JPH01103957A - Composite sintered body and its production - Google Patents

Composite sintered body and its production

Info

Publication number
JPH01103957A
JPH01103957A JP62260544A JP26054487A JPH01103957A JP H01103957 A JPH01103957 A JP H01103957A JP 62260544 A JP62260544 A JP 62260544A JP 26054487 A JP26054487 A JP 26054487A JP H01103957 A JPH01103957 A JP H01103957A
Authority
JP
Japan
Prior art keywords
sintered body
composite sintered
boride
zirconia
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260544A
Other languages
Japanese (ja)
Inventor
Mitsuo Kuwabara
光雄 桑原
Terufusa Watanabe
渡辺 輝興
Yasushi Iseda
泰 伊勢田
Masahiro Inoue
正博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62260544A priority Critical patent/JPH01103957A/en
Publication of JPH01103957A publication Critical patent/JPH01103957A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Abstract

PURPOSE:To produce the title lightweight composite sintered body having a low sintering temp. and excellent in strength, resistance to thermal shock, and workability by mixing ZrO2, SiC, a metal boride, and/or a boric acid compd., and a partially stabilizing agent for ZrO2, and sintering the mixture. CONSTITUTION:From 5-30wt.% of ZrO2, SiC, metal boride (e.g., ZrB2) and/or a boric acid compd. [e.g., (NH4)2B4O7] and 1-30wt.% of the stabilizer for partially stabilizing ZrO2 are mixed. The mixture is dried, and then compacted into a desired shape to obtain a compact. The compact is degreased, transiently sintered in an N2 atmosphere at about 1Torr and about 1,200 deg.C for about 2hr, and then sintered at 1,500-1,800 deg.C to obtain a composite sintered body contg. ZrO2, SiC, and a metal boride at the part including tetragonal and rhombic crystal structures and having 10<-1>-10<2>OMEGA.cm volume resistivity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複合焼結体及びその製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a composite sintered body and a method for manufacturing the same.

〈従来の技術〉 近年、セラミックス材料として破壊靭性の高いジルコニ
ア焼結体(ZrO2)が注目されている。
<Prior Art> In recent years, zirconia sintered bodies (ZrO2) with high fracture toughness have attracted attention as a ceramic material.

ジルコニア焼結体は、高温時に立方晶となり低温になる
に従って正方晶を経て斜方晶に変化する結晶構造を有し
ているが、特に正方晶から斜方晶に変化する際に著しい
体積膨張を伴うため、その際に微細欠陥が発生し耐熱衝
撃性が低下する問題がある。そこで、ジルコニアにイツ
トリア(Y2O3)、イットリア(Y2O3)、マグネ
シア(MgO> 、カルシア(Cab)等の安定化剤を
固溶させジルコニアの立方晶及び正方晶の安定域を低温
側に拡大し、特に正方晶から斜方晶に変化することを抑
制し、即ち焼結体の体積膨張を抑制することにより微細
欠陥の発生を防止せんとする部分安定化ジルコニア及び
その製法が、例えば特開昭60−191056号公報や
特開昭60−215572号公報に開示されている。こ
の部分安定化ジルコニアは、比較的耐熱衝撃性に優れて
いることから構造用セラミックスとして期待されている
Zirconia sintered bodies have a crystal structure that becomes cubic at high temperatures and changes to tetragonal and orthorhombic as the temperature decreases, but especially when changing from tetragonal to orthorhombic, it undergoes significant volume expansion. Therefore, there is a problem that fine defects are generated at that time and thermal shock resistance is reduced. Therefore, stabilizers such as yttria (Y2O3), yttria (Y2O3), magnesia (MgO>, calcia (Cab), etc.) are dissolved in zirconia to expand the stability range of the cubic and tetragonal crystals of zirconia to the low temperature side. Partially stabilized zirconia that suppresses the change from tetragonal crystal to orthorhombic crystal, that is, suppresses the volumetric expansion of the sintered body, thereby preventing the occurrence of micro defects, and a method for producing the same, are disclosed in, for example, Japanese Patent Application Laid-Open No. 1983-1999. This partially stabilized zirconia is disclosed in JP-A-191056 and JP-A-60-215572.This partially stabilized zirconia is expected to be used as a structural ceramic because it has relatively excellent thermal shock resistance.

