JPH01103851A - High withstand voltage semiconductor element - Google Patents

High withstand voltage semiconductor element

Info

Publication number
JPH01103851A
JPH01103851A JP62293456A JP29345687A JPH01103851A JP H01103851 A JPH01103851 A JP H01103851A JP 62293456 A JP62293456 A JP 62293456A JP 29345687 A JP29345687 A JP 29345687A JP H01103851 A JPH01103851 A JP H01103851A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type layer
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62293456A
Other languages
Japanese (ja)
Other versions
JP2896141B2 (en
Inventor
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26383357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01103851(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH01103851A publication Critical patent/JPH01103851A/en
Application granted granted Critical
Publication of JP2896141B2 publication Critical patent/JP2896141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • H01L29/745Gate-turn-off devices with turn-off by field effect
    • H01L29/7455Gate-turn-off devices with turn-off by field effect produced by an insulated gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/749Thyristor-type devices, e.g. having four-zone regenerative action with turn-on by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76275Vertical isolation by bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76286Lateral isolation by refilling of trenches with polycristalline material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain sufficient high withstand voltage characteristics even through a first semiconductor layer is a thin one by a method wherein a fifth semiconductor layer having a low-impurity concentration is provided on a part adjacent to an insulator film under the bottom part of an element and part of an inverse bias applying voltage to the element is borne by a dielectric isolation film by a third semiconductor layer. CONSTITUTION:When a reverse bias is applied between first electrodes 11 and a second electrode 12, a depletion layer first spreads from an n<+> layer 6 in the center of the surface of an element into a high-resistance Si layer 4 in the longitudinal direction. If the thickness of the layer 4 and the impurity concentration of a p<-> layer 10 are each ready-set at a proper value, the largest electric field of the layer 4 is obtained at a value or less, at which an avalanche breakdown is generated, even though the layer 4 is depleted completely and the layer 10 under the bottom part of the layer 4 is depleted soon. If the layer 10 is depleted, the potentials of the electrodes 11 do not transmit up to right under the electrode 12. That is, a potential difference is generated in the depleted layer 10 in the lateral direction, the voltages between the electrodes 11 and 12 is finally divided into two components, one in the thickness direction of the layer 4 and one in the lateral direction of the layer 10, and high withstand voltage characteristics are shown even though the layer 4 is not thick.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、誘電体分離を用いた高耐圧半導体素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high voltage semiconductor device using dielectric isolation.

(従来の技術) 高耐圧半導体素子を分離する有力な方法として、誘電体
分離法がよく知られている。
(Prior Art) A dielectric isolation method is well known as an effective method for isolating high-voltage semiconductor elements.

第17図は、その様な誘電体分離を施した従来の高耐圧
ダイオードの例である。71はp+型si基板であり、
直接接着技術によってこれとp−型Si基板を接着した
基板ウェー八を用いている。
FIG. 17 shows an example of a conventional high voltage diode with such dielectric isolation. 71 is a p+ type Si substrate;
A substrate wafer is used, to which a p-type Si substrate is bonded using direct bonding technology.

73は接着界面であり、72はこの接着界面部の酸化膜
である。この接着基板ウェーへのp−型基板側を接着界
面73に達する深さにエツチングして溝を掘ることによ
り島状のp−型層74を形成し、溝の側面に酸化膜75
を形成して、この溝には多結晶シリコン膜76を埋め込
む。こうして酸化膜72.75により他の領域から分離
された島状p−型層74の中央表面部にn+型層78、
更にその周辺にn−型層79を形成して、ダイオードが
構成されている。p−型層74の周辺部にはアノード電
極を取出すためのp+型層8oが形成されている。また
、大電流を流せるようにするために、島状ρ−型層74
の周囲を取囲むように酸化膜72.75に沿ってp+型
層77が設けられている。
73 is an adhesive interface, and 72 is an oxide film at this adhesive interface. An island-shaped p-type layer 74 is formed by etching the p-type substrate side of the bonded substrate wafer to a depth that reaches the bonding interface 73, and an oxide film 75 is formed on the side surface of the groove.
A polycrystalline silicon film 76 is filled in this groove. In this way, an n+ type layer 78,
Further, an n-type layer 79 is formed around it to form a diode. A p+ type layer 8o is formed around the p- type layer 74 to take out the anode electrode. In addition, in order to allow a large current to flow, the island-like ρ-type layer 74
A p+ type layer 77 is provided along the oxide films 72 and 75 so as to surround the periphery of the oxide film 72 and 75.

このダイオードは、アノード・カソード間に逆バイアス
を印加した時、空乏層はn+型層78からp−型層74
側に伸びる。空乏層先端がp+型層77に達するまで逆
バイアスを大ぎくすると、パンチスルーを生じる。従っ
てこのダイオードの耐圧を十分高いものとするためには
、n+型層78とp+型層77間の距離dを十分大きく
とることが必要である。具体的に例えば、600Vの耐
圧を得るためには、およそd=45μmが必要である。
In this diode, when a reverse bias is applied between the anode and the cathode, the depletion layer changes from the n+ type layer 78 to the p- type layer 74.
Extends to the side. If the reverse bias is increased until the tip of the depletion layer reaches the p+ type layer 77, punch-through occurs. Therefore, in order to make the breakdown voltage of this diode sufficiently high, it is necessary to make the distance d between the n+ type layer 78 and the p+ type layer 77 sufficiently large. Specifically, for example, in order to obtain a breakdown voltage of 600V, approximately d=45 μm is required.

このようにp−型層74の厚みを大きくすると、素子分
離のための溝もそれだけ深くすることが必要になり、特
に横方向の誘電体分離を行うことが困難になる。
When the thickness of the p-type layer 74 is increased in this manner, the groove for element isolation also needs to be made deeper, making it particularly difficult to perform dielectric isolation in the lateral direction.

第18図は、第17図の構造において、p+型層77を
省略したものである。このようにすれば電流容量が小さ
くなるが、耐圧は第17図のものに比べて少し高くなる
。しかしこの構造でも、p−型層74の厚みが十分大ぎ
くなげればやはり十分な高耐圧は得られない。何故なら
、カソード・アノード間に逆バイアスが印加されて空乏
層がp−型H74の底部酸化膜72に達すると、それ以
上空乏層は伸びられない。基板71は通常OVであるか
ら、カソード・アノード間電圧はp−型層74に生じた
空乏層と酸化膜72にかかるが、酸化膜72はp−型層
74に比べると薄くしかも誘電率が高いので、殆どの電
圧は空乏層にかかる。従って第17図と同じ耐圧を得る
ためには、p−型層74は第11図の場合とほぼ同じ厚
みを必要とするのである。またp−型層74が完全に空
乏化した時に表面のn”型層79が空乏化せずに残る状
態があると、この表面部でn−型層79とp+型層80
の間で容易にパンチスルーを生じる。
FIG. 18 shows the structure of FIG. 17 with the p+ type layer 77 omitted. If this is done, the current capacity will be reduced, but the withstand voltage will be slightly higher than that of FIG. 17. However, even with this structure, if the thickness of the p-type layer 74 is reduced sufficiently, a sufficiently high breakdown voltage cannot be obtained. This is because when a reverse bias is applied between the cathode and the anode and the depletion layer reaches the bottom oxide film 72 of the p-type H74, the depletion layer cannot be extended any further. Since the substrate 71 is normally OV, the cathode-anode voltage is applied to the depletion layer generated in the p-type layer 74 and the oxide film 72, but the oxide film 72 is thinner than the p-type layer 74 and has a dielectric constant. Since it is high, most of the voltage is applied to the depletion layer. Therefore, in order to obtain the same breakdown voltage as in FIG. 17, the p-type layer 74 needs to have approximately the same thickness as in the case of FIG. 11. Furthermore, if the n'' type layer 79 on the surface remains undepleted when the p- type layer 74 is completely depleted, the n- type layer 79 and the p+ type layer 8
Punch-through easily occurs between the two.

