JPH01107573A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH01107573A
JPH01107573A JP62264978A JP26497887A JPH01107573A JP H01107573 A JPH01107573 A JP H01107573A JP 62264978 A JP62264978 A JP 62264978A JP 26497887 A JP26497887 A JP 26497887A JP H01107573 A JPH01107573 A JP H01107573A
Authority
JP
Japan
Prior art keywords
charge
storage means
potential
charge storage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264978A
Other languages
Japanese (ja)
Other versions
JP2519482B2 (en
Inventor
Masaaki Kimata
雅章 木股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62264978A priority Critical patent/JP2519482B2/en
Priority to FR8813782A priority patent/FR2622076B1/en
Publication of JPH01107573A publication Critical patent/JPH01107573A/en
Application granted granted Critical
Publication of JP2519482B2 publication Critical patent/JP2519482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/282Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements with charge storage in a depletion layer, i.e. charge coupled devices [CCD]
    • G11C19/285Peripheral circuits, e.g. for writing into the first stage; for reading-out of the last stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/73Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a highly reliable charge transfer device, from which a large output signal can be taken out even if the amount of first charge is minute, by generating second charge having the large amount of charge based on the first charge, which is outputted from a charge coupled device, and taking out the output signal based on the charge. CONSTITUTION:Second charge, whose amount of charge is larger than the amount of first charge, which is outputted from a charge coupled device, is supplied otherwise and stored. Thereafter the second charge is transferred. The amount of charge of the transferred second charge is amplified, and the output signal is taken out. Since the output voltage is taken out based on the amount of the second charge, which is larger than the amount of the first charge, in this way, the large output signal is secured even if the amount of the first charge is minute. Thus, a highly reliable charge transfer device, in which the charge outputted from the charge coupled device is amplified on the same substrate for the charge coupled device and can be outputted, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電荷転送装置に関し、特に転送終端部におけ
る出力特性を改良し得る構造を有する電荷転送装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge transfer device, and more particularly to a charge transfer device having a structure capable of improving output characteristics at a transfer termination portion.

[従来の技術] 第3図は電荷転送装置を用いたインターライン転送方式
よりなる固体撮像素子のブロック図である。
[Prior Art] FIG. 3 is a block diagram of a solid-state imaging device using an interline transfer method using a charge transfer device.

図を参照して以下構成について説明する。The configuration will be explained below with reference to the drawings.

3列×4行に配列されたフォトダイオードよりケる光検
出部21a〜21cにそれぞれ転送ゲート228〜22
cを介して電荷結合素子(以下CCDという)よりなる
垂直転送部23a〜23cが接続される。垂直転送部2
3a〜23cの転送方向端部にはインターフェイス部2
4a〜24cを介してCCDよりなる水平転送部25が
接続され、その転送方向端部にはプリアンプ26を介し
て出力端子27が接続される。
Transfer gates 228 to 22 are provided to the photodetectors 21a to 21c, respectively, which are formed by photodiodes arranged in 3 columns and 4 rows.
Vertical transfer units 23a to 23c made of charge-coupled devices (hereinafter referred to as CCDs) are connected via C. Vertical transfer section 2
3a to 23c have an interface section 2 at the end in the transfer direction.
A horizontal transfer unit 25 made of a CCD is connected through 4a to 24c, and an output terminal 27 is connected to an end in the transfer direction via a preamplifier 26.

次にその動作について簡単に説明する。Next, its operation will be briefly explained.

光検出部21a〜21cに入力された光信号は、そこで
電気信号に変換され、転送ゲート22a〜22cのオン
によって次々を垂直転送部23a〜23cに読出される
。垂直転送部23a〜23cに読出された信号電荷は、
電荷転送機能によって転送されインターフェイス部24
a〜24cを介し水平転送部25に読出される。水平転
送部25に読出された信号電荷はさらに電荷転送機能に
よって転送され、プリアンプ26にて転送電荷を電気信
号に増幅して出力端子27から次々と光検出部21a〜
21cの光入力情報として取出すのである。この一連の
変換、転送および出力動作からなるサイクルを連続的に
繰返すことによって画像処理を行なうのである。
The optical signals input to the photodetectors 21a to 21c are converted into electrical signals there, and are read out one after another to the vertical transfer units 23a to 23c by turning on the transfer gates 22a to 22c. The signal charges read out to the vertical transfer sections 23a to 23c are
Transferred by the charge transfer function to the interface section 24
The signals are read out to the horizontal transfer unit 25 via a to 24c. The signal charge read out to the horizontal transfer section 25 is further transferred by the charge transfer function, and the transferred charge is amplified into an electric signal by the preamplifier 26 and sent from the output terminal 27 one after another to the photodetection sections 21a to 21a.
It is extracted as optical input information of 21c. Image processing is performed by continuously repeating this cycle consisting of a series of conversion, transfer, and output operations.