しかるにジルコニア焼結体は、そのままでは低温に於け
る強度は高いが高温に於ける強度が比較的低く、またか
さ比重が大きいため焼結体が重量化しがちであり、加工
性も低いと云う問題がある。
However, zirconia sintered bodies have the problem of high strength at low temperatures but relatively low strength at high temperatures, and because the bulk specific gravity is large, the sintered bodies tend to be heavy and have low workability. There is.

そこで、低温に於ける強度は低いが高温に於ける強度が
高い炭化硅素焼結体を用いることが考えられるが、炭化
硅素焼結体は焼結温度が比較的高いため、生産設備が大
型化しコストが高騰化しがちになる。以上のような問題
がジルコニア焼結体及び炭化硅素焼結体の応用分野を拡
大する上での妨げとなっていた。
Therefore, it is possible to use silicon carbide sintered bodies, which have low strength at low temperatures but high strength at high temperatures, but the sintering temperature of silicon carbide sintered bodies is relatively high, so the production equipment becomes larger. Costs tend to rise. The above-mentioned problems have been obstacles to expanding the application fields of zirconia sintered bodies and silicon carbide sintered bodies.

〈発明が解決しようとする問題点〉 このような従来技術の問題点に鑑み、本発明の主な目的
は、焼成温度が低く、低温及び高温強度が高く、耐熱衝
撃性に優れ、軽量かつ加工性の良い複合焼結体及びその
製造方法を提供することにある。
<Problems to be Solved by the Invention> In view of the problems of the prior art, the main objectives of the present invention are to achieve a low firing temperature, high low-temperature and high-temperature strength, excellent thermal shock resistance, light weight, and easy processing. An object of the present invention is to provide a composite sintered body with good properties and a method for manufacturing the same.

く問題点を解決するための手段〉 このような目的は本発明によれば、結晶構造に、正方晶
及び斜方晶を含む部分安定化ジルコニア(ZrO2)と
、炭化硅素(SiC)と、金属硼化物とを含むことを特
徴とする複合焼結体、及びジルコニア(ZrO2)と、
炭化硅素(SiC)と、金属硼化物及び硼酸化合物の少
なくともいずれか1つと、前記ジルコニアの部分安定化
剤とを焼成前に混合することを特徴とする複合焼結体の
製造方法を提供することにより達成される。
According to the present invention, such an object is achieved by using partially stabilized zirconia (ZrO2) whose crystal structure includes tetragonal and orthorhombic crystals, silicon carbide (SiC), and metal. A composite sintered body characterized by containing a boride, and zirconia (ZrO2),
To provide a method for producing a composite sintered body, which comprises mixing silicon carbide (SiC), at least one of a metal boride and a boric acid compound, and the zirconia partial stabilizer before firing. This is achieved by

く作用〉 このように、複合焼結体に炭化硅素及び金属硼化物を含
むことにより耐熱衝撃性が向上し、低温及び高温強度が
向上すると共にジルコニアのみの焼結体に比重して軽量
化される。また、複合焼結体に金属硼化物等を含むこと
により良好な導電性が得られ放電加工が可能となる。更
にジルコニア部分安定化剤及び金属硼化物を含むことに
より焼成温度を低下することができる。
In this way, by including silicon carbide and metal boride in the composite sintered body, the thermal shock resistance is improved, the low-temperature and high-temperature strength is improved, and the weight is reduced compared to the zirconia-only sintered body. Ru. Further, by including a metal boride or the like in the composite sintered body, good conductivity can be obtained and electrical discharge machining becomes possible. Furthermore, by including a zirconia partial stabilizer and a metal boride, the firing temperature can be lowered.

