JPH01115185A - 埋め込みヘテロ接合型半導体レーザ素子の製造方法 - Google Patents
埋め込みヘテロ接合型半導体レーザ素子の製造方法Info
- Publication number
- JPH01115185A JPH01115185A JP27255087A JP27255087A JPH01115185A JP H01115185 A JPH01115185 A JP H01115185A JP 27255087 A JP27255087 A JP 27255087A JP 27255087 A JP27255087 A JP 27255087A JP H01115185 A JPH01115185 A JP H01115185A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- buried
- semiconductor laser
- cladding layer
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims description 28
- 239000010410 layer Substances 0.000 claims abstract description 102
- 239000011241 protective layer Substances 0.000 claims abstract description 24
- 238000005530 etching Methods 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000003486 chemical etching Methods 0.000 claims abstract description 4
- 238000005253 cladding Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 description 22
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は低しきい値電流を有し、最低次安定モードでレ
ーザ発振する埋め込みヘテロ接合型半導体レーザ素子を
製造する方法に関する。
ーザ発振する埋め込みヘテロ接合型半導体レーザ素子を
製造する方法に関する。
示す。第4図の素子は例えばn形GaAs基板1の上に
n形ΔI2GaAsの第1のクラッド層2.アンドープ
Δ1GaAsの活性層3.p形AJGaAsの第2のク
ラッド層4.p形GaAsのコンタクト層5をこの順に
形成し、さらに最上層に開口部を有するn形AlGaA
sの電流制限層6を備えた構造となっている。各層のA
1GaAsの組成割合はこの半導体レーザ素子の特性を
満足するように定められる。
n形ΔI2GaAsの第1のクラッド層2.アンドープ
Δ1GaAsの活性層3.p形AJGaAsの第2のク
ラッド層4.p形GaAsのコンタクト層5をこの順に
形成し、さらに最上層に開口部を有するn形AlGaA
sの電流制限層6を備えた構造となっている。各層のA
1GaAsの組成割合はこの半導体レーザ素子の特性を
満足するように定められる。
このような上下方向のみ光損失の少ない電流制限層6で
囲まれたダブルヘテロ接合構造に対して、活性層3に注
入されるキャリアふよびキャリアの再結合時に放出され
る光を活性領域内に完全に閉じ込める構造とした埋め込
みヘテロ接合型半導体レーザ素子も開発されている。そ
の要部構成断面図を第5図に示し、第4図と共通な部分
を同一符号で表しである。第5図が第4図と異なる所は
活性層3が比較的混晶比の大きなn形Aj7GaAsの
第1のクラッド層2とp形A/!GaAsの第2のクラ
ッド層4、さらにアンドープ八AGaAsの埋込層7に
よって完全に囲まれた構造となっていることである。こ
の構造では活性層3に注入されるキャリアが閉じ込めら
れるので素子の電界分布が安定になり、したがってレー
ザ発振しきい値電流を低減させ、発振モード、とくに横
モードの電流変化に対して安定となり、また活性層3の
幅を適切な大きさに定めることにより単一横モード発振
が可能になるなど、GaAs / A/GaAs系埋め
込みヘテロ接合型半導体レーザ素子は通常のダブルヘテ
ロ接合型半導体レーザ素子では得ることができない優れ
た特性をもっている。このように埋め込みヘテロ接合型