第4図は第3図の水平転送部を構成するCODの転送方
向に沿った断面とポテンシャルとの関係を示した図であ
り、第5図はその転送電極に印加されるクロックパルス
を示したタイミングチャート図である。
Fig. 4 is a diagram showing the relationship between the cross section along the transfer direction of the COD constituting the horizontal transfer section of Fig. 3 and the potential, and Fig. 5 shows the clock pulse applied to the transfer electrode. It is a timing chart figure.

以下、両図を参照してCCDの転送動作について簡単に
説明する。
Hereinafter, the transfer operation of the CCD will be briefly explained with reference to both figures.

まず、第5図に示されるクロックパルスに従って水平転
送部25の転送電極28に接続される端子のうちφA、
に“HH”レベルの電圧が印加され、φA2〜φA4に
″H″レベルの電圧が印加されると半導体基板1の転送
電極下のポテンシャル井戸が時刻t。に示す状態に形成
される。このとき垂直転送部23a〜23Cによって転
送されてきた電荷Q^+  Qa l Qcがインター
フェイス部24a〜24cを介してこのポテンシャル井
戸に転送され一旦蓄えられる。蓄えられた電荷は時刻t
、〜t、にて示されるようにそのポテンシャル井戸をク
ロックパルスに基づいて移動させることによって、順次
プリアンプ26の方向に転送される。以下同様のクロッ
クパルスの繰返しによって垂直転送部23a〜23cか
ら転送されてきた電荷を次々と出力側に転送するのであ
る。
First, among the terminals connected to the transfer electrode 28 of the horizontal transfer section 25 according to the clock pulse shown in FIG.
When a voltage of "HH" level is applied to φA2 to φA4 and a voltage of "H" level is applied to φA2 to φA4, the potential well under the transfer electrode of the semiconductor substrate 1 changes at time t. It is formed in the state shown in . At this time, the charges Q^+ Qa l Qc transferred by the vertical transfer sections 23a to 23C are transferred to this potential well via the interface sections 24a to 24c and are temporarily stored. The stored charge is at time t
, ~t, by moving the potential well based on clock pulses, the potential well is sequentially transferred in the direction of the preamplifier 26. Thereafter, by repeating the same clock pulse, the charges transferred from the vertical transfer sections 23a to 23c are transferred one after another to the output side.

第6図は第3図における水平転送部の出力部まわりの構
成を示した断面図であり、第7図はその各構成部に印加
されるクロックパルスを示したタイミングチャート図で
ある。
FIG. 6 is a sectional view showing the configuration around the output section of the horizontal transfer section in FIG. 3, and FIG. 7 is a timing chart showing clock pulses applied to each component.

以下、両図を参照してその構成および動作について説明
する。
The configuration and operation will be described below with reference to both figures.

半導体基板1の主面上方にCCDの最榛ゲートとしての
端子φA3およびφA4が接続される転送電極2.3が
形成され、また半導体基板1の主面には不純物領域14
.15が形成される。転送電極3下方の領域と不純物領
域14との間の領域上方には転送電極4が形成され、−
六平鈍物領域14と不純物領域15との間の領域上方に
は転送電極9が形成されてリセットトランジスタをなし
ている。またそのゲートが不純物領域14に接続される
MOSトランジスタQと負荷抵抗Rとが接続されてプリ
アンプ26を構成し、トランジスタQと負荷抵抗Rとの
接点に出力端子27が接続する。
A transfer electrode 2.3 is formed above the main surface of the semiconductor substrate 1 to which terminals φA3 and φA4 as the most exposed gates of the CCD are connected, and an impurity region 14 is formed on the main surface of the semiconductor substrate 1.
.. 15 is formed. A transfer electrode 4 is formed above the region between the region below the transfer electrode 3 and the impurity region 14, and -
A transfer electrode 9 is formed above the region between the hexagonal blunt region 14 and the impurity region 15 to form a reset transistor. Further, a MOS transistor Q whose gate is connected to the impurity region 14 and a load resistor R are connected to form a preamplifier 26, and an output terminal 27 is connected to a contact point between the transistor Q and the load resistor R.