(発明が解決しようとする問題点) 以上のように従来の誘電体分離構造の半導体素子では、
十分な高耐圧化を図るためには空乏層が伸びる高抵抗半
導体層を十分に厚くすることが必要となり、そうすると
素子分離が技術的に難しくなる、という問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional semiconductor element with the dielectric isolation structure,
In order to achieve a sufficiently high breakdown voltage, it is necessary to make the high-resistance semiconductor layer in which the depletion layer extends sufficiently thick, which poses a problem in that element isolation becomes technically difficult.

本発明は、この様な問題を解決した、誘電体分離構造の
高耐圧半導体素子を提供することを目的とする。
An object of the present invention is to provide a high-voltage semiconductor element with a dielectric isolation structure that solves these problems.

[発明の構成] (問題点を解決するための手段) 本発明は、絶縁体膜で下地半導体基板から分離された高
抵抗の第1の半導体層の表面に第1導電型で高不純物濃
度の第2の半導体層が形成され、この第2の半導体層の
周囲に連続してまたは近接して第1導電型で低不純物濃
度の第3の半導体層が形成され、この第3の半導体層か
ら所定路1lII11れてこれを取囲むように第2導電
型で高不純物濃度の第4の半導体層が形成された素子に
おいて、前記第1の半導体層の底部に低不純物濃度の第
5の半導体層を設けたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a first conductivity type high impurity concentration layer on the surface of a high resistance first semiconductor layer separated from a base semiconductor substrate by an insulating film. A second semiconductor layer is formed, a third semiconductor layer of the first conductivity type and a low impurity concentration is formed continuously or in close proximity to the second semiconductor layer, and from the third semiconductor layer In the device in which a fourth semiconductor layer of a second conductivity type and a high impurity concentration is formed to surround a predetermined path 1lII11, a fifth semiconductor layer of a low impurity concentration is formed at the bottom of the first semiconductor layer. It is characterized by having the following.

(作用) 本発明の素子では、第2.第4の半導体層間に逆バイア
ス電圧を印加した時、第1の半導体層と第3および第5
の半導体層に空乏層が伸びる。
(Function) In the element of the present invention, the second. When a reverse bias voltage is applied between the fourth semiconductor layer and the third and fifth semiconductor layers,
A depletion layer extends into the semiconductor layer.

素子の上から見て第3の半導体層と第5の半導体層が重
なる領域についてそれぞれの単位面積当りの不純物総量
を路間−とし、その値が例えば3×1012/cttr
2以下となるようにそれぞれの不純物濃度を設定してお
けば、この第3の半導体層および第5の半導体層は同時
に空乏化する。そしてこのとき第2の半導体層と第4の
半導体層間に印加した電圧は完全空乏化した第1.第3
および第5の半導体層によって縦方向および横方向に分
担される。従って、第1の半導体層の厚み方向に印加電
圧のほぼ全てがかかる従来構造の場合と異なり、第1の
半導体層が薄い場合であっても最大電界をアバランシェ
・ブレークダウンが起こらない値以下に抑えることがで
きる。
The total amount of impurities per unit area in the region where the third semiconductor layer and the fifth semiconductor layer overlap when viewed from the top of the device is defined as -, and the value is, for example, 3 x 1012/cttr.
If the respective impurity concentrations are set to be 2 or less, the third semiconductor layer and the fifth semiconductor layer are depleted at the same time. At this time, the voltage applied between the second semiconductor layer and the fourth semiconductor layer is applied to the fully depleted first semiconductor layer. Third
and a fifth semiconductor layer in the vertical and horizontal directions. Therefore, unlike the conventional structure in which almost all of the applied voltage is applied in the thickness direction of the first semiconductor layer, even when the first semiconductor layer is thin, the maximum electric field is kept below a value that does not cause avalanche breakdown. It can be suppressed.

もし、第1.第3の半導体層が完全に空乏化しても、第
5の半導体層が完全に空乏しないと、従来の第17図の
素子と本質的に変わらないことになる。また、第1.第
5の半導体層が完全に空乏化しても第3の半導体層が完
全に空乏化しない場合には、従来の第18図の素子と本
質的に変わらないことになる。従って本発明は、上述の
ように逆バイアスした時に第3に半導体層と第5の半導
体層が同時に空乏化するような低濃度の第5の半導体層
を第1の半導体層の底部に挿入したものと云うことがで
きる。これにより本発明では、誘電体分離構造の素子の
高耐圧化が図られる。また従来と同程度の耐圧で良い場
合に、第1の半導体層の厚みを薄くすることができ、従
って素子分離が容易になる。
If 1st. Even if the third semiconductor layer is completely depleted, unless the fifth semiconductor layer is completely depleted, the device is essentially the same as the conventional device shown in FIG. 17. Also, 1st. If the fifth semiconductor layer is completely depleted but the third semiconductor layer is not completely depleted, the device is essentially the same as the conventional device shown in FIG. 18. Therefore, in the present invention, a low concentration fifth semiconductor layer is inserted at the bottom of the first semiconductor layer so that the third semiconductor layer and the fifth semiconductor layer are simultaneously depleted when reverse biased as described above. It can be said that it is a thing. As a result, in the present invention, it is possible to increase the breakdown voltage of an element having a dielectric isolation structure. Furthermore, if the same level of breakdown voltage as the conventional one is sufficient, the thickness of the first semiconductor layer can be made thinner, and element isolation becomes easier.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は一実施例の高耐圧ダイオードである。FIG. 1 shows an example of a high voltage diode.

1はn+型3i基板であり、この上に酸化膜2により基
板1から分離され、酸化膜3により横方向に他の素子領
域から分離された島状の高抵抗シリコン層4(第1の半
導体層)が形成されている。
Reference numeral 1 designates an n+ type 3i substrate, on which an island-shaped high-resistance silicon layer 4 (first semiconductor layer) is formed.

