JP2007088312A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007088312A
JP2007088312A JP2005277035A JP2005277035A JP2007088312A JP 2007088312 A JP2007088312 A JP 2007088312A JP 2005277035 A JP2005277035 A JP 2005277035A JP 2005277035 A JP2005277035 A JP 2005277035A JP 2007088312 A JP2007088312 A JP 2007088312A
Authority
JP
Japan
Prior art keywords
semiconductor device
single crystal
insulating film
trench
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005277035A
Other languages
Japanese (ja)
Other versions
JP5069851B2 (en
Inventor
Masahiro Ito
昌弘 伊藤
Shinichi Kurita
信一 栗田
Toshihito Tabata
利仁 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP2005277035A priority Critical patent/JP5069851B2/en
Priority to CNB2006101106973A priority patent/CN100511689C/en
Publication of JP2007088312A publication Critical patent/JP2007088312A/en
Application granted granted Critical
Publication of JP5069851B2 publication Critical patent/JP5069851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which keeps bending of a board forming an element to a small extent to offer a highly reliable dielectric isolation structure. <P>SOLUTION: In the semiconductor device, one or more trenches in closed loop patterns are formed on the main surface of the SOI (Silicon on Insulator) board, and polycrystal silicon films are held between insulating films covering the side walls of the trenches. The insulating films and polycrystal silicon films are exposed on the same plane at the openings of the trenches. The trenches dielectrically separate a plurality of semiconductor elements formed on the SOI board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置とその製造方法に係り、特にトレンチを用いたSOI(Silicon onInsulator)基板上に形成された半導体素子を完全誘電体分離する半導体装置に関する。   The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device that completely separates a semiconductor element formed on an SOI (Silicon on Insulator) substrate using a trench.

半導体素子間の絶縁耐圧が数10V〜数100Vと高い耐圧の集積回路装置(パワーIC)では、集積化する各半導体素子を絶縁膜(例えば酸化膜:SiO2 膜)で分離する方法が知られている。誘電体分離基板の製造には半導体シリコン単結晶ウエハを加工する方式が一般的である。誘電体分離はPN接合分離と異なり絶縁膜で半導体素子間を分離することからラッチアップ現象がなく、論理回路とパワースイッチ部とのワンチップ化、高耐圧化が可能である。現在では電力容量が100Wを超えるクラスの製品が実用化されている。このような誘電体分離基板に関する特許として特許文献1がある。 In an integrated circuit device (power IC) having a high withstand voltage of several tens to several hundreds of volts between semiconductor elements, a method is known in which each semiconductor element to be integrated is separated by an insulating film (for example, an oxide film: SiO 2 film). ing. A method of processing a semiconductor silicon single crystal wafer is generally used for manufacturing a dielectric separation substrate. Unlike the PN junction isolation, the dielectric isolation separates the semiconductor elements with an insulating film, so there is no latch-up phenomenon, and the logic circuit and the power switch unit can be made into one chip and have a high breakdown voltage. Currently, products of a class whose power capacity exceeds 100 W have been put into practical use. There exists patent document 1 as a patent regarding such a dielectric separation board.