〈実施例〉 以下、本発明の好適実施例を添付の図面を参照して詳細
に説明する。
<Embodiments> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

炭化硅素(SiC1平均粒径0.4μm)粉末71%、
ジルコニア(ZrO2、平均粒径0.1μm以下)粉末
10%、アルミナ(A1203、純度99.99%)粉
末5%、イツトリア(Y2O2、純度99.9%)粉末
3%、マグネシア(MgO1純度99.9%)粉末1%
、硼化チタン(TiB2、規格−3,tzm)粉末10
%、チタニア(Ti02、平均粒径100人)粉末0.
3%及び四硼酸アンモニウム((NH4)2 l34O
7>0.7%を湿式により充分に混合する。ここで、各
物質の混合率は重量%であり、以降実施例中に記載する
混合率は全て重量%である。これら混合物を乾燥し、金
型にて100MPaにて所望の形状に成形する。その後
乾燥し、脱脂操作を行った後窒素雰囲気下で1200℃
、ITorrにて2時間仮焼成する。ここで、上記混合
物は仮焼成後に概ね2%程度線収縮し、密度は理論密度
の概ね69%程度となった。
Silicon carbide (SiC1 average particle size 0.4 μm) powder 71%,
Zirconia (ZrO2, average particle size 0.1 μm or less) powder 10%, alumina (A1203, purity 99.99%) powder 5%, ittria (Y2O2, purity 99.9%) powder 3%, magnesia (MgO1 purity 99.9%). 9%) powder 1%
, titanium boride (TiB2, standard-3, tzm) powder 10
%, titania (Ti02, average particle size 100) powder 0.
3% and ammonium tetraborate ((NH4)2 l34O
7>0.7% and thoroughly mixed by wet method. Here, the mixing ratio of each substance is % by weight, and all the mixing ratios hereinafter described in the examples are % by weight. These mixtures are dried and molded into a desired shape using a mold at 100 MPa. After that, it is dried and degreased at 1200℃ under nitrogen atmosphere.
, pre-baked at I Torr for 2 hours. Here, the above-mentioned mixture had linear shrinkage of about 2% after pre-calcination, and the density was about 69% of the theoretical density.

仮焼成後の混合物を1500〜1800℃にて焼成後冷
却する。第1図は本発明に基づく複合焼結体(実線A)
及び従来のジルコニア焼結体(破線B)を1500〜1
800℃の間で焼成温度を変化させて焼成したときの焼
成温度(’C)と、理論密度に対する実際の密度の比率
(%)との関係を示すグラフである。例えば実線Aに於
て1650℃の焼成温度に於ける本発明に基づく複合焼
結体の密度は、既に理論密度の90%以上を示し、焼成
が概ね完了していることを表わしている。即ち、本発明
によれば焼成温度は比較的低温で良いことを示している
。また、実線Aに於て焼成温度が1800℃以上となる
と焼結体の密度が低下するが、これは硼化チタンが分解
するためであると考えられる。一方、焼成温度が150
0℃よりも低温であると焼結が進行しない。そのため、
本発明に基づく焼結体の焼成温度は1500〜1800
℃が好適である。
The pre-fired mixture is fired at 1500 to 1800°C and then cooled. Figure 1 shows a composite sintered body (solid line A) based on the present invention.
and a conventional zirconia sintered body (broken line B) of 1500 to 1
It is a graph showing the relationship between the firing temperature ('C) and the ratio (%) of the actual density to the theoretical density when firing was performed while changing the firing temperature between 800°C. For example, as shown by solid line A, the density of the composite sintered body according to the present invention at a firing temperature of 1650° C. already exceeds 90% of the theoretical density, indicating that firing is almost complete. That is, according to the present invention, the firing temperature may be relatively low. Further, as shown by solid line A, when the firing temperature is 1800° C. or higher, the density of the sintered body decreases, but this is thought to be due to the decomposition of titanium boride. On the other hand, the firing temperature is 150
If the temperature is lower than 0°C, sintering will not proceed. Therefore,
The firing temperature of the sintered body according to the present invention is 1500 to 1800.
°C is preferred.