この高抵抗シリコン層4は、不純物濃度が十分に低いp
−一型またはn−一型である。素子分離領域には多結晶
シリコン膜5が埋め込まれている。
This high resistance silicon layer 4 has a sufficiently low impurity concentration.
-type 1 or n-type. A polycrystalline silicon film 5 is embedded in the element isolation region.

高抵抗シリコン層4の表面中央部にカソード領域となる
高不純物濃度のn+型層6(第2の半導体層)が形成さ
れている。n+型層6の周囲にはこれと連続的に、エツ
ジ・ブレークダウンを防止するためのガードリングとな
るn−型層7(第3の半導体層)が拡散形成されている
。p−型層4の周辺部には、アノード電極を取り出すた
めの高不純物濃度のp+型層8.9(第4の半導体層)
が拡散形成されている。高抵抗シリコン層4の底部には
酸化膜2に接して低不純物濃度のp−型層10(第5の
半導体層)が薄く形成されている。
At the center of the surface of the high-resistance silicon layer 4, an n+ type layer 6 (second semiconductor layer) with a high impurity concentration and serving as a cathode region is formed. Continuously surrounding the n+ type layer 6, an n- type layer 7 (third semiconductor layer) serving as a guard ring for preventing edge breakdown is formed by diffusion. A p+ type layer 8.9 (fourth semiconductor layer) with a high impurity concentration is formed around the p- type layer 4 to take out the anode electrode.
is formed by diffusion. At the bottom of the high-resistance silicon layer 4, a thin p-type layer 10 (fifth semiconductor layer) with a low impurity concentration is formed in contact with the oxide film 2.

p−型層10およびn−型層7はその単位面積当たりの
不純物総量が好ましくは0.1〜3×1012/c#+
2に設定されている。p+型層8には第1の電極11が
、n4″型層6には第2の電極12がそれぞれ形成され
ている。
The p-type layer 10 and the n-type layer 7 preferably have a total amount of impurities per unit area of 0.1 to 3×10 12 /c#+
It is set to 2. A first electrode 11 is formed on the p+ type layer 8, and a second electrode 12 is formed on the n4'' type layer 6.

このダイオードを製造するには先ず、n+型シリコン基
板1と高抵抗シリコン層4に対応する高抵抗シリコン基
板とを直接接着技術を用いて貼り合わせる。即ち2枚の
基板を鏡面研磨しておき、その研磨面同士を清浄な雰囲
気下で密着させ、所定の熱処理を加えることにより一体
化する。この際、高抵抗シリコン基板の接着面には予め
p−型層10を形成しておき、また少なくとも一方の基
板の接着面に予め酸化膜2を形成しておくことにより、
図のように基板1と電気的に分離され、底部にn−型層
10が形成された高抵抗シリコン層4が得られる。次に
フォトエツチングにより素子分離溝を形成し、島状に分
離されたp−型層4の側面にp+型層9を拡散形成し、
また酸化膜3を形成する。そして分離溝内に多結晶シリ
コン膜5を埋め込んだ後、n+型層6、n−型層7およ
びp+型層8を拡散形成し、電極11.12を形成する
To manufacture this diode, first, an n+ type silicon substrate 1 and a high resistance silicon substrate corresponding to the high resistance silicon layer 4 are bonded together using a direct bonding technique. That is, two substrates are mirror-polished, the polished surfaces are brought into close contact with each other in a clean atmosphere, and a predetermined heat treatment is applied to integrate them. At this time, a p-type layer 10 is formed in advance on the bonding surface of the high-resistance silicon substrate, and an oxide film 2 is formed in advance on the bonding surface of at least one of the substrates.
As shown in the figure, a high-resistance silicon layer 4 is obtained which is electrically isolated from the substrate 1 and has an n-type layer 10 formed at its bottom. Next, an element isolation trench is formed by photoetching, and a p+ type layer 9 is diffused and formed on the side surface of the island-shaped p- type layer 4.
Further, an oxide film 3 is formed. After burying a polycrystalline silicon film 5 in the isolation trench, an n+ type layer 6, an n- type layer 7, and a p+ type layer 8 are formed by diffusion to form electrodes 11 and 12.

このように構成されたダイオードにおいて、第1の電極
11と第2の電極12間に逆バイアスを印加すると、ま
ず素子表面中央のn+型層6から高抵抗シリコン層4内
に縦方向に空乏層が拡がる。
In the diode configured in this way, when a reverse bias is applied between the first electrode 11 and the second electrode 12, a depletion layer is first formed in the vertical direction from the n+ type layer 6 at the center of the element surface into the high resistance silicon layer 4. expands.

高抵抗シリコン層4の厚みおよびp−型層10の不純物
濃度が適当な値に設定されていれば、シリコン層4が完
全空乏化してもその最大電界がアバランシェ・ブレーク
ダウンを生じる値以下に収まり、やがて底部のp−型層
10が空乏化する。そしてp−型層10が空乏化すると
、電極11の電位が電極12の直下までは伝わらなくな
る。即ち空乏化したp−型層10内に横方向に電位差が
生じ、結局電極11.12間の電圧が高抵抗シリコン層
4の厚み方向とρ−型層10の横方向に分担される。こ
のことは換言すれば、素子の印加電圧の一部が分離用酸
化膜2により有効に分担されるものと言える。これによ
りこのダイオードは、シリコン層4がそれ程厚いもので
なくても十分な高耐圧特性を示す。また高抵抗シリコン
層4を薄くし°C1図のような誘電体分離構造の形成工
程を容易にすることができる。
If the thickness of the high-resistance silicon layer 4 and the impurity concentration of the p-type layer 10 are set to appropriate values, even if the silicon layer 4 is completely depleted, its maximum electric field will remain below the value that causes avalanche breakdown. , the bottom p-type layer 10 eventually becomes depleted. When the p-type layer 10 is depleted, the potential of the electrode 11 is no longer transmitted directly below the electrode 12. That is, a potential difference is generated in the lateral direction in the depleted p-type layer 10, and the voltage between the electrodes 11 and 12 is eventually shared in the thickness direction of the high-resistance silicon layer 4 and in the lateral direction of the ρ-type layer 10. In other words, it can be said that a part of the voltage applied to the element is effectively shared by the isolation oxide film 2. As a result, this diode exhibits sufficiently high breakdown voltage characteristics even if the silicon layer 4 is not very thick. Furthermore, by making the high-resistance silicon layer 4 thinner, the process of forming a dielectric isolation structure as shown in FIG. 1 can be facilitated.

