisting of a phase shifter PS, a multiplier MLILT, and low frequency filters LPF and MC.

又、変流器ZCTの2次コイルには増幅器AMP 、バ
ンドパスフィルタBPF 、II流1DBT及びメータ
Mからなる直列回路を付加すると共に、バンドパスフィ
ルタBPF出力の一部を前記掛算器MυLTの比較信号
として入力するよう構成したものである。
In addition, a series circuit consisting of an amplifier AMP, a bandpass filter BPF, a second flow 1DBT, and a meter M is added to the secondary coil of the current transformer ZCT, and a part of the output of the bandpass filter BPF is compared with the multiplier MυLT. It is configured to be input as a signal.

伺、電路1と大地との間の容量Cと抵抗Rとは夫々電路
と大地間の静電容量と絶縁抵抗を模式的に表記したもの
である。
The capacitance C and resistance R between the electric line 1 and the ground are schematic representations of the capacitance and insulation resistance between the electric line and the earth, respectively.

この構成に於いて動作を説明する。The operation in this configuration will be explained.

即ち、測定に当っては先ず接続線LINKに設けたスイ
ッチSWを”オフ”の状態に設定する。
That is, in the measurement, first, the switch SW provided on the connection line LINK is set to the "off" state.

注入トランスCTの巻線N1に接続された発振器O8C
よシミ路1.2に周波数f1の低周波電圧V sinω
ltを印加する′。かくして第3図の説明と同様に変流
器ZCTの出力を増幅器AMPで増幅し、フィルタBP
Fによシ周波数flの成分をとシ出せば、フィルタBP
Fの出力には(11式のiに相当する漏洩電流が検出さ
れろ。又注入トランスCTの巻線N!の出力電圧e s
inωItを90度移相器ps!/c印加すれば、その
出力は6cos(ωt t + (j )となる、ここ
で、0は位相誤差でありこれには変流器→増幅器→フィ
ルタの系によって生じる位相誤差も含まれたものとなる
Oscillator O8C connected to winding N1 of injection transformer CT
A low frequency voltage V sinω of frequency f1 is applied to the stain path 1.2.
Apply lt'. Thus, the output of the current transformer ZCT is amplified by the amplifier AMP and the filter BP
If we extract the component of frequency fl by F, we can obtain filter BP
A leakage current corresponding to i in equation 11 is detected in the output of F.Also, the output voltage e s of the winding N! of the injection transformer CT
90 degree phase shifter ps inωIt! /c, the output will be 6cos(ωt t + (j), where 0 is the phase error, which also includes the phase error caused by the current transformer → amplifier → filter system. becomes.

フィルタBPFの出力iを掛算器MTJLTの一部の入
力に又他の入力端に移相器PSの出力を印加すれば掛算
器MUL’l’の出力は十〇) ・・・・・・・・・(
4) 掛算出力をローパスフィルタLPFに入力し。
If the output i of the filter BPF is applied to some inputs of the multiplier MTJLT and the output of the phase shifter PS is applied to the other input terminal, the output of the multiplier MUL'l' is 10)...・・・(
4) Input the multiplication output to the low pass filter LPF.

掛算器出力の直流分りを求めれば となり、Iθ1(1ならば。If we find the DC component of the multiplier output, we get So, if Iθ1 (1).

となる。したがって(6)式のfJ42項は一般に十分
小さく、ωs、e、V が一定値とすればローパスフィ
ルタ出力の値から対地静電容量を近似的に推定できると
と忙なる。
becomes. Therefore, the fJ42 term in equation (6) is generally sufficiently small, and if ωs, e, and V are constant values, it is possible to approximately estimate the ground capacitance from the value of the low-pass filter output.

即ち、ローパスフィルタDをメータMCで表示すること
によって大略の対地静電容量が測定され、この値をC′
 とする。
That is, by displaying the low-pass filter D with the meter MC, the approximate ground capacitance is measured, and this value is expressed as C'
shall be.