一方、本実施例に於ける焼結体の焼成温度1750℃の
体積固有抵抗値は3×10−1Ω・備を示し、イツトリ
ア、アルミナ等の絶縁物質が多いことにも拘らず比教的
良好な導電性を示しており、この値であれば、上記焼結
体を放電加工することが可能となり加工性が向上する。
On the other hand, the volume resistivity value of the sintered body in this example at a firing temperature of 1750°C was 3 x 10-1 Ω, which is a good value as compared to that of the Japanese religion, despite the fact that it contains many insulating materials such as itria and alumina. With this value, the sintered body can be subjected to electric discharge machining, and the machinability is improved.

良好な導電性を示す要因としては、焼結体に金属硼化物
を含有することが挙げられるが、他方では焼成中にジル
コニアの一部が窒化ジルコニウム(ZrN)及びまたは
炭化ジルコニウム(ZrC)に変化し導電性向上に寄与
したことも考えられる。
One of the reasons for good conductivity is that the sintered body contains metal boride, but on the other hand, part of the zirconia changes to zirconium nitride (ZrN) and/or zirconium carbide (ZrC) during firing. It is also thought that this contributed to the improvement of conductivity.

尚、本実施例では金属硼化物として硼化チタンを添加し
たが、代わりに硼化ジルコニウム(ZrB2)を添加し
て良く、その場合には焼成温度が1750℃以上で焼結
体の密度が低下することが確認されている。また、本実
施例では硼酸化合物として四硼酸アンモニウムを添加し
ているが、これは、若干のジルコニアを硼化ジルコニウ
ムに変化させ金属硼化物として作用させると共に金属硼
化物が高温で分解することを防止するためである。
In this example, titanium boride was added as the metal boride, but zirconium boride (ZrB2) may be added instead. In that case, the density of the sintered body will decrease when the firing temperature is 1750°C or higher. It has been confirmed that Furthermore, in this example, ammonium tetraborate is added as a boric acid compound, which converts some zirconia into zirconium boride and acts as a metal boride, and also prevents the metal boride from decomposing at high temperatures. This is to do so.

また、本実施例ではジルコニアの混合率を10%とした
が実際には1〜30%であれば良い。ジルコニアが1%
以下であると焼結体が緻密化せず、30%以上であると
焼結体が体積膨張し易くなり微細欠陥が発生することが
考えられる。
Further, in this embodiment, the mixing ratio of zirconia was set at 10%, but in reality, it may be 1 to 30%. 1% zirconia
If it is less than 30%, the sintered body will not be densified, and if it is more than 30%, the sintered body will tend to expand in volume and micro defects may occur.

更に、本実施例では金属硼化物を硼化チタン1種類のみ
用いたが硼化ジルコニウム、硼化チタン及び他の金属硼
化物のうちの1つ或いは幾つかを5〜30%の範囲で添
加しても良い。金属硼化物が5%以下であると導電性が
低下するために焼結体の放電加工が困難となり、また3
0%以上であると組織の緻密化に支障が生じるためであ
る。金属硼化物を5〜30%の範囲内で添加した場合の
焼結体の体積固有抵抗値は、概ね10−1〜102Ω・
備の範囲となる。
Furthermore, in this example, only one type of metal boride, titanium boride, was used, but one or more of zirconium boride, titanium boride, and other metal borides were added in a range of 5 to 30%. It's okay. If the metal boride content is less than 5%, electrical discharge machining of the sintered body becomes difficult due to decreased conductivity, and 3
This is because if it is 0% or more, densification of the tissue will be hindered. When metal boride is added within the range of 5 to 30%, the volume resistivity of the sintered body is approximately 10-1 to 102Ω・
This is within the scope of preparation.

以下に本発明の基づく第2の実施例を詳細に説明する。A second embodiment of the present invention will be described in detail below.