半導体レーザ素子は安定な光源となることから、光情報
伝送、光情報処理の光源として用いるのが有望と見られ
ている。
囲まれたダブルヘテロ接合構造に対して、活性層3に注
入されるキャリアふよびキャリアの再結合時に放出され
る光を活性領域内に完全に閉じ込める構造とした埋め込
みヘテロ接合型半導体レーザ素子も開発されている。そ
の要部構成断面図を第5図に示し、第4図と共通な部分
を同一符号で表しである。第5図が第4図と異なる所は
活性層3が比較的混晶比の大きなn形Aj7GaAsの
第1のクラッド層2とp形A/!GaAsの第2のクラ
ッド層4、さらにアンドープ八AGaAsの埋込層7に
よって完全に囲まれた構造となっていることである。こ
の構造では活性層3に注入されるキャリアが閉じ込めら
れるので素子の電界分布が安定になり、したがってレー
ザ発振しきい値電流を低減させ、発振モード、とくに横
モードの電流変化に対して安定となり、また活性層3の
幅を適切な大きさに定めることにより単一横モード発振
が可能になるなど、GaAs / A/GaAs系埋め
込みヘテロ接合型半導体レーザ素子は通常のダブルヘテ
ロ接合型半導体レーザ素子では得ることができない優れ
た特性をもっている。このように埋め込みヘテロ接合型
半導体レーザ素子は安定な光源となることから、光情報
伝送、光情報処理の光源として用いるのが有望と見られ
ている。
この埋め込みヘテロ接合型半導体レーザ素子は一般に次
のように製造される。第6図はその主な製造工程図を示
したものである。まず例えば厚さ100、um、キャリ
ア濃度I XIO”cm−’のn形GaAs結晶基板1
の上に厚さ1.5μm、キャリア濃度5X1017cm
−’のn形へ1o、 4sGao、5sAsの第1のク
ラッド層2゜厚さ0.17−1mのアンドープ八lo、
+*Gao、 aJsの活性層3、厚さ0.1μm、
キャリア濃度5 XIO17am−’のp形A1゜、
45Ga0.55^Sの第2のクラッド層の一部4aを
順次常圧MOCVD法により、第1のエピタキシアル成
長を行う(第6図a)。続いて酸化膜(SiO□)8を
スパッタで全面に付けた後、レジストを塗布し、フォト
リソグラフィにより、(O11)面に垂直に2.7μm
幅のストライブを形成する。そしてレジストをマスクと
してまず)IF−NH4F水溶液でSin、のバターニ
ングを行い、引き続きl(、PO,:H2O,:エチレ
ングリコール= 1 : 1 :、1.6の溶液を用い
てストライプ以外の部分の第1のエピタキシアル成長層
を深さ0.3μmエツチングし、ストライブ状のメサを
形成する。このとき活性層3の幅は2.5±0.2μm
におさめることができる(第6図b)。次いで比抵抗5
XIO’Ω−cff1以上を有するアンドープAlo
、 3sGao、 64ASの埋込層7をメサ部両側面
に選択成長させ、その表面が第2のクラブト層の一部と
なる4aの上面とほぼ揃うようにする。
のように製造される。第6図はその主な製造工程図を示
したものである。まず例えば厚さ100、um、キャリ
ア濃度I XIO”cm−’のn形GaAs結晶基板1
の上に厚さ1.5μm、キャリア濃度5X1017cm
−’のn形へ1o、 4sGao、5sAsの第1のク
ラッド層2゜厚さ0.17−1mのアンドープ八lo、
+*Gao、 aJsの活性層3、厚さ0.1μm、
キャリア濃度5 XIO17am−’のp形A1゜、
45Ga0.55^Sの第2のクラッド層の一部4aを
順次常圧MOCVD法により、第1のエピタキシアル成
長を行う(第6図a)。続いて酸化膜(SiO□)8を
スパッタで全面に付けた後、レジストを塗布し、フォト
リソグラフィにより、(O11)面に垂直に2.7μm
幅のストライブを形成する。そしてレジストをマスクと
してまず)IF−NH4F水溶液でSin、のバターニ
ングを行い、引き続きl(、PO,:H2O,:エチレ
ングリコール= 1 : 1 :、1.6の溶液を用い
てストライプ以外の部分の第1のエピタキシアル成長層
を深さ0.3μmエツチングし、ストライブ状のメサを
形成する。このとき活性層3の幅は2.5±0.2μm
におさめることができる(第6図b)。次いで比抵抗5
XIO’Ω−cff1以上を有するアンドープAlo
、 3sGao、 64ASの埋込層7をメサ部両側面
に選択成長させ、その表面が第2のクラブト層の一部と
なる4aの上面とほぼ揃うようにする。
この第2のエピタキシアル成長条件は減圧MOCVD法