動作としては時刻to+においてゲート電極3の端子φ
A4の電圧レベルがハイレベル′H′になる。このとき
、次に読出される信号電荷がゲート電極2.3の下に蓄
積されている。また、前記ゲート電極2,3の電圧レベ
ルが“H″になると同時に、リセットレベルφRがH”
になり、不純物領域の電位をVRのレベルにセットする
As for the operation, at time to+, the terminal φ of the gate electrode 3
The voltage level of A4 becomes high level 'H'. At this time, signal charges to be read next are accumulated under gate electrode 2.3. Moreover, at the same time that the voltage level of the gate electrodes 2 and 3 becomes "H", the reset level φR becomes "H".
, and sets the potential of the impurity region to the level of VR.

そしてリセットトランジスタの転送電極9の電圧φRの
レベルが“H”から“L”に変化すると、不純物領域1
4の電位が転送電極9と不純物領域14の間の容量結合
により低下し、同時に出力り。のレベルも低下する。
Then, when the level of the voltage φR of the transfer electrode 9 of the reset transistor changes from "H" to "L", the impurity region 1
4 decreases due to capacitive coupling between transfer electrode 9 and impurity region 14, and is simultaneously output. level also decreases.

時刻t。2 (〉【。、)ではりセブトランジスタ電掻
9の電圧φRは“L”の状態にあり、不純物領域14は
フローティング状態にある。その後、転送電極3の電圧
のレベルが“′H”から“L”に変化する。時刻【。s
(>tax)では転送1極3の電圧のレベルが“L”の
状態にあり、転送電極3下方に蓄積されていた信号電荷
は不純物領域14に読出され、出力D0のレベルは信号
量に応じて変化する。すなわち、不純物領域14の電位
変化はソースフォロワとしてのプリアンプ26を通して
外部に出力される。
Time t. At 2 (>[.,), the voltage φR of the subtransistor electrode 9 is in the "L" state, and the impurity region 14 is in a floating state. Thereafter, the voltage level of the transfer electrode 3 changes from "'H" to "L". time【. s
(>tax), the voltage level of the transfer electrode 3 is in the "L" state, the signal charge accumulated below the transfer electrode 3 is read out to the impurity region 14, and the level of the output D0 changes according to the signal amount. and change. That is, potential changes in impurity region 14 are output to the outside through preamplifier 26 as a source follower.

[発明が解決しようとする問題点] 」1紀のような従来の電荷転送装置では出力部まわりの
構成が以上のように構成されている。ここで不純物領域
14、すなわちフローティングデイフュージョンの容置
をc、 D %ソースフォロワの利得をGとすると信号
電荷数N、に対する出力電圧v0は Vg −GXqXN5 /’c、 D となる。ここでqは電子の電荷である。したがってvo
はCFoが小さいほど大きくなる。しかしCFDは0.
01〜0.19F程度でこれ以上小さ(することは微細
加工技術上から困難であった。
[Problems to be Solved by the Invention] In a conventional charge transfer device such as the first generation, the configuration around the output section is configured as described above. Here, if the impurity region 14, that is, the floating diffusion, is c and the gain of the D% source follower is G, then the output voltage v0 for the number of signal charges N is Vg - GXqXN5 /'c,D. Here q is the charge of the electron. Therefore vo
becomes larger as CFo becomes smaller. However, CFD is 0.
It is about 0.01 to 0.19F, and it was difficult to make it smaller than this due to microfabrication technology.

したがって、フローティングデイフュージョンの容量の
低減には限界があるので、電荷結合素子力)ら転送され
る微少な信号量に対して十分な出力を得ることができな
いという問題点があった。
Therefore, since there is a limit to reducing the capacitance of the floating diffusion, there is a problem in that it is not possible to obtain a sufficient output for the minute amount of signal transferred from the charge-coupled device.

この発明は上記のような問題点を解決するためになされ
たもので、電荷結合素子から出力された電荷を電荷結合
素子と同一基板上で増幅して出力することのできる電荷
転送装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a charge transfer device that can amplify and output the charge output from a charge-coupled device on the same substrate as the charge-coupled device. With the goal.