次にコンデンサCoの値を前記測定された対地静電容量
Cの近似値C′に設定する。また接続線LINKに設け
たスイッチSWを1オン”にすればこの接続線には注入
トランスCTK誘起する低周波信号が流れるが変流器に
対しては電路と逆相となって貫通するから接続線LIN
Kには電流ωIC’VCO5ω1tが流れることKなシ
、バンドパスフィルタBPFの出力il′は(2)式と
PQ41に求めれば l V。
Next, the value of the capacitor Co is set to an approximate value C' of the measured ground capacitance C. In addition, if the switch SW provided on the connection line LINK is turned on, a low frequency signal induced by the injection transformer CTK will flow through this connection line, but it will pass through the current transformer in the opposite phase to the electrical circuit, so it is connected. line LIN
Since the current ωIC'VCO5ω1t flows through K, the output il' of the bandpass filter BPF can be found by equation (2) and PQ41 to be lV.

i 1= 丁51ata l t+ωt (C−C’ 
)Vcosωt t・・・・・・・−・(7) となる。更に整流器出力1 i1’ Iはとなυ、この
値が最小となるようにコンデンサCOの値を微調整すれ
ば、絶縁抵抗に関与した直流電流を求めることができる
i 1= 51ata l t+ωt (C-C'
)Vcosωtt・・・・・・・−・(7) Furthermore, the rectifier output 1 i1' I is υ, and by finely adjusting the value of the capacitor CO so that this value is minimized, the DC current related to the insulation resistance can be determined.

上記のよう忙コンデンサCoの値を調整するに当って初
期値C′としてfi’fcK等しい値を設定すれば極め
て短時間に、かつ高精度に整流器DBTの値が最小とな
るよう調整することができる。メータMの最小値が電路
の絶縁抵抗を正しく表わす結果であること上述した通り
である。
When adjusting the value of the busy capacitor Co as described above, if a value equal to fi'fcK is set as the initial value C', the value of the rectifier DBT can be adjusted to the minimum in an extremely short time and with high precision. can. As mentioned above, the minimum value of the meter M is a result that correctly represents the insulation resistance of the electric circuit.

同、上記説明では対地静電容量の近似値C′をメーター
MC等で表示し、その値となるよう可変コンデンサCo
を手動で調整する場合を説明したが9本発明の実施にあ
たってはこれに限定する必要はなく、スイッチSWを所
定時間1オフ”シソの間のローパスフィルタLPFの出
力から近似値C′を求め、この値に基づいて電子的に可
変コンデンサCoを調整し、ll流回路DETの出力が
最小となるようKJ!にコンデンサCOの値を微調整す
る如く、自動化することは当業者の技術をもりて容易に
実現可能である。
Similarly, in the above explanation, the approximate value C' of the ground capacitance is displayed with a meter MC, etc., and the variable capacitor Co is adjusted to that value.
Although a case has been described in which the value is manually adjusted, it is not necessary to be limited to this when implementing the present invention, and an approximate value C' can be obtained from the output of the low-pass filter LPF while the switch SW is turned off for a predetermined period of time. It is within the skill of those skilled in the art to automatically adjust the variable capacitor Co electronically based on this value and finely adjust the value of the capacitor CO to KJ! so that the output of the 11 current circuit DET is minimized. It is easily achievable.

この際の可変コンデンサとしては例えばバリキャップダ
イオード等が適当であろう。
For example, a varicap diode may be suitable as the variable capacitor in this case.

又、スイッチSWを設けずに直接コンデンサCo′%:
挿入したままで静電容量を検出することも可能である。
Also, directly connect the capacitor Co'% without providing a switch SW:
It is also possible to detect capacitance while it is inserted.

即ち、上記説明から明らかなようにスイッチSWをとり
去シ直接コンデンサCoを挿入した場合のローパスフィ
ルタLPFの出力D’uとなるが、 +61<1のとき
(CO313”q 1 s Sla a−6であるから
) となシ、(6)式の場合と同様にローパスフィルタLP
Fの出力D′から静電容量C−coの推定値を測定しう
ることになる。xCO社設定値であり既知であるからC
−Coから対地静電容量C7Ij!:推定することが出
来この推定偏圧なるよう前記コンデンサCoの値を変更
して、更にメータMの表示が最小を示すようにコンデン
サCoの値を微調整してもよいことは明らかである。当
然C−Coは正、負両方の値をとるが正のときはC0を
増加し、負のときはCoを減少させることになる。
That is, as is clear from the above explanation, the output D'u of the low-pass filter LPF is obtained when the switch SW is removed and the capacitor Co is directly inserted. When +61<1 (CO313"q1sSlaa-6 Therefore, as in the case of equation (6), the low-pass filter LP
The estimated value of capacitance C-co can be measured from the output D' of F. Since it is the set value of xCO company and is known, C
-Co to ground capacitance C7Ij! It is clear that the value of the capacitor Co may be changed so that the estimated partial pressure can be estimated, and further the value of the capacitor Co may be finely adjusted so that the display on the meter M indicates the minimum value. Naturally, C-Co takes both positive and negative values; when it is positive, C0 is increased, and when it is negative, Co is decreased.