を用いて成長温度700℃、リアクター圧力を1OTo
rrに制御する。その後マスク材の310□8をHF系
エツチング液で除去する(第6図C)。次に第3のエピ
タキシアル成長として厚さ1.4μm。
を用いて成長温度700℃、リアクター圧力を1OTo
rrに制御する。その後マスク材の310□8をHF系
エツチング液で除去する(第6図C)。次に第3のエピ
タキシアル成長として厚さ1.4μm。
キャリア濃度5 X 1017 C「3のp形Alo、
5sGao、 5sASの第2クラッド層の大部分と
なる4bおよび厚さ0.5μm、キャリア濃度I X1
01ec+r3のp形GaAsのコンタクト層5を常圧
MOCVDにより800℃で成長させる(第6図d)。
5sGao、 5sASの第2クラッド層の大部分と
なる4bおよび厚さ0.5μm、キャリア濃度I X1
01ec+r3のp形GaAsのコンタクト層5を常圧
MOCVDにより800℃で成長させる(第6図d)。
なお第6図すで形成される4aと第6図dで形成される
4bはこれらを一体とした第2のクラッド層4となるも
のであり、したがって第5図では単に第2のクラッド層
4として示しである。
4bはこれらを一体とした第2のクラッド層4となるも
のであり、したがって第5図では単に第2のクラッド層
4として示しである。
かくして基板1上にエピタキシアル多層膜を形成し、そ
の後は上下両面にp側電極とn側電極を設けることによ
り埋込層を有するヘテロ接合型半導体レーザ素子が得ら
れるが第5図ではこれら側電極は図示を省略した。
の後は上下両面にp側電極とn側電極を設けることによ
り埋込層を有するヘテロ接合型半導体レーザ素子が得ら
れるが第5図ではこれら側電極は図示を省略した。
第6図a −dに示した工程による製造方法は活性層3
の横方向寸法の制御がしやすいという利点はあるものの
なお次のような問題点もある。
の横方向寸法の制御がしやすいという利点はあるものの
なお次のような問題点もある。
埋め込みヘテロ接合型半導体レーザ素子の活性層の幅を
精度よく得るために行われる第6図a〜dの製造工程か
られかるようにC工程すなわち第3のエピタキシアル成
長を行う際に、C工程、C工程すなわち第1.第2のエ
ピタキシアル成長で形成した第2のクラッド層の一部と
なる4aと埋込層5の上に第2のクラッド層の残部4b
を成長させて第2のクラッド層4として形成しなければ
ならない。しかしながら第2のクラッド層の一部4aと
埋込層7は非常に酸化しゃすいAIGaAsの化合物で
あって、MOCVD装置から一旦取り出すエツチング処
理などによって表面が酸化される。
精度よく得るために行われる第6図a〜dの製造工程か
られかるようにC工程すなわち第3のエピタキシアル成
長を行う際に、C工程、C工程すなわち第1.第2のエ
ピタキシアル成長で形成した第2のクラッド層の一部と
なる4aと埋込層5の上に第2のクラッド層の残部4b
を成長させて第2のクラッド層4として形成しなければ
ならない。しかしながら第2のクラッド層の一部4aと
埋込層7は非常に酸化しゃすいAIGaAsの化合物で
あって、MOCVD装置から一旦取り出すエツチング処
理などによって表面が酸化される。
そのため第3のエピタキシアル成長によって形成される
第2のクラッド層4とコンタクト層5の結晶性と表面伏
態が悪くなり、その結果素子面内の平坦度の均一性が損
なわれ、電気的特性も低下するようになる。したがって
前述した特徴をもち、有望視されている埋め込みヘテロ
接合型半導体レーザ素子を得る歩留りは極めて低く、工
業的に製造するための支障となっている。
第2のクラッド層4とコンタクト層5の結晶性と表面伏
態が悪くなり、その結果素子面内の平坦度の均一性が損
なわれ、電気的特性も低下するようになる。したがって
前述した特徴をもち、有望視されている埋め込みヘテロ
接合型半導体レーザ素子を得る歩留りは極めて低く、工
業的に製造するための支障となっている。
本発明は上述の点に鑑みてなされたものであり、その目
的は低しきい値電流を有し、最低次安定モードでレーザ
発振するGaAs / AlGaAs層の埋め込みヘテ
ロ接合型半導体レーザ素子のAlGaAs層を酸化させ
ることな(歩留りよくこの素子を製造する方法を提供す
ることにある。
的は低しきい値電流を有し、最低次安定モードでレーザ
発振するGaAs / AlGaAs層の埋め込みヘテ
ロ接合型半導体レーザ素子のAlGaAs層を酸化させ