【問題点を解決するための手段] この発明に係る電荷転送装置は、電荷結合素子から出力
された第1の電荷の電荷量をもとにこの電荷量より大な
る第2の電荷を別途供給してこれを−旦蓄積した後転送
する。転送された第2の電荷の電荷量をもとにこれを増
幅して出力信号として取出すものである。
[Means for solving the problem] The charge transfer device according to the present invention separately supplies a second charge larger than the first charge amount based on the charge amount of the first charge output from the charge-coupled device. This is stored once and then transferred. Based on the amount of the transferred second charge, this is amplified and taken out as an output signal.

[作用] この発明においては、第1の電荷の電荷量より大なる第
2の電荷量をもとに出力電圧を取出すので、第1の電荷
が微少量であっても大きな出力信号が確保される。
[Function] In this invention, since the output voltage is extracted based on the second charge amount which is larger than the first charge amount, a large output signal is ensured even if the first charge is a very small amount. Ru.

[実施例] 第1図はこの発明の一実施例を示すCCDの出力部まわ
りの構成とそのポテンシャルとの関係を示した図であり
、第2図はその転送電極に印加されるクロックパルスを
示したタイミングチャート図である。
[Example] Fig. 1 is a diagram showing the structure around the output section of a CCD and its relationship with potential, showing an example of the present invention, and Fig. 2 shows the relationship between the clock pulse applied to the transfer electrode and It is a timing chart figure shown.

以下、両図を参照してその構成および動作について説明
する。
The configuration and operation will be described below with reference to both figures.

半導体基板1の主面の所定位置に不純物領域10.12
.13,14.15が形成される。不純物領域10の左
側の領域上・方にはCCDの最終ゲートとしての端子φ
A、およびφA4が接続される転送電極2,3が形成さ
れ、転送電極3下方の領域と不純物領域10との間の領
域上方にはVG。なる電圧が印加される転送電極4が形
成される。
Impurity regions 10 and 12 are formed at predetermined positions on the main surface of the semiconductor substrate 1.
.. 13, 14, and 15 are formed. Above and towards the left side of the impurity region 10 is a terminal φ as the final gate of the CCD.
Transfer electrodes 2 and 3 to which A and φA4 are connected are formed, and VG is formed above the region between the region below the transfer electrode 3 and the impurity region 10. A transfer electrode 4 is formed to which a voltage is applied.

不純物領域10と不純物領域12との間の領域上刃には
、φR1なる電圧が印加される転送電極5が形成されて
第1のリセットトランジスタをなしている。不純物領域
12.13にはそれぞれVR7,φ■なる電圧が印加さ
れ、不純物領域13と不純物領域14との間の領域上方
には転送電極6゜7.8が形成される。転送電極6は不
純物領域10に接続されてこれらは常に同電位とされ、
転送電極7.8にはそれぞれφST、  φBなる電圧
が印加される。不純物領域14と不純物領域15との間
の領域上方にはφR2なる電圧が印加される転送電極9
が形成され、第2のリセットトランジスタをなし不純物
領域15にはVR2なる電圧が印加される。
A transfer electrode 5 to which a voltage φR1 is applied is formed on the upper edge of the region between the impurity region 10 and the impurity region 12, forming a first reset transistor. Voltages VR7 and φ■ are applied to the impurity regions 12 and 13, respectively, and a transfer electrode 6°7.8 is formed above the region between the impurity regions 13 and 14. The transfer electrode 6 is connected to the impurity region 10 and these are always at the same potential,
Voltages φST and φB are applied to the transfer electrodes 7.8, respectively. Above the region between the impurity region 14 and the impurity region 15 is a transfer electrode 9 to which a voltage φR2 is applied.
is formed and serves as a second reset transistor, and a voltage VR2 is applied to impurity region 15.

出力回路としては電源電圧v0と接地電源との間にMO
SトランジスタQおよび負荷抵抗Rが直列に接続され、
トランジスタQのゲートは不純物領域14に接続し、ト
ランジスタQと負荷抵抗Rとの接続点から出力電圧D0
が取出される。この出力回路の構成は従来装置と同様で
ある。
As an output circuit, MO is connected between the power supply voltage v0 and the ground power supply.
S transistor Q and load resistor R are connected in series,
The gate of the transistor Q is connected to the impurity region 14, and the output voltage D0 is applied from the connection point between the transistor Q and the load resistor R.
is taken out. The configuration of this output circuit is similar to that of the conventional device.