又上記説明は一端接地電路として単相2線の場合につい
て説明したが、単相3線、3相3線式電気配線等の電路
であっても同様に測定が可能である。
Furthermore, although the above description has been made regarding the case of a single-phase, two-wire electrical circuit with one end grounded, measurements can be made in the same manner for electrical circuits such as single-phase, three-wire, three-phase, and three-wire electrical wiring.

岡、更に上記説明では接地線LINKを注入トランス、
変流器ZCTに単に電路とは逆相となる如く貫通させて
いたが、接続線を例えば、注入トランスCTでN回巻線
し、変流器ZCTには単に逆相となるよう忙いずれか一
方をN回巻線すれば、コンデンサCOの値は等測的にC
o/Nの値とすればよく、任意に実現可能な可変コンデ
ンサを用いる仁とができる。この方法は変流器ZCT&
CN回巻線しても同様であシ、又両者にそれぞれ所定の
巻線をしてもよい。
Oka, furthermore, in the above explanation, the ground wire LINK is injected into the transformer,
The current transformer ZCT was simply passed through so that the phase was opposite to that of the electric circuit, but the connecting wire was wound N times with an injection transformer CT, and the current transformer ZCT was simply passed through so that the phase was opposite to that of the electric circuit. If one is wound N times, the value of the capacitor CO is isometrically C
The value of o/N may be used, and a variable capacitor that can be realized arbitrarily can be used. This method uses current transformers ZCT &
The same thing can be done with CN windings, or both may be wound with predetermined windings.

(発明の効果) 本発明は以上説明したよう罠、電路に印加した低周波信
号の漏洩電流を検出することKよってその絶縁抵抗を沖
]定する方法に於いて、静電容量による測定誤差を除去
するために付加した調整用コンデンサの初期値を最終的
に設定すべき値に近似して定めるようKしたものである
から、測定時間を短縮しかつ測定精度の向上をはかる上
で効果がある。
(Effects of the Invention) As explained above, the present invention eliminates measurement errors due to capacitance in a method of determining insulation resistance by detecting the leakage current of a low frequency signal applied to a trap or electric circuit. Since the initial value of the adjustment capacitor added for removal is determined to approximate the value that should be finally set, it is effective in shortening measurement time and improving measurement accuracy. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を用いた装置の一実施例を示す図
、第2図は従来の方法の動作を示す図、第3図は従来の
方法を示す図。 T・・・・・・・・・受電トランス、    CT・・
・・・・・・・注入トランス、    ZCT・・・・
・・・・・変流器。 O20・・・・・・・・・発振器、    AMP・・
・・・・・・・増幅器BPF・・・・・・・・・フィル
タ、    DET・・・・・・・・・整流器、   
 Mc、M・・・・・・・・・メーター。 PS・・・・・・・−・移相器、    MtJLT・
・・・・・・・・かけ算器、    LPF・・・・・
・・・・ローパスフィルタ。 特許出願人  東洋通信機株式会社
FIG. 1 is a diagram showing an embodiment of an apparatus using the method of the present invention, FIG. 2 is a diagram showing the operation of the conventional method, and FIG. 3 is a diagram showing the conventional method. T......Power receiving transformer, CT...
・・・・・・Injection transformer, ZCT・・・・
·····Current transformer. O20...Oscillator, AMP...
・・・・・・Amplifier BPF・・・・・・Filter, DET・・・・・・Rectifier,
Mc, M......meter. PS・・・・・・・・・−・Phase shifter, MtJLT・
・・・・・・・・・Multiplier, LPF・・・・・・
...Low pass filter. Patent applicant: Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】 1、電路に低周波電圧を印加するトランスのコアと漏洩
電流を検出する変流器とを結合し、上記低周波電圧の位
相90度移相した電圧と上記変流器出力中の上記低周波
の成分との積の直流分を導出することによって前記電路
の対地静電容量の推定値を測定するとともに、前記トラ
ンスのコアと変流器とに前記電路とは逆相となるように
貫通する新たな接続線を設け、かつ上記電路の接続線に
は前記測定した対地静電容量の推定値と等価な値のコン
デンサを初期値として挿入し、該コンデンサの値を更に
増減して上記変流器出力中に含まれる上記低周波の成分
が最小となるように調整した後の上記低周波成分の大き
さから絶縁抵抗を測定することを特徴とする電路の簡易
絶縁抵抗測定方法。 2、特許請求の範囲第1項において前記トランスのコア
と変流器とを前記電路とは逆相となるように貫通する接
続線をコンデンサで終端し、上記低周波電圧の位相を9
0度移相した電圧と上記変流器出力中の上記低周波の成
分との積の直流分から前記対地静電容量と上記コンデン
サの容量の差の推定値を測定し、該推定値から前記対地
静電容量の推定値を算出し、該コンデンサの値を上記推
定値におきかえて設定し、上記変流器出力中に含まれる
上記低周波の成分が最小となるように上記コンデンサの
値を更に増減して調整した後の上記低周波成分の大きさ
から絶縁抵抗を測定することを特徴とする電路の簡易絶
縁抵抗測定方法。 3、上記接続線が上記トランスのコアもしくは上記変流
器のいずれか一方、又は両者に巻線してなることを特徴
とする特許請求の範囲第1項、第2項記載の電路の簡易
絶縁抵抗測定方法。
[Claims] 1. A core of a transformer that applies a low-frequency voltage to an electrical circuit and a current transformer that detects leakage current are combined, and a voltage whose phase is shifted by 90 degrees from the low-frequency voltage and the current transformer are combined. The estimated value of the ground capacitance of the electric line is measured by deriving the direct current component of the product of the product with the low frequency component in the output, and the core of the transformer and the current transformer are connected in opposite phase to the electric line. A new connecting line is provided that passes through the circuit, and a capacitor with a value equivalent to the estimated value of the ground capacitance measured above is inserted as an initial value into the connecting line of the electric circuit, and the value of the capacitor is further changed. A simple insulation resistance of an electrical circuit, characterized in that the insulation resistance is measured from the magnitude of the low frequency component after increasing or decreasing it so that the low frequency component contained in the output of the current transformer is minimized. Measuring method. 2. In claim 1, a connecting wire passing through the core of the transformer and the current transformer in a phase opposite to that of the electrical circuit is terminated with a capacitor, and the phase of the low frequency voltage is set to 9.
An estimated value of the difference between the capacitance to the ground and the capacitance of the capacitor is measured from the DC component of the product of the voltage phase shifted by 0 degrees and the low frequency component in the output of the current transformer, and from the estimated value, Calculate the estimated value of the capacitance, set the value of the capacitor by replacing it with the estimated value, and further adjust the value of the capacitor so that the low frequency component contained in the output of the current transformer is minimized. A simple method for measuring insulation resistance of an electric circuit, characterized in that insulation resistance is measured from the magnitude of the low frequency component after adjustment by increasing or decreasing. 3. Simple insulation of an electric circuit according to claims 1 and 2, wherein the connecting wire is wound around either the core of the transformer or the current transformer, or both. How to measure resistance.
JP27532187A 1987-10-30 1987-10-30 Simple insulation resistance measurement method for electrical circuits Expired - Lifetime JP2612719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27532187A JP2612719B2 (en) 1987-10-30 1987-10-30 Simple insulation resistance measurement method for electrical circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27532187A JP2612719B2 (en) 1987-10-30 1987-10-30 Simple insulation resistance measurement method for electrical circuits

