JPH01114080A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH01114080A
JPH01114080A JP27014187A JP27014187A JPH01114080A JP H01114080 A JPH01114080 A JP H01114080A JP 27014187 A JP27014187 A JP 27014187A JP 27014187 A JP27014187 A JP 27014187A JP H01114080 A JPH01114080 A JP H01114080A
Authority
JP
Japan
Prior art keywords
film
layer
thickness
built
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27014187A
Other languages
Japanese (ja)
Inventor
Akira Sasano
笹野 晃
Haruo Matsumaru
松丸 治男
Ken Tsutsui
謙 筒井
Yasuo Tanaka
靖夫 田中
Yoshiyuki Kaneko
好之 金子
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27014187A priority Critical patent/JPH01114080A/en
Publication of JPH01114080A publication Critical patent/JPH01114080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To form an extra-thin oxide film and improve the stability significantly and improve the long-term reliability of characteristics by oxidizing the amorphous silicon hydride side surface of a gate insulating film. CONSTITUTION:After a Cr film 2 is built up on a glass substrate 1, the Cr film 2 is patterned into a gate electrode pattern by photoetching. SiN3 is deposited by plasma CVD and the surface of SiN3 is oxidized by the same CVD equipment to form an oxide film 4. Then oxygen is eliminated and mixed gas of SiH4 and H2 is introduced and an a-Si film 5 is built up by plasma CVD so as to have a thickness of 0.3mum. After that, an n-type a-Si film 6 doped with P with a content about 2% is built up so as to have a thickness of 0.03mum. Then a Cr layer 7 with a thickness of 0.1mum and an Al layer 8 with a thickness of 0.3mum are built up to form a double-layer film of Cr/Al. The double-layer film is patterned by photoetching to form source and drain electrodes. After the n-type a-Si film on a channel part is removed by dry-etching, an SiN film 9 is formed as a protective film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタ(T P T)に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film transistor (TPT).

特に、窒化シリコン(S i N)をゲート絶縁膜とし
、非晶質水素化シリコン(a−5i)を半導体膜とする
TPTの閾値電圧のシフトを低減するに好適なトランジ
スタ構造に関する。
In particular, the present invention relates to a transistor structure suitable for reducing the threshold voltage shift of a TPT in which silicon nitride (S i N) is used as a gate insulating film and amorphous silicon hydride (a-5i) is used as a semiconductor film.

〔従来の技術〕[Conventional technology]

従来のa−8iを半導体膜とするTPTは、特開昭58
−3289号に記載のように、ゲート絶縁膜にSiNと
a−8iを連続してp−cvp法で堆積する方法がとら
れていた。この方法は、SiNとa−8i界面の準位の
低減に有効であり、そのため、TPTの動作安定性もこ
の方式で作られたものが最良であると信じられていた。
The conventional TPT using a-8i as a semiconductor film was disclosed in Japanese Patent Application Laid-open No. 1983.
As described in No. 3289, a method was used in which SiN and a-8i were successively deposited on the gate insulating film by the p-cvp method. This method is effective in reducing the level at the interface between SiN and a-8i, and it was therefore believed that the operational stability of the TPT made using this method is the best.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来技術で作製されたTPTにゲート電
圧を印加して長時間放置した場合、閾値電圧がしだいに
シフトするという問題は残されたま゛まであった。この
シフト量は、SiN及びa −8i膜堆積温度の上昇に
より減少するなど膜製作条性を改良することにより低減
は出来るが、まだ、充分な値ではなかった。
However, the problem remains that when a gate voltage is applied to a TPT manufactured by the conventional technique and left for a long time, the threshold voltage gradually shifts. Although this shift amount can be reduced by improving the film fabrication properties, such as by increasing the SiN and a-8i film deposition temperature, it is still not a sufficient value.

〔問題点を解決するための手段〕[Means for solving problems]

上記した閾値電圧のシフトは、SiNゲート絶縁膜の半
導体層(a−8i層)側表面に極めて薄い酸化層を形成
することにより、大幅に低減できる。
The above threshold voltage shift can be significantly reduced by forming an extremely thin oxide layer on the semiconductor layer (a-8i layer) side surface of the SiN gate insulating film.