本実施例では、炭化硅素粉末75.9%、ジルコニア粉
末10%、アルミナ粉末7%、イツトリア粉末3%、粉
末マグネシア2%、硼酸アンモニウム2%、炭素粉末0
.1%を基本成分とし、この基本成分を100%として
硼化ジルコニウムを1〜30%或いは硼化チタンを1〜
30%の範囲で混合率を変えて混合したものを多数成形
し、これら混合物を窒素雰囲気下で1700℃にて2時
間仮焼成し、その後表面を炭化硅素粉で覆い、六方晶窒
化硼素(BN)を塗布した後硅酸(N A 20・2S
i02)をコーティングし、2000bar、1750
℃で2時間熱間静水圧加圧する。
In this example, silicon carbide powder 75.9%, zirconia powder 10%, alumina powder 7%, ittria powder 3%, powdered magnesia 2%, ammonium borate 2%, carbon powder 0
.. 1% as a basic component, and with this basic component as 100%, 1 to 30% of zirconium boride or 1 to 30% of titanium boride.
A large number of mixtures with varying mixing ratios in the range of 30% are molded, and these mixtures are pre-sintered at 1700°C for 2 hours in a nitrogen atmosphere.Then, the surface is covered with silicon carbide powder and hexagonal boron nitride (BN) is formed. ) After applying silicic acid (N A 20・2S
i02) coated, 2000 bar, 1750
Hot isostatically press at ℃ for 2 hours.

第2図は、各々硼化ジルコニウムの混合率(%)と体積
固有抵抗値(Ω・1)及び硼化チタンの混合率と体積固
有抵抗値との関係を示すグラフである。第2図に示すよ
うに、両金属硼化物が10%以上混合された場合に体積
固有抵抗値が概ね1〇−1以下となり、焼結体の放電加
工が容易にできるようになることがわかる。
FIG. 2 is a graph showing the relationship between the mixing ratio (%) of zirconium boride and the volume resistivity value (Ω·1), and the relationship between the mixing ratio of titanium boride and the volume resistivity value, respectively. As shown in Figure 2, it can be seen that when 10% or more of both metal borides are mixed, the volume resistivity value becomes approximately 10-1 or less, making it easier to perform electrical discharge machining of the sintered body. .

一方、これら金属硼化物の混合率と焼結体の硬度との関
係は、硼化ジルコニウム20%のとき12100kg 
f /ynm2、硼化チタン20%のとき24O0kg
f/nun2となる。また、常温に於ける曲げ強度は本
実施例に於ける添加範囲、即ち金属硼化物1〜30%の
範囲では100〜130kg f / mm 2となり
、比較的高い強度を示す。更に1000℃に於ける曲げ
強度は50〜60kgf7 mm 2となり、やはり比
較的高い強度を示す。そのため、対摩耗部品等への応用
が可能となる。ここで、常温に於ける強度の向上は酸化
硅素によるものであり、高温に於ける強度の向上はジル
コニアによるものであると考えられる。
On the other hand, the relationship between the mixing ratio of these metal borides and the hardness of the sintered body is 12,100 kg when zirconium boride is 20%.
f/ynm2, 24O0kg when titanium boride is 20%
It becomes f/nun2. Further, the bending strength at room temperature is 100 to 130 kgf/mm 2 in the addition range in this example, that is, in the range of 1 to 30% metal boride, indicating relatively high strength. Furthermore, the bending strength at 1000° C. is 50 to 60 kgf7 mm 2 , which also shows relatively high strength. Therefore, it can be applied to anti-wear parts, etc. Here, it is thought that the improvement in strength at room temperature is due to silicon oxide, and the improvement in strength at high temperature is due to zirconia.