第2図は、第1図の素子部の導電型を第1図とは逆にし
た例である。酸化膜2.3により分離された高抵抗シリ
コン層21の表面中央部にp+型層22が形成され、そ
の周囲にp−型層23が形成され、周辺部にn+型[1
24,25が形成されている。n+型層24には第1の
電極26が、p+型層22には第2の電極27がそれぞ
れ形成されてダイオードが構成されている。そして高抵
抗シリコン層21の底部の酸化膜2に接する部分にn−
型層28が形成されている。この実施例のダイオードも
先の実施例と全く同様に高耐圧特性を示す。
FIG. 2 is an example in which the conductivity type of the element portion in FIG. 1 is reversed from that in FIG. A p+ type layer 22 is formed at the center of the surface of the high-resistance silicon layer 21 separated by an oxide film 2.3, a p- type layer 23 is formed around it, and an n+ type [1
24 and 25 are formed. A first electrode 26 is formed on the n+ type layer 24, and a second electrode 27 is formed on the p+ type layer 22, forming a diode. Then, the n-
A mold layer 28 is formed. The diode of this embodiment also exhibits high breakdown voltage characteristics, just like the previous embodiment.

第3図は、他の誘電体分離構造による実施例のダイオー
ドである。この実施例では多結晶シリコン層31の表面
部に酸化膜32により分離された構造のn”−型または
p−一部の高抵抗シリコン層33が形成され、このシリ
コン層33表面中央部にp+型層34が形成され、その
周囲にp−型層35が形成されてダイオードが構成され
ている。
FIG. 3 shows an example diode with another dielectric isolation structure. In this embodiment, an n''-type or p-part high resistance silicon layer 33 having a structure separated by an oxide film 32 is formed on the surface of a polycrystalline silicon layer 31, and a p+ A type layer 34 is formed, and a p-type layer 35 is formed around it to constitute a diode.

n−型層33の周辺部にn+型層36を設けてこれに第
1の電極39が、またp+型層34に第2の電極38が
それぞれ形成されている。そして高抵抗シリコン層33
の底部および側部の酸化膜32に接する部分にn−型層
37が形成されている。
An n + -type layer 36 is provided around the n - -type layer 33 and a first electrode 39 is formed thereon, and a second electrode 38 is formed on the p + -type layer 34 . and high resistance silicon layer 33
An n-type layer 37 is formed on the bottom and side portions of the oxide film 32 in contact with the oxide film 32 .

この実施例の場合も、n−型層37を設けたことにより
、高耐圧化が図られる。
In this embodiment as well, by providing the n-type layer 37, high breakdown voltage can be achieved.

第4図は、本発明をMOSトランジスタに適用した実施
例である。3i基板41に酸化膜42゜43により分離
された島状のn−一型高抵抗シリコン層44(第1の半
導体層)が形成され、分離領域の溝には多結晶シリコン
膜54が埋め込まれている。この素子分離構造は第1図
のそれと同じである。高抵抗シリコン層44の表面中央
部にドレイン領域となるp+型層45(第2の半導体層
)およびp−型層46が形成され、その周囲にチャネル
領域となるn型層47(第4の半導体層)が形成され、
このn型層47内にソース領域となるp+型層48が形
成されている。周辺部のp+型層48およびn型層47
にはソース電極である第1の電極52が、中央部のp+
型層45にはドレイン電極である第2の電極53がそれ
ぞれ形成されている。p1型層48とp−型層46の間
のn型層47表面部にゲート絶縁膜50を介してグー、
ト電極51が形成されている。高抵抗シリコン層44の
底部の酸化膜42と接する部分にn−型層49(第5の
半導体層)が形成されている。
FIG. 4 shows an embodiment in which the present invention is applied to a MOS transistor. An island-shaped n-1 type high-resistance silicon layer 44 (first semiconductor layer) separated by oxide films 42 and 43 is formed on a 3i substrate 41, and a polycrystalline silicon film 54 is embedded in the trench of the isolation region. ing. This element isolation structure is the same as that shown in FIG. A p+ type layer 45 (second semiconductor layer) and a p- type layer 46, which will become a drain region, are formed in the center of the surface of the high-resistance silicon layer 44, and an n-type layer 47 (fourth semiconductor layer), which will become a channel region, is formed around them. semiconductor layer) is formed,
A p+ type layer 48 serving as a source region is formed within this n type layer 47. P+ type layer 48 and n type layer 47 in the peripheral area
The first electrode 52, which is a source electrode, is connected to the p+
A second electrode 53 serving as a drain electrode is formed on each of the mold layers 45 . A goo is formed on the surface of the n-type layer 47 between the p1-type layer 48 and the p-type layer 46 via the gate insulating film 50.
A top electrode 51 is formed. An n − type layer 49 (fifth semiconductor layer) is formed at the bottom of the high-resistance silicon layer 44 in a portion that is in contact with the oxide film 42 .

この実施例のMOSトランジスタにおいて、ドレイン電
極である第2の電極53にソース電極である第1の電極
52よりも低い電圧が印加された時、その電圧は、素子
中央部のp+型層45から高抵抗シリコン層44内に伸
びる空乏層および完全空乏化するn−型層49により分
担される。この結果この実施例でも、やはり高耐圧化が
図られる。
In the MOS transistor of this embodiment, when a lower voltage is applied to the second electrode 53, which is the drain electrode, than to the first electrode 52, which is the source electrode, the voltage is applied from the p+ type layer 45 at the center of the element. It is shared by a depletion layer extending into the high resistance silicon layer 44 and a fully depleted n-type layer 49. As a result, this embodiment also achieves high breakdown voltage.

第5図は、本発明をnチャネルMoSトランジスタに適
用した実施例である。第4図の実施例と同様の素子分離
構造を持つn−一型高抵抗シリコン層44(第1の半導
体層)を用いている。このシリコン層44の中央部にチ
ャネル領域となるn型層56(第2の半導体層)が形成
され、このn型層56内にソース領域となるn+型層5
7が形成されている。n型層56のn+型層57とシリ
コン層44の間にゲート絶縁膜50を介してゲート電極
51が形成されている。n型層56から僅かな距離離れ
てゲート電極51下のシリコン層44表面にp−型層5
8(第3の半導体層)が形成されている。シリコン層4
4の周辺部にはドレイン領域となるn+型層59.60
(第4の半導体層)が形成されている。n+型層59に
はドレイン電極である第1の電極61が、p型層56お
よびn+型層57にはソース電極となる第2の電極62
が、それぞれ形成されている。そして高抵抗シリコン層
44の底部の酸化膜42に接する領域に先の実施例と同
様、n−型層49(第5の半導体層)が形成されている
FIG. 5 shows an embodiment in which the present invention is applied to an n-channel MoS transistor. An n-1 type high resistance silicon layer 44 (first semiconductor layer) having an element isolation structure similar to that of the embodiment shown in FIG. 4 is used. An n-type layer 56 (second semiconductor layer) that becomes a channel region is formed in the center of this silicon layer 44, and an n+-type layer 5 that becomes a source region is formed within this n-type layer 56.
7 is formed. A gate electrode 51 is formed between the n+ type layer 57 of the n type layer 56 and the silicon layer 44 with a gate insulating film 50 interposed therebetween. A p-type layer 5 is formed on the surface of the silicon layer 44 under the gate electrode 51 at a short distance from the n-type layer 56.
8 (third semiconductor layer) is formed. silicon layer 4
4, there is an n+ type layer 59.60 which becomes the drain region.
(fourth semiconductor layer) is formed. A first electrode 61 serving as a drain electrode is provided on the n+ type layer 59, and a second electrode 62 serving as a source electrode is provided on the p type layer 56 and n+ type layer 57.
are formed respectively. As in the previous embodiment, an n-type layer 49 (fifth semiconductor layer) is formed in the region at the bottom of the high-resistance silicon layer 44 in contact with the oxide film 42.