次に動作について説明する。まず時刻T、ではφA4が
“H”レベルでCODの最終ゲートに信号電荷Qs+が
蓄積されている。同時にφRI+φR2が“H@レベル
となっており、リセットトランジスタがオンされて不純
物領域10.14はそれぞれVR,、VR2のレベルに
セットされている(第1図(b)参照)。時刻T2では
φR4゜φR2が“L”レベルになり不純物領域10,
14はフローティング状態になる(第1図(C)参照)
。このとき不純物領域10.14のレベルは転送電極5
,9との容量結合により若干低下する。
Next, the operation will be explained. First, at time T, φA4 is at "H" level and signal charge Qs+ is accumulated at the final gate of COD. At the same time, φRI+φR2 is at the "H@ level", the reset transistor is turned on, and the impurity regions 10.14 are set to the level of VR, VR2, respectively (see FIG. 1(b)). At time T2, φR4゜φR2 becomes “L” level and impurity region 10,
14 becomes a floating state (see Figure 1 (C))
. At this time, the level of the impurity region 10.14 is at the level of the transfer electrode 5.
, 9 decreases slightly due to capacitive coupling with .

時刻T、でφA4が“L“レベルとなり、転送電極2.
3の下に蓄えられていた信号電荷Qs+は転送電極4下
のバリアを越えて第1の不純物領域10に転送され、こ
の部分の電位を変化させる(第1図(d)参照)。転送
電極6は不純物領域10に接続されているので、不純物
領域10と同じ電位変化をする。次に時刻T4ではφ■
が“Lルベルになり転送電極6を通じてソースとなる不
純物領域13から転送電極7下のポテンシャル井戸へ電
荷が注入される(第1図(e)参照)。時刻T sでは
φ■が“H“レベルとなるため、転送電極7の下には転
送電極6の下のポテンシャルで決まるだけの電荷QS2
が残る(第1図(f)参照)。時刻TGではφSTが“
L“レベルにφBがH”レベルになるため転送電極7の
下の信号電荷QS2は第2の不純物領域14へ転送され
、このとき不純物領域14に生じる電位変化が従来と同
様に出力回路を通して出力電圧D0となって外部へ出力
される(第1図(g)参照)。
At time T, φA4 becomes "L" level, and transfer electrodes 2.
The signal charge Qs+ stored under the transfer electrode 4 is transferred to the first impurity region 10 over the barrier under the transfer electrode 4, changing the potential of this portion (see FIG. 1(d)). Since the transfer electrode 6 is connected to the impurity region 10, the potential changes are the same as that of the impurity region 10. Next, at time T4, φ■
becomes the "L" level, and charges are injected from the impurity region 13 that becomes the source into the potential well under the transfer electrode 7 through the transfer electrode 6 (see FIG. 1(e)). At time Ts, φ■ becomes "H". level, so there is a charge QS2 under the transfer electrode 7 determined by the potential under the transfer electrode 6.
remains (see Figure 1(f)). At time TG, φST is “
Since φB becomes L level and H level, the signal charge QS2 under the transfer electrode 7 is transferred to the second impurity region 14, and the potential change generated in the impurity region 14 at this time is outputted through the output circuit as in the conventional case. The voltage becomes D0 and is output to the outside (see FIG. 1(g)).

ここで、第2の不純物領域14に転送される電荷は転送
電極7の面積と、転送電極6と転送電極7との電位差と
によって決まるが、転送電極6の電位変化は第1の不純
物領域10に接続する容量を小さくすることによって大
きくできるので、転送電極6の面積をできる。たけ小さ
くし、転送電極7の面積をできるだけ大きくすることに
よって電荷の増幅の度合を大きくすることができる。
Here, the charge transferred to the second impurity region 14 is determined by the area of the transfer electrode 7 and the potential difference between the transfer electrode 6 and the transfer electrode 7, but the change in the potential of the transfer electrode 6 is Since the area of the transfer electrode 6 can be increased by reducing the capacitance connected to the transfer electrode 6, the area of the transfer electrode 6 can be increased. By making the area of the transfer electrode 7 as small as possible and making the area of the transfer electrode 7 as large as possible, the degree of charge amplification can be increased.

また、各クロックや電荷のレベルを適当に選ぶことによ
って出力電圧として任意の量を差し引いたものを出力す
ることもできる。
Furthermore, by appropriately selecting each clock and the level of charge, it is possible to output an output voltage with an arbitrary amount subtracted.