ることな(歩留りよくこの素子を製造する方法を提供す
ることにある。
本発明は半導体基板(例えばn−GaAs)上にまず第
1のクラッド層(n −AIGaAs) 、活性層(ア
ンドープAIGaAs) 、第2のクラッド層(p−A
lGaAs層の一部および表面の保護層(アンドープG
aAs) をこの順に堆積形成する第1のエピタキシ
アル成長工程9次に第1のエピタキシアル成長層に酸化
膜(S+02)を付して選択的化学エツチングにより活
性層を含む所定幅のストライプ状メ今部を形成した後、
メサ部側面に埋込層(アンドープ八1GaAs)とこの
埋込層の上に再び表面の保護層を形成する第2のエピタ
キシアル成長工程2次いで酸化膜を化学エツチングし、
保護層をサーマルエツチングしてこれらを除去した後、
第2のクラッド層とコンタクト層(p −GaAs )
を順次形成する第3のエピタキシアル成長工程を有する
埋め込みヘテロ接合型半導体レーデ素子の製造方法であ
る。
1のクラッド層(n −AIGaAs) 、活性層(ア
ンドープAIGaAs) 、第2のクラッド層(p−A
lGaAs層の一部および表面の保護層(アンドープG
aAs) をこの順に堆積形成する第1のエピタキシ
アル成長工程9次に第1のエピタキシアル成長層に酸化
膜(S+02)を付して選択的化学エツチングにより活
性層を含む所定幅のストライプ状メ今部を形成した後、
メサ部側面に埋込層(アンドープ八1GaAs)とこの
埋込層の上に再び表面の保護層を形成する第2のエピタ
キシアル成長工程2次いで酸化膜を化学エツチングし、
保護層をサーマルエツチングしてこれらを除去した後、
第2のクラッド層とコンタクト層(p −GaAs )
を順次形成する第3のエピタキシアル成長工程を有する
埋め込みヘテロ接合型半導体レーデ素子の製造方法であ
る。
本発明の製造方法は上述のように第1のエピタキシアル
成長工程でとくに表面保護層を設けることにより、メサ
エッチングを行うためのSiO□膜付のとき、第2のク
ラッド層の一部となるメサ部上面が酸化されるのを防ぎ
、さらに第2.のエピタキシアル成長工程で形成された
埋込層表面にもはじめの保護層と同様に第2の保護層を
設けて5I02膜除去のとき埋込層表面が酸化されるの
を防いでいるために、第3のエピタキシアル成長工程で
形成される第2のクラッド層の残部は結晶成長に際して
表面酸化の影響を受けることなく、第2のクラッド層全
体の良好な結晶性が得られるようになる。
成長工程でとくに表面保護層を設けることにより、メサ
エッチングを行うためのSiO□膜付のとき、第2のク
ラッド層の一部となるメサ部上面が酸化されるのを防ぎ
、さらに第2.のエピタキシアル成長工程で形成された
埋込層表面にもはじめの保護層と同様に第2の保護層を
設けて5I02膜除去のとき埋込層表面が酸化されるの
を防いでいるために、第3のエピタキシアル成長工程で
形成される第2のクラッド層の残部は結晶成長に際して
表面酸化の影響を受けることなく、第2のクラッド層全
体の良好な結晶性が得られるようになる。
なおメサ部を形成した後の第1クラッド層の表面は主電
流の流れる領域ではないから酸化の影響を考慮してない
。
流の流れる領域ではないから酸化の影響を考慮してない
。
以下本発明を実施例に基づき説明する。
第1図は本発明の方法を用いた埋め込みヘテロ接合型半
導体レーザ素子の主な製造工程図を示したものであるが
、基本的には第6図で説明したのと同じであるから、重
複を避は主として第6F!!Jと異なる点について述べ
る。また素子を構成する各層の化合物半導体も第6図と
同じものが用いられるのでその説明は省略し、第6図と
同一符号で表しである。
導体レーザ素子の主な製造工程図を示したものであるが
、基本的には第6図で説明したのと同じであるから、重
複を避は主として第6F!!Jと異なる点について述べ
る。また素子を構成する各層の化合物半導体も第6図と
同じものが用いられるのでその説明は省略し、第6図と
同一符号で表しである。
まず第1図aは第6図aの第1のエピタキシアル成長工
程に相当するが、第1図では最上層に第2クラγド層の
一部となる4aの表面が後工程で酸化されるのを防ぐた
めにアンドープGaASの第1の保護層9aを20人の
厚さに成長させる点で第6図とは異なる。第1図すはス
トライプ状のメサ部を形成した第6図すに対応している
。この過程で2のクラッド層の一部4aの表面が酸化さ
れるのに対し、本発明の第1図すでは第1の保護層9a