このMOSトランジスタは、第1の電極61に、第2の
電極62に対して正となるドレイン電圧を印加して動作
させる。ゲート電圧が零または正でp型層56にチャネ
ルが形成されないオフ状態では、p型層56から伸びる
空乏層は容易にp−型層58に達する。即ちp−型層5
8はp型層56に直接接していないが、先の各実施例の
ガードリングと同様のガードリングとして働く。そして
トレイン・ソース間の電圧は空乏化したシリコン層44
.58およびn−型層49により縦方向と横方向に分担
されるため、高耐圧特性が得られる。
This MOS transistor is operated by applying a drain voltage that is positive with respect to the second electrode 62 to the first electrode 61. In an off state where the gate voltage is zero or positive and no channel is formed in the p-type layer 56, the depletion layer extending from the p-type layer 56 easily reaches the p-type layer 58. That is, p-type layer 5
8 is not in direct contact with the p-type layer 56, but serves as a guard ring similar to the guard ring in each of the previous embodiments. And the voltage between the train and source is the depleted silicon layer 44.
.. 58 and the n-type layer 49 in the vertical and horizontal directions, high breakdown voltage characteristics can be obtained.

第6図は、第1図を僅かに変形した実施例であり、第1
図の構造におけるp−型層10と酸化膜2の界面に高抵
抗膜70、例えば108Ω・cm以上の高抵抗膜例えば
多結晶シリコン膜 (SIPO8)を配置している。第7図は同様に第2図
の構造においてn−型層28と酸化膜2の界面に高抵抗
膜70を配置したものである。この様な構成とすれば、
基板1の電位の影響が低減される。即ち高抵抗膜に高電
位側から低電位側に微小な電流が流れて電位勾配が形成
され、外部電界がしゃ断できる。また酸化膜2と基板1
と高抵抗膜70がキャパシタを構成するため、酸化膜2
に高電圧を分担させることができる。
FIG. 6 is a slightly modified embodiment of FIG.
A high resistance film 70, for example, a high resistance film of 10 8 Ω·cm or more, such as a polycrystalline silicon film (SIPO 8), is disposed at the interface between the p − type layer 10 and the oxide film 2 in the structure shown in the figure. Similarly, FIG. 7 shows a structure in which a high resistance film 70 is disposed at the interface between the n-type layer 28 and the oxide film 2 in the structure shown in FIG. With this kind of configuration,
The influence of the potential of the substrate 1 is reduced. That is, a minute current flows through the high-resistance film from the high-potential side to the low-potential side, forming a potential gradient and cutting off the external electric field. In addition, the oxide film 2 and the substrate 1
Since the oxide film 2 and the high resistance film 70 constitute a capacitor, the oxide film 2
can share the high voltage.

第8図は、第2図の実施例において横方向の素子分離を
pn接合分離構造とした実施例である。
FIG. 8 shows an embodiment in which the lateral element isolation in the embodiment of FIG. 2 is made into a pn junction isolation structure.

高抵抗シリコン層21がp−一型層の場合、図示のよう
に表面から酸化膜2に達する深さのn+型層25により
横方向の素子分離が行われる。第9図は高抵抗シリコン
層21をrM−型とした場合の横方向のpn接合分離構
造である。図示のように素子間に分離用のp+型層91
が必要である。
When the high-resistance silicon layer 21 is a p-type layer, lateral element isolation is performed by the n+-type layer 25 having a depth from the surface to the oxide film 2 as shown in the figure. FIG. 9 shows a lateral pn junction isolation structure when the high-resistance silicon layer 21 is of rM-type. As shown in the figure, a p+ type layer 91 for isolation between elements.
is necessary.

p+型層の周囲には高電界がかからないようにするため
p−型層92が形成されている。第9図において、酸化
膜2に達するn+型層25は必ずしも必要ではない。第
1図その他の実施例についても、横方向についてはpn
接合分離造とすることができ、その場合も本発明は有効
である。
A p- type layer 92 is formed around the p+ type layer to prevent a high electric field from being applied. In FIG. 9, the n+ type layer 25 reaching the oxide film 2 is not necessarily necessary. Regarding the other embodiments in FIG. 1, the horizontal direction is pn.
The present invention is also effective in this case.

第10図は、第2図の構造を基本とし、そのアノード部
分を複数個に分割配置した実施例である。
FIG. 10 shows an embodiment based on the structure shown in FIG. 2, in which the anode portion is divided into a plurality of parts.

この構造は、素子面積が大きい場合に、アノード電流を
均一に分散させ上で有効である。この実施例においても
、第2図の実施例と同様、n−型層28を設けることに
より高耐圧化が図られる。
This structure is effective in uniformly distributing the anode current when the device area is large. In this embodiment as well, as in the embodiment shown in FIG. 2, high breakdown voltage can be achieved by providing the n-type layer 28.

以上の実施例では全て、第3の半導体層と第5の半導体
層を逆導電型とした。これに対し、第5の半導体層を第
3の半導体層と同じ導電型とすることも可能である。そ
の様な実施例を以下に示す。
In all of the above embodiments, the third semiconductor layer and the fifth semiconductor layer were of opposite conductivity type. On the other hand, it is also possible to make the fifth semiconductor layer the same conductivity type as the third semiconductor layer. Such an example is shown below.

第11図は、第1図の構造において、高抵抗シリコン層
4をp−一型とし、その底部に設ける低濃度層をn−型
層10′とした実施例である。この構造においても、n
−型層10′の不純物総量は0、1〜3X 10” 2
/r、第2に設定される。
FIG. 11 shows an embodiment in which, in the structure of FIG. 1, the high-resistance silicon layer 4 is of p-type, and the low concentration layer provided at the bottom thereof is an n-type layer 10'. Also in this structure, n
- The total amount of impurities in the type layer 10' is 0.1 to 3X 10''2
/r, set second.

この実施例によっても、高耐圧化が図られる。This embodiment also achieves high breakdown voltage.