尚、本実施例では炭素を極微量添加したが、これは、ジ
ルコニアを一部炭化ジルコニウム(ZrC)に変化させ
ジルコニアの部分安定化を促進し、以上になると焼結体
の緻密化が阻害されることが考えられる。
In this example, a very small amount of carbon was added, which partially changes zirconia to zirconium carbide (ZrC) and promotes the partial stabilization of zirconia, and if the amount exceeds this amount, the densification of the sintered body is inhibited. It is possible that

以下に本発明に基づ(第3の実施例について詳細に説明
する。
A third embodiment based on the present invention will be described in detail below.

本実施例では、炭化硅素粉末(最大粒径3μm平均粒径
0.4μm)78%、ジルコニア粉末(純度99.99
%、平均粒径100人)7%、イ―ントリア粉末(平均
粒径0.8μm>3%、アルミナ(平均粒径0.5μm
)2%、硼酸アンモニウム10%及び炭素微量を湿式混
合により、混合しスリップキャスティングにより成形す
る。
In this example, 78% silicon carbide powder (maximum particle size 3 μm, average particle size 0.4 μm) and zirconia powder (purity 99.99%) were used.
%, average particle size 100 people) 7%, Entria powder (average particle size 0.8 μm > 3%, alumina (average particle size 0.5 μm)
), 10% ammonium borate, and a trace amount of carbon are mixed by wet mixing and molded by slip casting.

成形後110℃にて一昼夜放置し、更に150℃にて1
0時間乾燥した後、脱脂処理を行なう。
After molding, it was left at 110°C for a day and night, and then at 150°C for 1 day.
After drying for 0 hours, degreasing treatment is performed.

そして窒素雰囲気中でカーボンるつぼにて1750℃に
て2時間焼成し、板状の焼結体を得る。
Then, it is fired in a carbon crucible at 1750° C. for 2 hours in a nitrogen atmosphere to obtain a plate-shaped sintered body.

この焼結体をX線解析すると、混合した物質以外に硼化
ジルコニウム、炭化ジルコニウム、窒化ジルコニウム等
の解析ピークが確認された。なかでも、比較的多く生成
したのは硼化ジルコニウムであった。
When this sintered body was subjected to X-ray analysis, analysis peaks of zirconium boride, zirconium carbide, zirconium nitride, etc. were confirmed in addition to the mixed substances. Of these, zirconium boride was produced in relatively large amounts.

また、この焼結体を走査電子顕微鏡(SEM)にて観察
すると、棒状結晶をなしていることが確認された。ここ
で、焼成温度を1850℃とすると板状結晶となること
が確認されている。
Furthermore, when this sintered body was observed using a scanning electron microscope (SEM), it was confirmed that it formed a rod-shaped crystal. Here, it has been confirmed that when the firing temperature is 1850° C., plate-like crystals are formed.

一方、この焼結体の体積固有抵抗値は10−1Ω・国程
度となった。ここで導電率は成形方法により若干変化す
ることが知られており、他の成形方法を用いることによ
り導電率が向上することが考えられる。
On the other hand, the volume resistivity value of this sintered body was approximately 10 −1 Ω·mm. It is known that the electrical conductivity slightly changes depending on the molding method, and it is thought that the electrical conductivity can be improved by using other molding methods.

更に、焼結体を切り出しなものの三点面げによる曲げ強
度は常温で50〜60kgf/mm”となり、概ね炭化
硅素のみの焼結体と同等の強度であることが確認された
Furthermore, the bending strength of the cut-out sintered body due to three-point bevelling was 50 to 60 kgf/mm'' at room temperature, which was confirmed to be approximately the same strength as a sintered body made only of silicon carbide.

尚、本発明は上記実施例に限定されず様々な応用が可能
であることは云うまでもなく、例えば、本実施例ではジ
ルコニアの部分安定化剤にアルミナ、イツトリア及びマ
グネシアを用いたが、例えば、セリア等を用いても良く
、またAI (OH)3、AI (OCH3)3、Mg
C204、MgF、CeOH等の化学式で示される前記
した金属酸化物の熱誘導体を用いても良い。
It goes without saying that the present invention is not limited to the above embodiments and can be applied in various ways. For example, in this embodiment, alumina, ittria, and magnesia were used as partial stabilizers for zirconia. , ceria, etc. may also be used, and AI (OH)3, AI (OCH3)3, Mg
Thermal derivatives of the aforementioned metal oxides represented by chemical formulas such as C204, MgF, and CeOH may also be used.