Publications (2)

Publication Number Publication Date
JPH01116456A true JPH01116456A (en) 1989-05-09
JP2612719B2 JP2612719B2 (en) 1997-05-21

Family

ID=17553819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27532187A Expired - Lifetime JP2612719B2 (en) 1987-10-30 1987-10-30 Simple insulation resistance measurement method for electrical circuits

Country Status (1)

Country Link
JP (1) JP2612719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168664A (en) * 2008-01-17 2009-07-30 Chugoku Electric Power Co Inc:The Clamp meter and dc ground fault line exploration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168664A (en) * 2008-01-17 2009-07-30 Chugoku Electric Power Co Inc:The Clamp meter and dc ground fault line exploration method

Also Published As

Publication number Publication date
JP2612719B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
WO1988004055A1 (en) Method and device for detecting insulation resistance
EP0706663B1 (en) Electrical test instrument
JPH01116456A (en) Simple insulation resistance measurement for electric circuit
JP3545886B2 (en) Insulation resistance measuring device
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
JPS5933233B2 (en) Grounding system insulation resistance measuring device
JP2617325B2 (en) Insulation resistance measurement method
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2750690B2 (en) Leakage current detection method
JPS61129582A (en) Measuring method of mutual inductance
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2896572B2 (en) Simple insulation resistance measurement method
JPS63175772A (en) Phase compensating method for insulation resistance measuring instrument
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS637349B2 (en)
JPH028529B2 (en)
JP2754011B2 (en) Insulation resistance measurement method with phase compensation
JPS6327922B2 (en)
JPS61187664A (en) Apparatus for simply measuring insulation resistance
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
JP2010025743A (en) Insulation monitor and insulation monitoring method
JPS63315967A (en) Method for measuring insulation resistance of cable way