この素子構造の場合、耐圧向上の理由を次のように説明
することもできる。この構造では、アノード・カソード
間に、p+型層8.9−n−型層io’−p−−型高抵
抗シリコン層4−n+型層6というpnpn構造が形成
される。この素子に逆バイアスを与えると、中央のn+
型層6から高抵抗シリコン層4内に縦方向に空乏層が伸
びると同時に、周辺のp+型層8からn−型層10′な
いに横方向に空乏層が伸びる。その結果として第1図の
実施例と同様に、アノード・カソード間電圧はシリコン
層4に伸びる空乏層とn−型層10′に伸びる空乏層に
より分担され、シリコン層4にのみ高電界がかかるのが
防止される。
In the case of this element structure, the reason for the improvement in breakdown voltage can also be explained as follows. In this structure, a pnpn structure including a p+ type layer 8, 9, an n- type layer io', a p-- type high resistance silicon layer 4, and an n+ type layer 6 is formed between the anode and the cathode. When a reverse bias is applied to this element, the central n+
A depletion layer extends vertically from the type layer 6 into the high-resistance silicon layer 4, and at the same time, a depletion layer extends laterally from the peripheral p+ type layer 8 to the n- type layer 10'. As a result, similar to the embodiment shown in FIG. 1, the anode-cathode voltage is shared between the depletion layer extending to the silicon layer 4 and the depletion layer extending to the n-type layer 10', and a high electric field is applied only to the silicon layer 4. is prevented.

第12図は、第2図の構造において、シリコン層21を
n−一型とし、その底部の低濃度層をp−型層28′と
した実施例である。第13図は、第3図の構造における
n−型層37をp−型層37′とした実施例である。第
14図は、第4図の構造におけるn−型層49をp−型
層49′とした実施例である。第15図は、第14図の
構造を若干変更し、ドレイン・ソース間にpnpn構造
を導入して導電変調型MO8FETを構成した実施例で
ある。
FIG. 12 shows an embodiment in which, in the structure of FIG. 2, the silicon layer 21 is of n-type and the low concentration layer at the bottom thereof is a p-type layer 28'. FIG. 13 shows an embodiment in which the n-type layer 37 in the structure of FIG. 3 is replaced with a p-type layer 37'. FIG. 14 shows an embodiment in which the n-type layer 49 in the structure of FIG. 4 is replaced with a p-type layer 49'. FIG. 15 shows an embodiment in which the structure of FIG. 14 is slightly modified and a pnpn structure is introduced between the drain and the source to form a conductivity modulation type MO8FET.

第16図は、第5図の構造におけるn−型層49をp−
型層49′とした実施例である。これら第12図〜第1
6図の実施例によっても同様に高耐圧化が図られている
FIG. 16 shows that the n-type layer 49 in the structure of FIG.
This is an embodiment in which a mold layer 49' is used. These Figures 12-1
The embodiment shown in FIG. 6 also achieves high voltage resistance.

[発明の効果] 以上述べたように本発明によれば、絶縁体膜で分離され
た十分に不純物濃度が低い高抵抗の第1の半導体層の表
面に第1導電型の第2の半導体層を有し、その周囲に第
1導電型で低濃度の第3の半導体層を有し、更にその外
側に第2s電型で高濃度の第4の半導体層を有する誘電
体分離構造の半導体素子において、素子底部の絶縁体膜
に隣接する部分に低不純物濃度の第5の半導体層を設け
て、この第3の半導体層により素子の逆バイアス印加電
圧の一部を分離絶縁膜に負担させることにより、第1の
半導体層が薄いものであっても十分な高耐圧特性を得る
ことが可能になる。また第1の半導体層が薄くてもよい
結果、誘電体分離構造の形成が容易になる。
[Effects of the Invention] As described above, according to the present invention, the second semiconductor layer of the first conductivity type is formed on the surface of the first semiconductor layer of high resistance with sufficiently low impurity concentration separated by an insulating film. A semiconductor element having a dielectric separation structure, having a third semiconductor layer of a first conductivity type and a low concentration around it, and further having a fourth semiconductor layer of a second conductivity type and a high concentration outside the third semiconductor layer. In this method, a fifth semiconductor layer with a low impurity concentration is provided at a portion adjacent to the insulating film at the bottom of the element, and this third semiconductor layer causes the isolation insulating film to bear part of the reverse bias voltage applied to the element. This makes it possible to obtain sufficiently high breakdown voltage characteristics even if the first semiconductor layer is thin. Furthermore, since the first semiconductor layer may be thin, the dielectric isolation structure can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のダイオードを示す図、第2
図は各部の導電型を逆にした他の実施例のダイオードを
示す図、第3図は他の誘電体分離構造を用いた実施例の
ダイオードを示す図、第4図はnチャネルMOSトラン
ジスタに適用した実施例を示す図、第5図はnチャネル
MOSトランジスタに適用した実施例を示す図、第6図
および第7図はそれぞれ第1図および第2図の実施例を
変形した実施例を示す図、第8図および第9図は横方向
素子分離をpn接合分離とした実施例のダイオードを示
す図、第10図は分割アノード構造の実施例のダイオー
ドを示す図、第11図は第1図の構成を変形した実施例
を示す図、第12図は第2図の構成を変形した実施例を
示す図、第13図は第3図の構成を変形した実施例を示
す図、第14図は第4図の構成を変形した実施例を示す
図、第15図は第14図の構成を変形した導電変調型M
O8FETの実施例を示す図、第16図は第5図の構成
を変形した実施例を示す図、第17図および第18図は
従来の誘電体分離構造のダイオードを示す図である。 1・・・基板、2.3・・・酸化膜、4・・・高抵抗シ
リコン層(第1の半導体層)、5・・・多結晶シリコン
膜、6・・・n+型層(第2の半導体層)、7・・・n
−型層(第3の半導体層)、8・・・p+型層(第4の
半導体層)、9・・・p+型層、10・・・n−型層(
第5の半導体層)、11・・・第1の電極(アノード電
極)、12・・・第2の電極(カソード電極)、21・
・・高抵抗シリコン層(第1の半導体層)、22・・・
p+型層(第2の半導体層)、23・・・p−型層(第
3の半導体層)、24・・・n+型層(第4の半導体層
)、25・・・n+型層、26・・・第1の電極(カソ
ード電極)、27・・・第2の電極(アノード電極)、
28・・・p−型層(第5の半導体層)、31・・・多
結晶シリコン層、32・・・酸化膜、33・・・高抵抗
シリコン層(第1の半導体層)、34・・・p+型層(
第2の半導体層)、35・・・p−型層(第3の半導体
層)、36・・・n+型層(第4の半導体層)、37・
・・p−型層(第5の半導体層)、38・・・第1の電
極(カソード電極)、39・・・第2の電極(アノード
電極)、41・・・基板、42.43・・・酸化膜、4
4・・・高抵抗シリコン層(第1の半導体層)、45・
・・p+型層(第2の半導体層)、46・・・p−型層
(第3の半導体層)、47・・・n型層(チャネル領域
、第4の半導体層)、48・・・p+型層、49・・・
n−型層(第5の半導体1)、50・・・ゲート絶縁膜
、51・・・ゲート電極、52・・・第1の電極(ソー
ス電極)、53・・・第2の電極(ドレイン電極)、5
4・・・多結晶シリコン膜、55・・・n+型層、56
・・・p型層(第2の半導体層)、57・・・n+型層
、58・・・p−型層(第3の半導体層)、59・・・
n+型層(第4の半導体層)、60・・・n+型層、6
1・・・・・・第1の電極(ドレイン電極)、62・・
・第2の電極(ソース電極)。 出願人代理人 弁理士 鈴江武彦
Figure 1 shows a diode according to an embodiment of the present invention, Figure 2 shows a diode according to an embodiment of the present invention.
The figure shows a diode of another embodiment in which the conductivity type of each part is reversed, Figure 3 shows a diode of an embodiment using another dielectric isolation structure, and Figure 4 shows an n-channel MOS transistor. 5 shows an example applied to an n-channel MOS transistor, and FIGS. 6 and 7 show an example modified from the example shown in FIGS. 1 and 2, respectively. 8 and 9 are diagrams showing a diode of an embodiment in which lateral element isolation is pn junction isolation, FIG. 10 is a diagram showing a diode of an embodiment with a split anode structure, and FIG. 12 is a diagram showing an embodiment in which the configuration of FIG. 2 is modified; FIG. 13 is a diagram showing an embodiment in which the configuration in FIG. 3 is modified; FIG. 14 is a diagram showing an embodiment in which the configuration of FIG. 4 is modified, and FIG. 15 is a diagram showing a conductive modulation type M in which the configuration of FIG. 14 is modified.
FIG. 16 is a diagram showing an embodiment of an O8FET, FIG. 16 is a diagram showing an embodiment modified from the configuration of FIG. 5, and FIGS. 17 and 18 are diagrams showing a diode having a conventional dielectric isolation structure. DESCRIPTION OF SYMBOLS 1...Substrate, 2.3...Oxide film, 4...High resistance silicon layer (first semiconductor layer), 5...Polycrystalline silicon film, 6...N+ type layer (second ), 7...n
- type layer (third semiconductor layer), 8...p+ type layer (fourth semiconductor layer), 9...p+ type layer, 10...n- type layer (
5th semiconductor layer), 11... first electrode (anode electrode), 12... second electrode (cathode electrode), 21...
...High resistance silicon layer (first semiconductor layer), 22...
p+ type layer (second semiconductor layer), 23... p- type layer (third semiconductor layer), 24... n+ type layer (fourth semiconductor layer), 25... n+ type layer, 26... first electrode (cathode electrode), 27... second electrode (anode electrode),
28...p-type layer (fifth semiconductor layer), 31...polycrystalline silicon layer, 32...oxide film, 33...high resistance silicon layer (first semiconductor layer), 34... ...p+ type layer (
35... p- type layer (third semiconductor layer), 36... n+ type layer (fourth semiconductor layer), 37...
...p-type layer (fifth semiconductor layer), 38... first electrode (cathode electrode), 39... second electrode (anode electrode), 41... substrate, 42.43. ...Oxide film, 4
4... High resistance silicon layer (first semiconductor layer), 45.
...p+ type layer (second semiconductor layer), 46...p- type layer (third semiconductor layer), 47...n type layer (channel region, fourth semiconductor layer), 48...・p+ type layer, 49...
n-type layer (fifth semiconductor 1), 50... gate insulating film, 51... gate electrode, 52... first electrode (source electrode), 53... second electrode (drain electrode), 5
4... Polycrystalline silicon film, 55... n+ type layer, 56
...p type layer (second semiconductor layer), 57...n+ type layer, 58...p− type layer (third semiconductor layer), 59...
n+ type layer (fourth semiconductor layer), 60... n+ type layer, 6
1...First electrode (drain electrode), 62...
- Second electrode (source electrode). Applicant's agent Patent attorney Takehiko Suzue