で覆われているので4a表面に右ける酸化は生じない。
程に相当するが、第1図では最上層に第2クラγド層の
一部となる4aの表面が後工程で酸化されるのを防ぐた
めにアンドープGaASの第1の保護層9aを20人の
厚さに成長させる点で第6図とは異なる。第1図すはス
トライプ状のメサ部を形成した第6図すに対応している
。この過程で2のクラッド層の一部4aの表面が酸化さ
れるのに対し、本発明の第1図すでは第1の保護層9a
で覆われているので4a表面に右ける酸化は生じない。
次に第1・図Cは埋込層7をメサ部両側面に成長させる
第2のエピタキシアル成長工程であって第6図Cに対応
するが、第1図Cではさらに埋込層7の表面にアンドー
プGaASを例えば2OAの厚さに第2の保護層9bと
して形成する。その場合は第2の保護層9bと既に債層
されている第1の保護層9aとの表面はほぼ揃うように
なるが必ずしも正確に同一平面とする必要はない。第1
のクラッド層2のメサ部以外の表面に対しては、その上
の埋込層7が電流ブロック層であるからとくに酸化防止
を考慮しなくてもよい。
第2のエピタキシアル成長工程であって第6図Cに対応
するが、第1図Cではさらに埋込層7の表面にアンドー
プGaASを例えば2OAの厚さに第2の保護層9bと
して形成する。その場合は第2の保護層9bと既に債層
されている第1の保護層9aとの表面はほぼ揃うように
なるが必ずしも正確に同一平面とする必要はない。第1
のクラッド層2のメサ部以外の表面に対しては、その上
の埋込層7が電流ブロック層であるからとくに酸化防止
を考慮しなくてもよい。
そして酸化膜8を除去することにより、第1図dとなり
、第6図Cとほぼ同じ状態となる。ただ異なる所は第1
図dは表面全体が第1の保護層9aと第2の保護層9b
との両体護層で覆われており、第2のクラッド層の一部
4aと埋込層7の表面はエツチング過程などを経てもそ
のとき酸化を生じないことである。次にこの積層体を再
びMOCVD装置に装入し、表面保護層9a、9bを除
去するためにサーマルエツチングを行う。その条件は8
50℃30分間であり、GaAsの850℃におけるエ
ツチング速度は1人/ m i nであるから、30分
のサーマルエツチングによって第1.第2の保護層9a
、9bからなる全表面の保護層は完全に除去される。こ
のサーマルエツチング処理の温度と時間は、続いて行う
第3のエピタキシアル成長を行う温度1時間と比べて大
きな相違はないので、下地層に含まれているドーパント
が蒸発して失われることはない。
、第6図Cとほぼ同じ状態となる。ただ異なる所は第1
図dは表面全体が第1の保護層9aと第2の保護層9b
との両体護層で覆われており、第2のクラッド層の一部
4aと埋込層7の表面はエツチング過程などを経てもそ
のとき酸化を生じないことである。次にこの積層体を再
びMOCVD装置に装入し、表面保護層9a、9bを除
去するためにサーマルエツチングを行う。その条件は8
50℃30分間であり、GaAsの850℃におけるエ
ツチング速度は1人/ m i nであるから、30分
のサーマルエツチングによって第1.第2の保護層9a
、9bからなる全表面の保護層は完全に除去される。こ
のサーマルエツチング処理の温度と時間は、続いて行う
第3のエピタキシアル成長を行う温度1時間と比べて大
きな相違はないので、下地層に含まれているドーパント
が蒸発して失われることはない。
かくして第3のエピタキシアル成長工程に移るが、この
工程は第6図dと全く同じであって第2のクラッド層の
残部4bとコンタクト層5を成長させるものであるから
第1図には図示を省略した。ここまでの工程で第5図に
示したのと同じ構成のものが得られ、以後図示してない
p側、n側両電極を付し、通常のウェハープロセスを経
て埋め込みヘテロ接合型半導体レーザ素子を得ることが
できる。
工程は第6図dと全く同じであって第2のクラッド層の
残部4bとコンタクト層5を成長させるものであるから
第1図には図示を省略した。ここまでの工程で第5図に
示したのと同じ構成のものが得られ、以後図示してない
p側、n側両電極を付し、通常のウェハープロセスを経
て埋め込みヘテロ接合型半導体レーザ素子を得ることが
できる。
以下本発明の方法により得られた埋め込みヘテロ接合型
半導体レーザ素子の電気的特性について述べる。、第2
図は電流−光出力特性線図であるが、比較のため第6図
に示した従来の製造工程により得られた素子の特性曲線