なお、上記実施例では、1段のソースフォロワを用いた
出力回路を使用しているが、多段のソースフォロワを用
いた出力回路であっても同様に適用できまた他の構成よ
りなる検出回路であっても同様に適用できることは言う
までもない。
In the above embodiment, an output circuit using a single stage source follower is used, but it can be similarly applied to an output circuit using a multi-stage source follower, and a detection circuit having other configurations may also be used. Needless to say, it can be applied in the same way.

また、上記実施例では、第1の不純物領域に接続した転
送電極の電位によって得られた電荷をすぐに第2の不純
物領域に転送しているが、この間にさらにCCD等の電
荷転送手段を挿入して転送後の電荷をもとに出力電圧と
して取出すこともできる。
Further, in the above embodiment, the charge obtained by the potential of the transfer electrode connected to the first impurity region is immediately transferred to the second impurity region, but in the meantime, a charge transfer means such as a CCD is further inserted. It is also possible to extract the output voltage based on the charge after transfer.

[発明の効果] この発明は以上説明したとおり、電荷結合素子から出力
された第1の電荷をもとにより大きい電荷量の第2の電
荷を発生させ、これをもとに出力信号を取出すので第1
の電荷が微少量であっても大きな出力信号を取出せる信
頼性の高い電荷転送装置となる効果がある。
[Effects of the Invention] As explained above, the present invention generates a second charge with a larger amount of charge based on the first charge output from the charge-coupled device, and extracts an output signal based on this. 1st
This has the effect of providing a highly reliable charge transfer device that can obtain a large output signal even if the amount of charge is minute.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すCCDの出力まわり
の構成とそのポテンシャルとの関係を示した図、第2図
は第1図の転送電極に印加されるクロックパルスを示し
たタイミングチャート図、第3図は一般の電荷転送素子
を用いたインターライン転送方式よりなる固体撮像索子
のブロック図、第4図は第3図の水平転送部を構成する
CCDの転送方向に沿った断面とポテンシャルとの関係
を示した図、第5図は第4図の転送電極に印加されるク
ロックパルスを示したタイミングチャート図、第6図は
第3図における水平転送部の出力部まわりの構成を示し
た断面図、第7図は第6図の各構成部に印加されるクロ
ックパルスを示したタイミングチャート図である。 図において、1は半導体基板、2〜9は転送電極、10
〜15は不純物領域である。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the configuration around the output of a CCD showing an embodiment of the present invention and the relationship between its potential, and FIG. 2 is a timing chart showing clock pulses applied to the transfer electrodes in FIG. 1. Figure 3 is a block diagram of a solid-state imaging device using an interline transfer method using general charge transfer elements, and Figure 4 is a cross section along the transfer direction of the CCD that constitutes the horizontal transfer section in Figure 3. 5 is a timing chart showing the clock pulses applied to the transfer electrodes in FIG. 4, and FIG. 6 is the configuration around the output section of the horizontal transfer section in FIG. 3. FIG. 7 is a timing chart showing clock pulses applied to each component of FIG. 6. In the figure, 1 is a semiconductor substrate, 2 to 9 are transfer electrodes, and 10 is a semiconductor substrate.
15 is an impurity region. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (7)