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁体膜により下地半導体基板から分離された高
抵抗の第1の半導体層と、この第1の半導体層の表面に
選択的に形成された第1導電型で高不純物濃度の第2の
半導体層と、前記第1の半導体層表面の前記第2の半導
体層の周辺部に形成された第1導電型で低不純物濃度の
第3の半導体層と、前記第1の半導体層の前記第3の半
導体層から所定距離離れた位置に形成された第2導電型
で高不純物濃度の第4の半導体層とを有する高耐圧半導
体素子において、前記第1の半導体層の底部に低不純物
濃度の第5の半導体層を設けたことを特徴とする高耐圧
半導体素子。
(1) A first semiconductor layer of high resistance separated from the base semiconductor substrate by an insulating film, and a second semiconductor layer of a first conductivity type and high impurity concentration selectively formed on the surface of this first semiconductor layer. a third semiconductor layer of a first conductivity type and a low impurity concentration formed in a peripheral portion of the second semiconductor layer on the surface of the first semiconductor layer; In a high voltage semiconductor element having a fourth semiconductor layer of a second conductivity type and a high impurity concentration formed at a predetermined distance from the third semiconductor layer, the bottom of the first semiconductor layer is doped with a low impurity concentration. A high breakdown voltage semiconductor device, characterized in that it is provided with a fifth semiconductor layer.
(2)前記第1の半導体層が第1導電型または第2導電
型であり、前記第5の半導体層が第2導電型である特許
請求の範囲第1項記載の高耐圧半導体素子。
(2) The high voltage semiconductor device according to claim 1, wherein the first semiconductor layer is of the first conductivity type or the second conductivity type, and the fifth semiconductor layer is of the second conductivity type.
(3)前記第1の半導体層が第2導電型であり、前記第
5の半導体層が第1導電型である特許請求の範囲第1項
記載の高耐圧半導体素子。
(3) The high voltage semiconductor device according to claim 1, wherein the first semiconductor layer is of the second conductivity type, and the fifth semiconductor layer is of the first conductivity type.
(4)前記第3および第5の半導体層は単位面積当たり
の不純物総量が0.1〜3×10^1^2/cm^2で
ある特許請求の範囲第1項記載の高耐圧半導体素子。
(4) The high voltage semiconductor device according to claim 1, wherein the third and fifth semiconductor layers have a total amount of impurities per unit area of 0.1 to 3×10^1^2/cm^2. .
(5)前記第1の半導体層の周辺に素子分離絶縁体膜を
有する特許請求の範囲第1項記載の高耐圧半導体素子。
(5) The high voltage semiconductor device according to claim 1, further comprising an element isolation insulating film around the first semiconductor layer.
(6)前記第1の半導体層の周辺に素子分離pn接合を
有する特許請求の範囲第1項記載の高耐圧半導体素子。
(6) The high voltage semiconductor device according to claim 1, which has an element isolation pn junction around the first semiconductor layer.
JP62293456A 1987-02-26 1987-11-20 High voltage semiconductor device Expired - Lifetime JP2896141B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-43564 1987-02-26
JP4356487 1987-02-26
JP18942087 1987-07-29
JP62-189420 1987-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9012727A Division JP2860089B2 (en) 1987-02-26 1997-01-27 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
JPH01103851A true JPH01103851A (en) 1989-04-20
JP2896141B2 JP2896141B2 (en) 1999-05-31