も併記しである。第2図において実線曲線イが本発明の
方法によるものであり、点線曲線口が従来法によるもの
を表している。第2図の曲線イは埋め込みヘテロ接合型
半導体素子に特有の低しきい値電流23.5mAが得ら
れるが、曲線口ではしきい値電流は26mAとなる。ま
た本発明により作製した素子と従来法により作製した素
子の中から、それぞれ任意に100個ずつ取り出し、し
きい値電流のばらつきを調べた結果、従来法のものが2
6±7mAであったのに対し、本発明のものは23.1
七:mAであり、平均値でlO%程度しきい値電流が減
少している。また良品率の仕較では本発明によるものの
方が約30%程度高くなる。
半導体レーザ素子の電気的特性について述べる。、第2
図は電流−光出力特性線図であるが、比較のため第6図
に示した従来の製造工程により得られた素子の特性曲線
も併記しである。第2図において実線曲線イが本発明の
方法によるものであり、点線曲線口が従来法によるもの
を表している。第2図の曲線イは埋め込みヘテロ接合型
半導体素子に特有の低しきい値電流23.5mAが得ら
れるが、曲線口ではしきい値電流は26mAとなる。ま
た本発明により作製した素子と従来法により作製した素
子の中から、それぞれ任意に100個ずつ取り出し、し
きい値電流のばらつきを調べた結果、従来法のものが2
6±7mAであったのに対し、本発明のものは23.1
七:mAであり、平均値でlO%程度しきい値電流が減
少している。また良品率の仕較では本発明によるものの
方が約30%程度高くなる。
第3図は本発明の方法により得られた素子の光出力10
mWの場合における横モード特性を示す線図であり、±
20°の範囲で−様な分布を示し、安定な横モード発振
が行われることがわかる。
mWの場合における横モード特性を示す線図であり、±
20°の範囲で−様な分布を示し、安定な横モード発振
が行われることがわかる。
以上のごとく本発明の方法を用いた方が、得られた半導
体レーザ素子の特性が従来法より向上するのは、従来は
第6図のように+→第3のエピタキシアル成長を行うと
き酸化されたAI G a A S層表面に再成長して
いたのに対し、本発明では第1図のように酸化されてい
ないAj’GaAs層表面に再成長することができるた
め結晶性が良好で均一なものとなるからであり、その結
果特性のばらつきが小さく、シきい値電流が低下し、良
品率が増すのである。
体レーザ素子の特性が従来法より向上するのは、従来は
第6図のように+→第3のエピタキシアル成長を行うと
き酸化されたAI G a A S層表面に再成長して
いたのに対し、本発明では第1図のように酸化されてい
ないAj’GaAs層表面に再成長することができるた
め結晶性が良好で均一なものとなるからであり、その結
果特性のばらつきが小さく、シきい値電流が低下し、良
品率が増すのである。
埋め込みヘテロ接合型半導体レーザ素子は埋込層によっ
て電流をブロックし、注入キャリアを活性領域内に閉じ
込める構造の優れた特性を有するものであり、その製造
方法も化合物半導体の積層体をメサ形成することにより
活性層の幅を正確に制御できるという利点をもっている
が、この製造方法においてはメサ部上面と埋込層上面か
らなる表面全体がエツチング処理などの過程を経る間に
酸化し、そのため第2のクラッド層を積むエピタキシア
ル成長工程で良好な結晶性をもつ成長がなされず、半導
体レーザ素子の埋め込み型ヘテロ接合構造本来の電気的
特性と製造歩留りが十分に得られていなかったのに対し
て、本発明の方法によれば実施例で説明したように、第
1.第2のエピタキシアル成長工程で積層体表面にGa
Asの保護層を設け、第3のエビクキシアル成長工程の
前にこの表面保護層をサーマルエツチング除去する工程
をとり入れたため、上記の酸化を生ずることなく、第3
のエピタキシアル成長工程で形成する第2のクラッド層
は良好な結晶性と表面状態が得られ、素子特性はしきい
値電流およびそのばらつきが低く、安定な横モード発振
が可能になるなどこの素子構造が有する本来の優れた特
性を発揮させることができ、しかも製造歩留りも向上す
るという大きな効果が得られた。
て電流をブロックし、注入キャリアを活性領域内に閉じ
込める構造の優れた特性を有するものであり、その製造
方法も化合物半導体の積層体をメサ形成することにより
活性層の幅を正確に制御できるという利点をもっている
が、この製造方法においてはメサ部上面と埋込層上面か