〔作用〕[Effect]

SiN表面に酸化層を形成した場合とSiNを酸化物1
例えば5iftに変えた場合とでは闇値電圧のシフトの
状況はまったく異なり、その改善の原理は不明である。
When an oxide layer is formed on the SiN surface and when SiN is formed as an oxide 1
For example, when changing to 5ift, the shift of the dark value voltage is completely different, and the principle behind the improvement is unknown.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。まず
、ガラス基板1上にCr膜2を堆積した後、ホトエツチ
ング法により、ゲート電極パターンに加工する。その後
、プラズマCVD法でSiN3を堆積した。この堆積に
はSiH4とNHa 、Nx混合ガスを使用した。Si
N膜の厚さは0.3 μmである。その後、同−CVD
装置中に02ガスを導入した。ガス圧力は0.06T 
o r rである。高周波電力を0.02 W/l−j
の密度で印加することにより酸素プラズマ、を形成し、
SiN表面を酸化して酸化層4を形成した。放電時間は
20分であり、基板温度は320℃である。
An embodiment of the present invention will be described below with reference to FIG. First, a Cr film 2 is deposited on a glass substrate 1, and then processed into a gate electrode pattern by photoetching. Thereafter, SiN3 was deposited by plasma CVD. A mixed gas of SiH4, NHa, and Nx was used for this deposition. Si
The thickness of the N film is 0.3 μm. After that, the same-CVD
02 gas was introduced into the apparatus. Gas pressure is 0.06T
It's o r r. High frequency power 0.02 W/l-j
Form an oxygen plasma, by applying a density of
The SiN surface was oxidized to form an oxide layer 4. The discharge time was 20 minutes, and the substrate temperature was 320°C.

その後、酸素を除き、5iHa とH2混合ガスを導入
し、a−8i膜5をプラズマCVDにより堆積した。膜
厚は0.3  μmである。その後、Pを2%程度ドー
プしたn型のa−8i膜6を堆積した膜厚は0.03 
 amである6次に、Cr7/AQ82重膜をそれぞれ
0.1  μmと0.3  pm堆積し、ホトエツチン
グ法で加工し、ソースとドレイン電極とした後、ドライ
エツチング法でチャンネル部のn形a−5i膜を除去し
た。さらに。
Thereafter, oxygen was removed, a mixed gas of 5iHa and H2 was introduced, and an a-8i film 5 was deposited by plasma CVD. The film thickness is 0.3 μm. After that, an n-type a-8i film 6 doped with about 2% P was deposited, and the film thickness was 0.03.
Next, Cr7/AQ82 heavy films were deposited to a thickness of 0.1 μm and 0.3 pm, respectively, and processed using a photoetching method to form source and drain electrodes, and then dry etching was performed to form an n-type a layer in the channel portion. -5i film was removed. moreover.

p−CVD法でSiN膜9を保護膜として形成した。A SiN film 9 was formed as a protective film by p-CVD method.

この方法で形成したa −S i T F Tと従来方
法で形成したTPTをそれぞれゲート電圧+30Vと一
30Vを各1000秒印加した時の閾値電圧のシフト量
を第2図に示す。本発明によるTPTの方が、正方向、
負方向共に閾値電圧のシフト力)少ない。
FIG. 2 shows the amount of shift in threshold voltage when gate voltages of +30 V and -30 V were applied for 1000 seconds to the a-S i T F T formed by this method and the TPT formed by the conventional method, respectively. In the TPT according to the present invention, in the positive direction,
Threshold voltage shift force (both in the negative direction) is small.

なお、この酸化層の厚さは数十人〜数百人の範囲にあり
、酸化層の形成によって移動度の劣化は見られなかった
。さらに、オフ電流は、従来方式のサンプルとほぼ同程
度もしくはそれ以下であった。
The thickness of this oxidized layer was in the range of several tens to hundreds of layers, and no deterioration in mobility was observed due to the formation of the oxidized layer. Furthermore, the off-state current was approximately the same or lower than that of the conventional sample.

ここでは、酸化層の形成に酸素プラズマを用いたが、こ
こで使用するガスは酸素を数%以上含むHzもしくはN
z 、 A r等でも同じような改善効果が見られた。
Here, oxygen plasma was used to form the oxide layer, but the gas used here is Hz or N gas containing several percent or more of oxygen.
A similar improvement effect was seen with z, Ar, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート絶縁膜SiN表面に酸化層を形
成することにより、a−8iTPTの安定性を大幅に改
善することが出来るので、例えば。
According to the present invention, by forming an oxide layer on the surface of the gate insulating film SiN, the stability of a-8iTPT can be significantly improved.