Family

ID=26383357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293456A Expired - Lifetime JP2896141B2 (en) 1987-02-26 1987-11-20 High voltage semiconductor device

Country Status (3)

Country Link
JP (1) JP2896141B2 (en)
DE (1) DE3806164A1 (en)
IT (1) IT1216464B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025989A1 (en) * 1993-04-28 1994-11-10 Harris Corporation An integrated circuit with improved reverse bias breakdown
JPH08139295A (en) * 1994-11-07 1996-05-31 Nec Corp Soi substrate
US5777365A (en) * 1995-09-28 1998-07-07 Nippondenso Co., Ltd. Semiconductor device having a silicon-on-insulator structure
JP2002543626A (en) * 1999-05-03 2002-12-17 − ハカン エクルンド、クラス Semiconductor element
US6531738B1 (en) 1999-08-31 2003-03-11 Matsushita Electricindustrial Co., Ltd. High voltage SOI semiconductor device
JP2004207418A (en) * 2002-12-25 2004-07-22 Nippon Inter Electronics Corp Semiconductor device and its manufacturing method
JP2007088312A (en) * 2005-09-26 2007-04-05 Hitachi Ltd Semiconductor device
JP2008147690A (en) * 2008-01-15 2008-06-26 Mitsubishi Electric Corp High withstand voltage semiconductor device
JP2012191235A (en) * 2012-06-07 2012-10-04 Rohm Co Ltd Semiconductor device
JP2014086723A (en) * 2012-10-19 2014-05-12 Freescale Semiconductor Inc High voltage diode
WO2021085437A1 (en) * 2019-11-01 2021-05-06 株式会社東海理化電機製作所 Semiconductor integrated circuit
WO2021192800A1 (en) * 2020-03-23 2021-09-30 株式会社東海理化電機製作所 Semiconductor integrated circuit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343067A (en) * 1987-02-26 1994-08-30 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device
DE3832750A1 (en) * 1988-09-27 1990-03-29 Asea Brown Boveri PERFORMANCE SEMICONDUCTOR COMPONENT
EP0497577B1 (en) * 1991-01-31 2002-07-17 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device
US5072268A (en) * 1991-03-12 1991-12-10 Power Integrations, Inc. MOS gated bipolar transistor
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5374843A (en) * 1991-05-06 1994-12-20 Silinconix, Inc. Lightly-doped drain MOSFET with improved breakdown characteristics
JPH05335529A (en) * 1992-05-28 1993-12-17 Fujitsu Ltd Semiconductor device and manufacture thereof
DE4233773C2 (en) * 1992-10-07 1996-09-19 Daimler Benz Ag Semiconductor structure for semiconductor devices with high breakdown voltage
DE4333661C1 (en) * 1993-10-01 1995-02-16 Daimler Benz Ag Semiconductor component with high breakdown voltage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100580A (en) * 1982-11-12 1984-06-09 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Buried zener diode
JPS59217338A (en) * 1983-05-26 1984-12-07 Hitachi Ltd Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939066A (en) * 1982-08-27 1984-03-03 Hitachi Ltd Semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100580A (en) * 1982-11-12 1984-06-09 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Buried zener diode
JPS59217338A (en) * 1983-05-26 1984-12-07 Hitachi Ltd Semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025989A1 (en) * 1993-04-28 1994-11-10 Harris Corporation An integrated circuit with improved reverse bias breakdown
JPH08139295A (en) * 1994-11-07 1996-05-31 Nec Corp Soi substrate
US5777365A (en) * 1995-09-28 1998-07-07 Nippondenso Co., Ltd. Semiconductor device having a silicon-on-insulator structure
JP2002543626A (en) * 1999-05-03 2002-12-17 − ハカン エクルンド、クラス Semiconductor element
USRE41368E1 (en) 1999-08-31 2010-06-08 Panasonic Corporation High voltage SOI semiconductor device
US6531738B1 (en) 1999-08-31 2003-03-11 Matsushita Electricindustrial Co., Ltd. High voltage SOI semiconductor device
JP2004207418A (en) * 2002-12-25 2004-07-22 Nippon Inter Electronics Corp Semiconductor device and its manufacturing method
JP2007088312A (en) * 2005-09-26 2007-04-05 Hitachi Ltd Semiconductor device
JP2008147690A (en) * 2008-01-15 2008-06-26 Mitsubishi Electric Corp High withstand voltage semiconductor device
JP2012191235A (en) * 2012-06-07 2012-10-04 Rohm Co Ltd Semiconductor device
JP2014086723A (en) * 2012-10-19 2014-05-12 Freescale Semiconductor Inc High voltage diode
WO2021085437A1 (en) * 2019-11-01 2021-05-06 株式会社東海理化電機製作所 Semiconductor integrated circuit
JP2021072426A (en) * 2019-11-01 2021-05-06 株式会社東海理化電機製作所 Semiconductor integrated circuit
US11973146B2 (en) 2019-11-01 2024-04-30 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Semiconductor integrated circuit
WO2021192800A1 (en) * 2020-03-23 2021-09-30 株式会社東海理化電機製作所 Semiconductor integrated circuit

Also Published As

Publication number Publication date
IT1216464B (en) 1990-03-08
IT8819563A0 (en) 1988-02-26
JP2896141B2 (en) 1999-05-31
DE3806164A1 (en) 1988-09-08
DE3806164C2 (en) 1991-03-14

Similar Documents

Publication Publication Date Title
US5241210A (en) High breakdown voltage semiconductor device
JPH01103851A (en) High withstand voltage semiconductor element
US5343067A (en) High breakdown voltage semiconductor device
US7417296B2 (en) Dielectric isolation type semiconductor device
JP5172654B2 (en) Semiconductor device
JP2005236320A (en) Soi high breakdown voltage semiconductor device
JP3293871B2 (en) High voltage semiconductor device
JP2878689B2 (en) High voltage semiconductor device
JP2001257366A (en) Semiconductor device
JP4569105B2 (en) Semiconductor device
JP2004031519A (en) Semiconductor device
JP3951815B2 (en) Semiconductor device
JPWO2003075353A1 (en) Semiconductor element
JP2000068372A (en) Semiconductor device and manufacture thereof
JP3297087B2 (en) High voltage semiconductor device
JPH06151728A (en) Semiconductor integrated circuit device
JPH11330383A (en) Semiconductor device
JP2860089B2 (en) High voltage semiconductor device
JP2918925B2 (en) Semiconductor device
JP5120418B2 (en) Semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
US11444074B2 (en) Semiconductor device and method for manufacturing same
JPH10256542A (en) Semiconductor device
JPH1174492A (en) Manufacture of semiconductor substrate
JPH0453169A (en) Semiconductor protective device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9