らなる表面全体がエツチング処理などの過程を経る間に
酸化し、そのため第2のクラッド層を積むエピタキシア
ル成長工程で良好な結晶性をもつ成長がなされず、半導
体レーザ素子の埋め込み型ヘテロ接合構造本来の電気的
特性と製造歩留りが十分に得られていなかったのに対し
て、本発明の方法によれば実施例で説明したように、第
1.第2のエピタキシアル成長工程で積層体表面にGa
Asの保護層を設け、第3のエビクキシアル成長工程の
前にこの表面保護層をサーマルエツチング除去する工程
をとり入れたため、上記の酸化を生ずることなく、第3
のエピタキシアル成長工程で形成する第2のクラッド層
は良好な結晶性と表面状態が得られ、素子特性はしきい
値電流およびそのばらつきが低く、安定な横モード発振
が可能になるなどこの素子構造が有する本来の優れた特
性を発揮させることができ、しかも製造歩留りも向上す
るという大きな効果が得られた。
第1図は本発明による主な製造工程図、第2図は本発明
の方法により得られた半導体レーザ素子の電流−光出力
特性線図、第3図は同じく横モード特性線図、第4図は
ダブルヘテロ接合型半導体レーザ素子の要部構成断面図
、第5図は埋め込みヘテロ接合型半導体レーザ素子の要
部構成断面図。 第6図は同じ〈従来の主な製造工程図である。 1 基板(n −GaAs) 、2 第1のクラッド
層(n −AIGaAs)、3 活性層(アンドープ
、VGaAs)、4.4a、4b 第2のクラッド層
(p−A/GaAs)、5 コンタクト層(p −Ga
As) 、7 埋込層(アンドープAj!GaAs)
、8 酸化膜(Sin2) 、g a、 。 9b 保護層(アンドープGaAs )。 篤 f 図 t 流 (mA) 12図 −200+20 轡 戻 (°) 第 3 図 第4図 第 5 図 第 61¥1
の方法により得られた半導体レーザ素子の電流−光出力
特性線図、第3図は同じく横モード特性線図、第4図は
ダブルヘテロ接合型半導体レーザ素子の要部構成断面図
、第5図は埋め込みヘテロ接合型半導体レーザ素子の要
部構成断面図。 第6図は同じ〈従来の主な製造工程図である。 1 基板(n −GaAs) 、2 第1のクラッド
層(n −AIGaAs)、3 活性層(アンドープ
、VGaAs)、4.4a、4b 第2のクラッド層
(p−A/GaAs)、5 コンタクト層(p −Ga
As) 、7 埋込層(アンドープAj!GaAs)
、8 酸化膜(Sin2) 、g a、 。 9b 保護層(アンドープGaAs )。 篤 f 図 t 流 (mA) 12図 −200+20 轡 戻 (°) 第 3 図 第4図 第 5 図 第 61¥1
Claims (1)
- 1)半導体基板上に順次形成された第1のクラッド層、
活性層、埋込層、第2のクラッド層およびコンタクト層
を備え、所定幅をもつ活性層がストライプ状メサ部内で
第1のクラッド層、埋込層および第2のクラッド層によ
って取り囲まれた構造を有する埋め込みヘテロ接合型半
導体レーザ素子を製造する方法であって、基板上にまず
第1のクラッド層、活性層、第2のクラッド層の一部お
よび第1の保護層をこの順に積層形成する第1のエピタ
キシアル成長工程、次に第1のエピタキシアル成長によ
り得られた積層体に酸化膜を付して選択的化学エッチン
グにより活性層を含む所定幅のストライプ状メサ部を形
成した後、埋込層とこの埋込層上に第2の保護層を形成
する第2のエピタキシアル成長工程、次いで酸化膜を化
学エッチング除去し、第1、第2の両保護層を同時にサ
ーマルエッチングしてこれらを除去した後、第2のクラ
ッド層の残部とコンタクト層を順次形成する第3のエピ
タキシアル成長工程を有することを特徴とする埋め込み
ヘテロ接合型半導体レーザ素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27255087A JPH01115185A (ja) | 1987-10-28 | 1987-10-28 | 埋め込みヘテロ接合型半導体レーザ素子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27255087A JPH01115185A (ja) | 1987-10-28 | 1987-10-28 | 埋め込みヘテロ接合型半導体レーザ素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01115185A true JPH01115185A (ja) | 1989-05-08 |