これを用いた液晶デイスプレィの特性の長期信頼性を向
上できる効果がある。
This has the effect of improving the long-term reliability of the characteristics of a liquid crystal display using this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のTPTの断面図。 第2図は本発明により効果を示す閾値電圧のシフト量を
表わす図である。 1・・・ガラス基板、2・・・Cr、3・・・SiN、
4・・・酸  。 化層、5− a −3i、6− a −S iのn層、
7・・・Cr、8−AQ、9−8iN。 第 /[!]
FIG. 1 is a sectional view of a TPT according to an embodiment of the present invention. FIG. 2 is a diagram showing the shift amount of the threshold voltage that shows the effect of the present invention. 1...Glass substrate, 2...Cr, 3...SiN,
4...Acid. layer, 5-a-3i, 6-a-S i n layer,
7...Cr, 8-AQ, 9-8iN. No./[! ]

Claims (1)

【特許請求の範囲】 1、シリコンと窒素の化合物からなるゲート絶縁膜上に
非晶質水素化シリコンを半導体として積層した薄膜トラ
ンジスタにおいて、前記ゲート絶縁膜の前記非晶質化シ
リコン側表面に極めて薄い酸化層を有することを特徴と
する薄膜トランジスタ。 2、前記酸化層が、前記ゲート絶縁膜の前記非晶質化シ
リコン側表面を酸化することにより形成されたものであ
ることを特徴とする特許請求の範囲第1項記載の薄膜ト
ランジスタ。
[Claims] 1. In a thin film transistor in which amorphous hydrogenated silicon is laminated as a semiconductor on a gate insulating film made of a compound of silicon and nitrogen, an extremely thin film is formed on the surface of the amorphous silicon side of the gate insulating film. A thin film transistor characterized by having an oxide layer. 2. The thin film transistor according to claim 1, wherein the oxide layer is formed by oxidizing the surface of the gate insulating film on the amorphous silicon side.
JP27014187A 1987-10-28 1987-10-28 Thin film transistor Pending JPH01114080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27014187A JPH01114080A (en) 1987-10-28 1987-10-28 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27014187A JPH01114080A (en) 1987-10-28 1987-10-28 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH01114080A true JPH01114080A (en) 1989-05-02

Family

ID=17482117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27014187A Pending JPH01114080A (en) 1987-10-28 1987-10-28 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH01114080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198694A (en) * 1990-10-05 1993-03-30 General Electric Company Thin film transistor structure with improved source/drain contacts
KR100282425B1 (en) * 1997-10-10 2001-04-02 김영환 Method for fabricating of capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198694A (en) * 1990-10-05 1993-03-30 General Electric Company Thin film transistor structure with improved source/drain contacts
US5362660A (en) * 1990-10-05 1994-11-08 General Electric Company Method of making a thin film transistor structure with improved source/drain contacts
KR100282425B1 (en) * 1997-10-10 2001-04-02 김영환 Method for fabricating of capacitor

Similar Documents

Publication Publication Date Title
KR950008261B1 (en) Making method of semiconductor device
JPS60113971A (en) Thin-film field-effect type semiconductor device and manufacture thereof
JPS59141271A (en) Thin-film transistor
JPS6251264A (en) Manufcture of thin film transistor
KR100404351B1 (en) Thin-film transistor and fabrication method thereof
US5597738A (en) Method for forming isolated CMOS structures on SOI structures
JPS6165477A (en) Semiconductor device
CN105247684A (en) Oxide for semiconductor layer of thin film transistor, thin film transistor, and display device
JPH01114080A (en) Thin film transistor
JPS61263273A (en) Manufacture of thin film semiconductor device
JP3057770B2 (en) Method for manufacturing thin film transistor
JPS62141776A (en) Thin film transistor
WO2005055325A1 (en) Transistor and cvd apparatus used for forming gate insulating film thereof
JPH11274505A (en) Thin film transistor structure and its manufacture
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
KR970005952B1 (en) Thin film transistor & method of manufacturing the same
JPS61164267A (en) Manufacture of thin film transistor
JPH09162405A (en) Semiconductor device and its manufacture
JPH0348670B2 (en)
JPS61208876A (en) Thin film transistor
JPS5914672A (en) Manufacture of thin film transistor
EP0408653A1 (en) Gate dielectric for a thin film field effect transistor
JPH0221663A (en) Manufacture of thin film transistor
JPH04302438A (en) Thin-film transistor
JPH0334374A (en) Thin film transistor