【特許請求の範囲】[Claims] (1)電荷転送領域を有する半導体基板と、前記半導体
基板の前記電荷転送領域に第1の電荷を注入する第1の
電荷注入手段と、前記半導体基板に形成された電荷を蓄
積する第1の電荷蓄積手段と、前記第1の電荷蓄積手段
の電位を第1の基準電位に設定する第1の基準電位設定
手段と、前記第1の基準電位に設定された前記第1の電
荷蓄積手段に前記第1の電荷注入手段によって注入され
た前記第1の電荷を転送する第1の電荷転送手段と、前
記半導体基板に形成された、電荷を蓄積する第2の電荷
蓄積手段と、前記第1の電荷蓄積手段に転送された第1
の電荷によって前記第1の基準電位が変化し、変化した
電位に基づいて、前記第1の電荷の電荷量より大なる第
2の電荷を前記第2の電荷蓄積手段に注入する第2の電
荷注入手段と、前記半導体基板に形成された、電荷を蓄
積する第3の電荷蓄積手段と、前記第3の電荷蓄積手段
の電位を第2の基準電位に設定する第2の基準電位設定
手段と、前記第2の基準電位に設定された前記第3の電
荷蓄積手段に前記第2の電荷蓄積手段に注入された前記
第2の電荷を転送する第2の電荷転送手段と、前記第3
の電荷蓄積手段に転送された第2の電荷によって、前記
第2の基準電位が変化し、変化した電位に基づいて電気
信号を出力する電気信号出力手段とを備えた、電荷転送
装置。
(1) A semiconductor substrate having a charge transfer region, a first charge injection means for injecting a first charge into the charge transfer region of the semiconductor substrate, and a first charge injection means for accumulating the charge formed in the semiconductor substrate. a charge storage means, a first reference potential setting means for setting the potential of the first charge storage means to a first reference potential, and a first charge storage means set to the first reference potential; a first charge transfer means for transferring the first charge injected by the first charge injection means; a second charge storage means formed on the semiconductor substrate for storing charge; The first charge transferred to the charge storage means of
a second charge in which the first reference potential is changed by the charge, and a second charge larger than the amount of charge of the first charge is injected into the second charge storage means based on the changed potential; an injection means, a third charge storage means formed on the semiconductor substrate for storing charge, and a second reference potential setting means for setting the potential of the third charge storage means to a second reference potential. , a second charge transfer means for transferring the second charge injected into the second charge storage means to the third charge storage means set to the second reference potential;
A charge transfer device comprising: an electric signal output means for changing the second reference potential by the second electric charge transferred to the electric charge storage means, and outputting an electric signal based on the changed electric potential.
(2)前記第2の電荷注入手段は、前記半導体基板に形
成された、電荷を蓄積する第4の電荷蓄積手段と、前記
第4の電荷蓄積手段に接続して前記第4の電荷蓄積手段
に電荷を供給する電荷供給手段と、前記第4の電荷蓄積
手段と前記第2の電荷蓄積手段とに挾まれた前記半導体
基板の第1の領域上に形成された転送電極と、前記第1
の電荷蓄積手段と前記転送電極との電位を同一にする電
位同一手段とを備え、前記転送電極の電位に基づいて前
記第1の領域のポテンシャルが変化し、それでもって前
記電荷供給手段によって前記第4の電荷蓄積手段に供給
された電荷を前記第2の電荷蓄積手段に転送する、特許
請求の範囲第1項記載の電荷転送装置。
(2) The second charge injection means includes a fourth charge storage means formed on the semiconductor substrate for storing charge, and a fourth charge storage means connected to the fourth charge storage means. a transfer electrode formed on a first region of the semiconductor substrate sandwiched between the fourth charge storage means and the second charge storage means;
and a potential equalization means for making the potential of the transfer electrode the same, the potential of the first region changes based on the potential of the transfer electrode, and the potential of the first region is changed by the charge supply means. 4. The charge transfer device according to claim 1, wherein the charge supplied to the second charge storage means is transferred to the second charge storage means.
(3)前記第2の電荷蓄積手段は、前記第1の領域に隣
接した前記半導体基板の第2の領域と、前記第2の領域
に所定深さのポテンシャル井戸を形成するポテンシャル
井戸形成手段とからなる、特許請求の範囲第2項記載の
電荷転送装置。
(3) The second charge storage means includes a second region of the semiconductor substrate adjacent to the first region, and a potential well forming means for forming a potential well of a predetermined depth in the second region. A charge transfer device according to claim 2, comprising:
(4)前記第1の電荷蓄積手段は、前記半導体基板に形
成された第1の不純物領域であり、前記第3の電荷蓄積
手段は前記半導体基板に形成された第2の不純物領域で
あり、前記第4の電荷蓄積手段は、前記半導体基板に形
成された第3の不純物領域である、特許請求の範囲第3
項記載の電荷転送装置。
(4) the first charge storage means is a first impurity region formed on the semiconductor substrate; the third charge storage means is a second impurity region formed on the semiconductor substrate; Claim 3, wherein the fourth charge storage means is a third impurity region formed in the semiconductor substrate.
The charge transfer device described in Section 1.
(5)前記第1の基準電位設定手段は、前記第1の不純
物領域をソースまたはドレイン領域とする第1のトラン
ジスタを含む、特許請求の範囲第4項記載の電荷転送装
置。
(5) The charge transfer device according to claim 4, wherein the first reference potential setting means includes a first transistor whose source or drain region is the first impurity region.
(6)前記第2の基準電位設定手段は、前記第2の不純
物領域をソースまたはドレイン領域とする第2のトラン
ジスタを含む、特許請求の範囲第4項または第5項記載
の電荷転送装置。
(6) The charge transfer device according to claim 4 or 5, wherein the second reference potential setting means includes a second transistor whose source or drain region is the second impurity region.
(7)前記電気信号出力手段は、基準電位と接地電位と
の間に直列に接続される第3のトランジスタおよび抵抗
と、前記第3のトランジスタのゲート電極と前記第2の
不純物領域とを接続する配線と、前記第3のトランジス
タおよび前記抵抗の接続点に接続される出力端子からな
る、特許請求の範囲第6項記載の電荷転送装置。
(7) The electrical signal output means connects a third transistor and a resistor connected in series between a reference potential and a ground potential, and a gate electrode of the third transistor and the second impurity region. 7. The charge transfer device according to claim 6, comprising a wiring for connecting the third transistor and the resistor, and an output terminal connected to a connection point between the third transistor and the resistor.
JP62264978A 1987-10-20 1987-10-20 Charge transfer device Expired - Fee Related JP2519482B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62264978A JP2519482B2 (en) 1987-10-20 1987-10-20 Charge transfer device
FR8813782A FR2622076B1 (en) 1987-10-20 1988-10-20 LOAD TRANSFER DEVICE HAVING AN AMPLIFICATION FUNCTION FOR THE TRANSFERRED LOAD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264978A JP2519482B2 (en) 1987-10-20 1987-10-20 Charge transfer device