Family
ID=17515465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27255087A Pending JPH01115185A (ja) | 1987-10-28 | 1987-10-28 | 埋め込みヘテロ接合型半導体レーザ素子の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01115185A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08330665A (ja) * | 1995-05-31 | 1996-12-13 | Nec Corp | 光半導体レーザの製造方法 |
JP2007165538A (ja) * | 2005-12-13 | 2007-06-28 | Sumitomo Electric Ind Ltd | 半導体光素子の製造方法 |
-
1987
- 1987-10-28 JP JP27255087A patent/JPH01115185A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08330665A (ja) * | 1995-05-31 | 1996-12-13 | Nec Corp | 光半導体レーザの製造方法 |
JP2007165538A (ja) * | 2005-12-13 | 2007-06-28 | Sumitomo Electric Ind Ltd | 半導体光素子の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6741623B2 (en) | Semiconductor device, semiconductor laser, their manufacturing methods and etching methods | |
JP3429446B2 (ja) | 半導体発光素子 | |
US6430203B1 (en) | Semiconductor laser device with non-oxidized facet regions | |
JP2000294883A (ja) | 窒化物系化合物半導体レーザ素子 | |
JPH0964452A (ja) | 半導体レーザ装置,及びその製造方法 | |
JPH05259574A (ja) | 半導体レーザ装置及びその製造方法 | |
US4783425A (en) | Fabrication process of semiconductor lasers | |
JPH01115185A (ja) | 埋め込みヘテロ接合型半導体レーザ素子の製造方法 | |
JP2007281527A (ja) | 半導体レーザ及びその製造方法 | |
JP2000332290A (ja) | 窒化物半導体素子およびその製造方法 | |
JP3317271B2 (ja) | 半導体光素子およびその製造方法 | |
JPH0697592A (ja) | 半導体レーザ及びその製造方法 | |
JP2003046193A (ja) | 半導体レーザおよびその製造方法 | |
JPH10270786A (ja) | 化合物半導体のエッチング方法および化合物半導体素子の製造方法および半導体レーザ | |
JP2944312B2 (ja) | 半導体レーザ素子の製造方法 | |
KR20000053604A (ko) | 반도체광학장치 제조방법 | |
JP3440977B2 (ja) | 面発光半導体レーザおよびその製造方法 | |
JP2004228340A (ja) | 半導体レーザ素子及びその製造方法 | |
JP2000252587A (ja) | 半導体レーザおよびその製造方法 | |
JP4897944B2 (ja) | 半導体レーザ素子及びその作製方法 | |
JPH1168226A (ja) | 半導体レーザ素子およびその製造方法 | |
JP3143105B2 (ja) | 半導体レーザ素子の製造方法 | |
JP2699662B2 (ja) | 半導体レーザとその製造方法 | |
JP2000101189A (ja) | 半導体レーザ素子の製造方法 | |
JP2002009400A (ja) | 半導体混晶層の製造方法、及び半導体デバイスと半導体発光素子 |