〈発明の効果〉 このように本発明によれば、ジルコニア及び炭化硅素の
複合焼結体にジルコニアの安定化剤と、金属硼化物とを
含むことにより組織が充分緻密化するため耐熱衝撃性が
向上し、低温及び高温強度が向上すると共にジルコニア
のみの焼結体に比較して軽量化される。また、焼結体に
金属硼化物を含むことにより良好な導電性が得られ放電
加工が可能となるため加工性が向上し、精密加工等が容
易になる。更にジルコニア安定化剤及び金属硼化物を含
むことにより焼成温度を低下することができるため製造
コストが低減化される。以上のことから本発明の効果は
極めて大である。
<Effects of the Invention> As described above, according to the present invention, by including the zirconia stabilizer and the metal boride in the composite sintered body of zirconia and silicon carbide, the structure becomes sufficiently dense, so that the thermal shock resistance is improved. In addition to improving low-temperature and high-temperature strength, the weight is reduced compared to a sintered body made only of zirconia. Furthermore, by including metal boride in the sintered body, good conductivity can be obtained and electric discharge machining becomes possible, so that machinability is improved and precision machining etc. are facilitated. Furthermore, by including a zirconia stabilizer and a metal boride, the firing temperature can be lowered, thereby reducing manufacturing costs. From the above, the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく製造方法による複合焼結体の焼
結温度と密度との関係を示すグラフである。 第2図は本発明に基づく製造方法による複合焼結体の硼
化ジルコニウム及び硼化チタンの混合率と体積固有抵抗
値との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between sintering temperature and density of a composite sintered body produced by the manufacturing method based on the present invention. FIG. 2 is a graph showing the relationship between the mixing ratio of zirconium boride and titanium boride and the volume resistivity value of a composite sintered body produced by the manufacturing method based on the present invention.

Claims (9)