Publications (2)

Publication Number Publication Date
JPH01107573A true JPH01107573A (en) 1989-04-25
JP2519482B2 JP2519482B2 (en) 1996-07-31

Family

ID=17410858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264978A Expired - Fee Related JP2519482B2 (en) 1987-10-20 1987-10-20 Charge transfer device

Country Status (2)

Country Link
JP (1) JP2519482B2 (en)
FR (1) FR2622076B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592119A (en) * 1982-06-29 1984-01-07 Meidensha Electric Mfg Co Ltd Clock processing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646119A (en) * 1971-01-14 1987-02-24 Rca Corporation Charge coupled circuits
DE2539205A1 (en) * 1975-09-03 1977-03-17 Siemens Ag REGENERATING AMPLIFIER FOR CHARGE SHIFTING ARRANGEMENTS
DE2543615A1 (en) * 1975-09-30 1977-04-07 Siemens Ag REGENERATION STAGE FOR LOAD SHIFTING ARRANGEMENTS
US4040077A (en) * 1976-08-18 1977-08-02 Honeywell Information Systems, Inc. Time-independent ccd charge amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592119A (en) * 1982-06-29 1984-01-07 Meidensha Electric Mfg Co Ltd Clock processing device

Also Published As

Publication number Publication date
FR2622076B1 (en) 1996-06-28
JP2519482B2 (en) 1996-07-31
FR2622076A1 (en) 1989-04-21

Similar Documents

Publication Publication Date Title
KR100712950B1 (en) Amplifying solid-state imaging device
US8253833B2 (en) Solid-state imaging device driving method
US4189749A (en) Solid state image sensing device
US4366503A (en) Solid state image pick-up device and its charge transfer method
CN102244741A (en) Solid-state image sensor and camera
JP4051034B2 (en) Amplification type solid-state imaging device and driving method thereof
JP4071190B2 (en) Amplification type solid-state imaging device and driving method thereof
CN101023330A (en) Photodetector
JPH0771235B2 (en) Driving method for charge detection circuit
JP2624138B2 (en) Solid-state imaging device
JPH01107573A (en) Charge transfer device
JP3253179B2 (en) Photoelectric conversion device
JP2000152090A (en) Solid-state image pickup device
JPH0697408A (en) Photoelectric conversion device and manufacture thereof
JP2880011B2 (en) Solid-state imaging device
JPH02171088A (en) Solid-state image pickup element
US7456892B2 (en) Signal charge transfer line for transferring signal charge by application of transfer pulses to transfer electrodes
JPS63122271A (en) Charge transfer device
JPS60257565A (en) Charge transfer device
JPS6046177A (en) Solid-state image pickup element
JPH03179276A (en) Charge detection circuit
JPH05292242A (en) Charge transfer device
JP2000152091A (en) Solid-state image pickup device and its driving method
JPS628670A (en) Solid state image pickup device
JP2005072932A (en) Charge coupled analog to digital converting means and image pickup device using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees