EP0408653A1 - Gate dielectric for a thin film field effect transistor - Google Patents
Gate dielectric for a thin film field effect transistorInfo
- Publication number
- EP0408653A1 EP0408653A1 EP89904998A EP89904998A EP0408653A1 EP 0408653 A1 EP0408653 A1 EP 0408653A1 EP 89904998 A EP89904998 A EP 89904998A EP 89904998 A EP89904998 A EP 89904998A EP 0408653 A1 EP0408653 A1 EP 0408653A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- dielectric
- thin film
- gate dielectric
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 25
- 230000005669 field effect Effects 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- 229910004205 SiNX Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 abstract description 23
- SZJFGTWFLXTOHF-UHFFFAOYSA-N silicon tetraazide Chemical compound [N-]=[N+]=N[Si](N=[N+]=[N-])(N=[N+]=[N-])N=[N+]=[N-] SZJFGTWFLXTOHF-UHFFFAOYSA-N 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229940075911 depen Drugs 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
Definitions
- the present invention relates to a thin film transis ⁇ tor device, and more particularly, to an improved gate dielec ⁇ tric for a thin film transistor.
- Thin film transistors generally comprise source and drain electrodes interconnected by a central layer of semiconductor material having a thickness less than l ⁇ .
- the device operates by creating a conducting channel beneath a source electrode and a drain electrode.
- the current flow between the electrodes is controlled by the application of a voltage to a gate which is adjacent to, but insulated from, a portion of the semiconductor material.
- a positive bias is applied to the gate electrode, negative charges accumulate in the otherwise low conductivity layer of semiconductor material.
- the conductivity of the semiconductor material layer is increased, and a source-drain current can be made to flow under the appropriate bias.
- the gate dielectric mate ⁇ rial is patterned to form a central portion over a planar por ⁇ tion of the gate region and to cover any exposed gate edges.
- atomic level defects in the dielectric material or at the dielectric/ semiconductor interface can occur causing charges to become trapped in the dielectric layer. Any charge trapped in the dielectric layer or at the dielectric/semiconductor inter ⁇ face can degrade performance of the thin film transistor and give rise to hysteresis in the performance and other time depen ⁇ dent phenomenon that limit the usefulness of the device in
- charge leakage lowers the on/off source-drain current ratio of the device.
- pinholes can occur which can .cause short circuits to occur if a pinhole is under the source or drain.
- a gate dielectric mate ⁇ rial for a thin film transistor which effectively prohibits charges from becoming trapped in the dielectric layer or at the dielectric/semiconductor interface and which is free of pin ⁇ holes. It would further be desirable to have a dielectric mate ⁇ rial with a high dielectric constant for good electrical isola ⁇ tion characteristics thereby permitting high electric fields to be applied to the semiconductor thus improving performance and permitting high voltages to be switched. And it would also be desirable to have a gate dielectric material comprised of a thin film material thereby maintaining the thin aspect of the overall thin film field effect transistor.
- the invention comprises a dielectric for a gate of a thin film field effect transistor, comprising a first layer of an insu ⁇ lating thin film crystalline or amorphous material formed on the gate and a second layer of silicon nitride formed on the first layer.
- Fig. 1 is a cross-sectional diagram illustrating a gate dielectric for a thin film field effect transistor in accordance with an embodiment of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENT
- the transistor is formed on a substrate 10 of a suit ⁇ able material, such as glass.
- a gate electrode 12 is deposited on the substrate 10.
- the gate electrode 12 is formed of a suit ⁇ able metal, such as nichrome or molybdenum.
- a first layer of gate dielectric material 14 is comprised of insulating thin film material is deposited on the gate electrode 12 and the substrate 10 by a process of atmo ⁇ spheric chemical vapor deposition using a 5 to 6 percent (atom ⁇ ic) solution of SiH in N2 and O2.
- the first layer of gate dielectric material 14 may be comprised of silicon dioxide (Si ⁇ 2).
- the first thin film layer is deposited at about 540°C to form a layer of gate dielectric material 14 approximately 800 to 2,500 angstroms thick when measured from the gate electrode 12 to the top of the first layer of gate dielectric material 14.
- the first layer of gate dielectric material 14 may also be comprised of tantalum pentoxide (Ta2 ⁇ s) or silicon dioxide or a compound of silicon and nitrogen having a chemical formula SiN x , where x is a number in the range of 0.1 to 1.33 and is prefereably equal to 1.33.
- the device can be further improved by exposing the first layer of gate dielectric material 14 to a plasma etch using a solution of CF4-O2 or NF3 in order to remove any contam ⁇ ination due to atmospheric exposure, oxidation, or moisture.
- second layer of gate dielectric material 16 is deposited on the first layer of gate dielectric material 14.
- the second layer of- gate dielectric material 16 is silicon nitride and is approximately 1,000 angstroms thick when measured from the gate electrode 12 to the top of the gate dielectric material 16.
- the first layer of gate dielectric material 14 of in ⁇ sulating thin film material is chosen to provide a high dielec ⁇ tric constant.
- silicon dioxide has a dielectric constant equal to 4 and tantalum pentoxide has a dielectric material constant equal to 25.
- the second layer of dielectric 16 should also have a high dielectric constant, but it is pri ⁇ marily chosen in order to eliminate pinholes which could occur in the first layer 14 and to provide a clean interface to the subsequent semiconductor layer.
- Silicon nitride for example, appears to cover up any pinholes that may occur in the first layer of dielectric material 14.
- any charge leakage which could cause charges to become trapped in the first layer 14 thereby lowering the on/off source-drain current ratio is pre ⁇ vented.
- the device of the present invention achieves an on/off source-drain current ratio equal to about 10' and a breakdown voltage which is greater than 100 volts, as opposed to a break ⁇ down voltage in prior thin film transistors of from 20 to 40 volts.
- a semiconductor layer 30 is deposited over the second gate dielectric layer 16, the first gate dielectric layer 14, the gate electrode 12, and over the substrate 10 preferably by using a glow discharge plasma of silane method.
- This method of deposition which is well known to those in the art as glow dis ⁇ charge, is described in U.S. Patent No. 4,064,521, which is hereby incorporated herein by reference.
- Semiconductor layer 30 is preferably hydrogenated amorphous silicon (a-Si:H) which pro ⁇ vides desirable properties for a thin film field effect transis ⁇ tor such as would be known to one of ordinary skill in the field of thin film transistor fabrication.
- n+ conductivity type semiconductor material 32 is deposited over the semiconductor layer 30, which can also be comprised of hydrogenated amorphous silicon. N-type conduction occurs when a material has been doped to create excess charge carriers which thereby increase the on-current flow.
- a source electrode 18 and a drain electrode 20 are deposited over the layer 32.
- the source electrode 18 and the drain electrode 20 are acid etched and then patterned.
- Source electrode 18 and drain electrode 20 are spaced apart and layer 32 is subjected to a plasma etch leaving a portion of the semiconductor layer 30 exposed which partially overlays the sec ⁇ ond layer of gate dielectric material 16, the first layer of gate dielectric material 14, and the gate electrode 12.
- the source electrode 18 and drain electrode 20 are preferably alumi ⁇ num, however, magnesium, molybdenum, nichrome, or other suitable conductive metals, mixtures of these metals, or alloys of these metals may be used.
- the double-layer gate dielectric of the present inven ⁇ tion prevents pinholes from occurring in the gate dielectric material and prevents charge leakage which could give rise to undesirable time dependent phenomenon and which could lower the on/off source-drain current ratio. Moreover, both layers of dielectric material are chosen to obtain high dielectric con ⁇ stants, thereby achieving a high breakdown voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Un transistor à effet de champ à film mince utilise une double couche de matériau diélectrique, la première couche (14) étant constituée d'un cristallin ou d'un matériau amorphe isolant et la deuxième (16) d'azoture de silicium. La première couche comporte une constante diélectrique élevée et la seconde élimine les trous qui pourraient se former sur la première couche.A thin film field effect transistor uses a double layer of dielectric material, the first layer (14) consisting of a crystalline or insulating amorphous material and the second (16) of silicon azide. The first layer has a high dielectric constant and the second removes holes that may form on the first layer.
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17626488A | 1988-03-31 | 1988-03-31 | |
US176264 | 1988-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0408653A1 true EP0408653A1 (en) | 1991-01-23 |
EP0408653A4 EP0408653A4 (en) | 1991-10-16 |
Family
ID=22643652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890904998 Ceased EP0408653A4 (en) | 1988-03-31 | 1989-03-14 | Gate dielectric for a thin film field effect transistor |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0408653A4 (en) |
WO (1) | WO1989009494A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013692A (en) * | 1988-12-08 | 1991-05-07 | Sharp Kabushiki Kaisha | Process for preparing a silicon nitride insulating film for semiconductor memory device |
US5580815A (en) * | 1993-08-12 | 1996-12-03 | Motorola Inc. | Process for forming field isolation and a structure over a semiconductor substrate |
US5918147A (en) * | 1995-03-29 | 1999-06-29 | Motorola, Inc. | Process for forming a semiconductor device with an antireflective layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0027184A1 (en) * | 1979-10-15 | 1981-04-22 | Rockwell International Corporation | SOS structure and method of fabrication |
DE3306535A1 (en) * | 1982-02-25 | 1983-09-15 | Sharp K.K., Osaka | THIN FILM TRANSISTOR WITH INSULATED GATE |
WO1984004418A1 (en) * | 1983-05-02 | 1984-11-08 | Ncr Co | Nonvolatile semiconductor memory device |
JPS60109285A (en) * | 1983-11-17 | 1985-06-14 | Seiko Instr & Electronics Ltd | Thin film transistor |
DE3539794A1 (en) * | 1984-11-13 | 1986-05-22 | Sharp K.K., Osaka | THIN FILM TRANSISTOR |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922774A (en) * | 1972-05-01 | 1975-12-02 | Communications Satellite Corp | Tantalum pentoxide anti-reflective coating |
JPS59205712A (en) * | 1983-04-30 | 1984-11-21 | Fujitsu Ltd | Manufacture of semiconductor device |
JPS60160173A (en) * | 1984-01-30 | 1985-08-21 | Sharp Corp | Thin film transistor |
US4639087A (en) * | 1984-08-08 | 1987-01-27 | Energy Conversion Devices, Inc. | Displays having pixels with two portions and capacitors |
US4698787A (en) * | 1984-11-21 | 1987-10-06 | Exel Microelectronics, Inc. | Single transistor electrically programmable memory device and method |
JPH0686863A (en) * | 1992-09-07 | 1994-03-29 | Ace Denken:Kk | Pachinko game machine |
-
1989
- 1989-03-14 WO PCT/US1989/000971 patent/WO1989009494A1/en not_active Application Discontinuation
- 1989-03-14 EP EP19890904998 patent/EP0408653A4/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0027184A1 (en) * | 1979-10-15 | 1981-04-22 | Rockwell International Corporation | SOS structure and method of fabrication |
DE3306535A1 (en) * | 1982-02-25 | 1983-09-15 | Sharp K.K., Osaka | THIN FILM TRANSISTOR WITH INSULATED GATE |
WO1984004418A1 (en) * | 1983-05-02 | 1984-11-08 | Ncr Co | Nonvolatile semiconductor memory device |
JPS60109285A (en) * | 1983-11-17 | 1985-06-14 | Seiko Instr & Electronics Ltd | Thin film transistor |
DE3539794A1 (en) * | 1984-11-13 | 1986-05-22 | Sharp K.K., Osaka | THIN FILM TRANSISTOR |
Non-Patent Citations (3)
Title |
---|
IEEE TRANSACTIONS ON ELECTRON DEVICES. vol. ED-34, no. 5, May 1987, NEW YORK US pages 1079 - 1083; MARK S. RODDER et al: "Hot-Carrier Effects in Hydrogen-Passivated p-Channel Polycrystalline-Si MOSFET`s" * |
PATENT ABSTRACTS OF JAPAN vol. 9, no. 263 (E-351)(1986) 19 October 1985, & JP-A-60 109285 (SEIKO DENSHI KOGYO K.K.) 14 June 1985, * |
See also references of WO8909494A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1989009494A1 (en) | 1989-10-05 |
EP0408653A4 (en) | 1991-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6097096A (en) | Metal attachment method and structure for attaching substrates at low temperatures | |
US3475234A (en) | Method for making mis structures | |
US4668968A (en) | Integrated circuit compatible thin film field effect transistor and method of making same | |
US4673957A (en) | Integrated circuit compatible thin film field effect transistor and method of making same | |
US5273920A (en) | Method of fabricating a thin film transistor using hydrogen plasma treatment of the gate dielectric/semiconductor layer interface | |
US3514676A (en) | Insulated gate complementary field effect transistors gate structure | |
US5130264A (en) | Method of making a thin film transistor | |
KR20040021758A (en) | Method for fabricating of a poly-Si TFT | |
US4722913A (en) | Doped semiconductor vias to contacts | |
US5508555A (en) | Thin film field effect transistor having a doped sub-channel region | |
KR100272260B1 (en) | Thin film transistor using diamond like carbon and manufacturing method thereof | |
JPH0828502B2 (en) | Bidirectional power vertical MOS device and method of manufacturing the same | |
US6117751A (en) | Method for manufacturing a mis structure on silicon carbide (SiC) | |
Bower et al. | Insulated gate field effect transistors fabricated using the gate as source-drain mask | |
KR19980065168A (en) | Thin film transistor using fluorine-containing oxide film as gate insulating film and manufacturing method thereof | |
US5397721A (en) | Method for fabricating vertical thin film transistor | |
EP0408653A1 (en) | Gate dielectric for a thin film field effect transistor | |
US6323114B1 (en) | Stacked/composite gate dielectric which incorporates nitrogen at an interface | |
US6211098B1 (en) | Wet oxidation method for forming silicon oxide dielectric layer | |
JPS60177676A (en) | Thin film transistor device and manufacture thereof | |
JPS5914672A (en) | Manufacture of thin film transistor | |
JPS63140580A (en) | Thin film transistor | |
JP2668459B2 (en) | Insulation film manufacturing method | |
JPS5914673A (en) | Manufacture of thin film transistor | |
JPH0348670B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900928 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19910823 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19910404 |