【特許請求の範囲】[Claims] (1)結晶構造に、正方晶及び斜方晶を含む部分安定化
ジルコニア(ZrO_2)と、炭化硅素(SiC)と、
金属硼化物とを含むことを特徴とする複合焼結体。
(1) Partially stabilized zirconia (ZrO_2) whose crystal structure includes tetragonal and orthorhombic crystals, silicon carbide (SiC),
A composite sintered body characterized by containing a metal boride.
(2)前記金属硼化物が、硼化ジルコニウム(ZrB_
2)、硼化チタン(TiB_2)等であることを特徴と
する特許請求の範囲第1項に記載の複合焼結体。
(2) The metal boride is zirconium boride (ZrB_
2) The composite sintered body according to claim 1, which is made of titanium boride (TiB_2) or the like.
(3)1〜30重量%の前記部分安定化ジルコニアと、
5〜30重量%の前記金属硼化物とを含むことを特徴と
する特許請求の範囲第1項若しくは第2項に記載の複合
焼結体。
(3) 1 to 30% by weight of the partially stabilized zirconia;
The composite sintered body according to claim 1 or 2, characterized in that the composite sintered body contains 5 to 30% by weight of the metal boride.
(4)ジルコニア(ZrO_2)と、炭化硅素(SiC
)と、金属硼化物及び硼酸化合物の少なくともいずれか
1つと、前記ジルコニアの部分安定化剤とを焼成前に混
合することを特徴とする複合焼結体の製造方法。
(4) Zirconia (ZrO_2) and silicon carbide (SiC
), at least one of a metal boride and a boric acid compound, and the zirconia partial stabilizer are mixed before firing.
(5)前記硼酸化合物が、硼酸(H_3BO_3)、四
硼酸アンモニウム((NH_4)_2B_4O_7)及
び四硼酸ナトリウム(Na_2B_4O_7)等のうち
少なくともいずれか1つを含むことを特徴とする特許請
求の範囲第4項に記載の複合焼結体の製造方法。
(5) Claim 4, wherein the boric acid compound contains at least one of boric acid (H_3BO_3), ammonium tetraborate ((NH_4)_2B_4O_7), sodium tetraborate (Na_2B_4O_7), etc. A method for producing a composite sintered body as described in .
(6)前記部分安定化剤が金属酸化物を含むことを特徴
とする特許請求の範囲第4項若しくは第5項に記載の複
合焼結体の製造方法。
(6) The method for producing a composite sintered body according to claim 4 or 5, wherein the partial stabilizer contains a metal oxide.
(7)前記金属酸化物が、アルミナ(Al_2O_3)
、イットリア(Y_2O_3)、マグネシア(MgO)
及びセリア(CeO_2)等のうち少なくともいずれか
1つを含むことを特徴とする特許請求の範囲第6項に記
載の複合焼結体の製造方法。
(7) The metal oxide is alumina (Al_2O_3)
, yttria (Y_2O_3), magnesia (MgO)
7. The method for manufacturing a composite sintered body according to claim 6, wherein the composite sintered body contains at least one of ceria (CeO_2) and the like.
(8)前記部分安定化剤が、金属酸化物の熱誘導体を含
むことを特徴とする特許請求の範囲第4項乃至第7項の
いずれかに記載の複合焼結体の製造方法。
(8) The method for producing a composite sintered body according to any one of claims 4 to 7, wherein the partial stabilizer contains a thermal derivative of a metal oxide.
(9)前記部分安定化剤が、単体炭素(C)を含むこと
を特徴とする特許請求の範囲第4項乃至第8項のいずれ
かに記載の複合焼結体の製造方法。
(9) The method for manufacturing a composite sintered body according to any one of claims 4 to 8, wherein the partial stabilizer contains elemental carbon (C).
JP62260544A 1987-10-15 1987-10-15 Composite sintered body and its production Pending JPH01103957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260544A JPH01103957A (en) 1987-10-15 1987-10-15 Composite sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260544A JPH01103957A (en) 1987-10-15 1987-10-15 Composite sintered body and its production

Publications (1)

Publication Number Publication Date
JPH01103957A true JPH01103957A (en) 1989-04-21

Family

ID=17349431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260544A Pending JPH01103957A (en) 1987-10-15 1987-10-15 Composite sintered body and its production

Country Status (1)

Country Link
JP (1) JPH01103957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131674A (en) * 2010-12-24 2012-07-12 National Institute For Materials Science Zirconium diboride powder and method for synthesizing the same
JPWO2018216270A1 (en) * 2017-05-26 2020-05-21 住友電気工業株式会社 Sintered body and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131674A (en) * 2010-12-24 2012-07-12 National Institute For Materials Science Zirconium diboride powder and method for synthesizing the same
JPWO2018216270A1 (en) * 2017-05-26 2020-05-21 住友電気工業株式会社 Sintered body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
US4804642A (en) Aluminum borate based ceramic composite
Zhang et al. In situ Si3N4–SiC–BN composites: preparation, microstructures and properties
US4774210A (en) Densification aid for aluminum borate products
JPH01103957A (en) Composite sintered body and its production
US4804646A (en) Light weight shaped opaque aluminum borate product and method of making same
KR20140132866A (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
JP2002029848A (en) Method for manufacturing sintered silicon nitride compact having high thermal conductivity
JP2651935B2 (en) Method for producing composite material and raw material composition
JPS59190272A (en) Manufacture of silicon nitride sintered body
JPH0244784B2 (en)
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JP2727628B2 (en) Method for producing conductive zirconia sintered body
JPS623072A (en) Silicon carbide base sintered body and manufacture
JPH0224789B2 (en)
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JP2003026470A (en) Low-thermal conductivity and high rigid ceramics
JP2581128B2 (en) Alumina-sialon composite sintered body
JPS6344713B2 (en)
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body