図3は従来技術の誘電体分離基板の断面図、図4はその製造工程を説明する断面図である。始めに、単結晶シリコン1の主表面を酸化してその全面に絶縁膜2(例えばSiO2 膜)を図4(a)に示す様に形成する。次にホトリソグラフ法(以下ホトリソと略す。)でパターンニングした後、エッチングなどの方法により予定の箇所の絶縁膜2を除去する。次に残された絶縁膜2をマスクとして例えば水酸化カリウムとイソプロピルアルコールの混液を用いる異方性エッチングで、深さ約5μm〜80μmの分離溝3を図4(b)に示す様に形成する。次に前記マスクとして利用した絶縁膜2をエッチングにより全て除去する。その後、単結晶シリコン1の主表面を再び酸化して、全面に1μm〜5μmの分離用の絶縁膜21(例えばSiO2 膜)を形成する。その表面に第1の多結晶シリコン4を高温(約1000℃〜1250℃)の気相成長法(CVD法)によって前記の分離溝3を埋める程度(50μm〜300μm)堆積させる。単結晶シリコン1の表面を基準として第1の多結晶シリコン4の大きな凹みを研削等の方法で除去し、CMP等の方法によって表面の細かい凹凸部を除去する。次に低温(約500℃〜800℃)の気相成長法(CVD法)により第1の多結晶シリコン4の平滑面に第2の多結晶シリコン5を約2μm〜5μmの厚みで堆積させる。この後、形成した第2の多結晶シリコン5の表面をCMP等の方法によって研磨し、ウエハ接合が可能な平滑面6を図4(c)に示す様に形成する。次に支持体の単結晶シリコン7の主表面を酸化してその全面に絶縁膜2を形成し、その表面と前記研磨面とを貼合せ、高温の熱処理(アニール)により2枚のウエハを図4(d)に示す様に接合する。接合された基板は外周部の面取りを行った後、不要部分を研削や研磨の方法で除去し、絶縁膜21で分離された単結晶島8を形成して図4(e)に示す誘電体分離基板を完成する。 FIG. 3 is a cross-sectional view of a prior art dielectric isolation substrate, and FIG. 4 is a cross-sectional view illustrating the manufacturing process. First, the main surface of the single crystal silicon 1 is oxidized, and an insulating film 2 (for example, SiO 2 film) is formed on the entire surface as shown in FIG. Next, after patterning by a photolithographic method (hereinafter abbreviated as photolithography), the insulating film 2 at a predetermined location is removed by a method such as etching. Next, with the remaining insulating film 2 as a mask, the isolation groove 3 having a depth of about 5 μm to 80 μm is formed as shown in FIG. 4B by anisotropic etching using, for example, a mixed solution of potassium hydroxide and isopropyl alcohol. . Next, all of the insulating film 2 used as the mask is removed by etching. Thereafter, the main surface of the single crystal silicon 1 is oxidized again to form an isolation insulating film 21 (for example, SiO 2 film) having a thickness of 1 μm to 5 μm on the entire surface. The first polycrystalline silicon 4 is deposited on the surface by a high temperature (about 1000 ° C. to 1250 ° C.) vapor phase growth method (CVD method) to fill the separation groove 3 (50 μm to 300 μm). Using the surface of the single crystal silicon 1 as a reference, the large recesses of the first polycrystalline silicon 4 are removed by a method such as grinding, and fine uneven portions on the surface are removed by a method such as CMP. Next, the second polycrystalline silicon 5 is deposited on the smooth surface of the first polycrystalline silicon 4 with a thickness of about 2 μm to 5 μm by a low temperature (about 500 ° C. to 800 ° C.) vapor phase growth method (CVD method). Thereafter, the surface of the formed second polycrystalline silicon 5 is polished by a method such as CMP to form a smooth surface 6 capable of wafer bonding as shown in FIG. Next, the main surface of the single crystal silicon 7 of the support is oxidized to form the insulating film 2 on the entire surface, the surface and the polished surface are bonded together, and two wafers are formed by high-temperature heat treatment (annealing). Join as shown in 4 (d). After the bonded substrate is chamfered at the outer periphery, unnecessary portions are removed by grinding or polishing to form single crystal islands 8 separated by the insulating film 21 to form the dielectric shown in FIG. Complete the separation substrate.

上記方法で作製された誘電体分離基板は、LSI製造プロセスと同様のプロセスによって、図3に示す様に各単結晶島8内に半導体素子9の形成が行われ、メタル薄膜をパターンニングした配線によって素子間を配線し、半導体集積回路を作製する。   In the dielectric isolation substrate manufactured by the above method, the semiconductor element 9 is formed in each single crystal island 8 as shown in FIG. 3 by a process similar to the LSI manufacturing process, and the metal thin film is patterned. By wiring between the elements, a semiconductor integrated circuit is manufactured.

特開平6−151572号公報 (図1、(0016)段落から(0021)段落の記載。)Japanese Patent Laid-Open No. 6-151572 (FIG. 1, description from paragraph (0016) to paragraph (0021))

上記従来技術では、図3に示す半導体素子9の耐圧が高くなると、分離溝3が深くなり、単結晶島8が大きくなる。また、単結晶島8の大きさは誘電体分離基板製造の最終工程における研磨、研削量バラツキ分を考慮した、単結晶島8の大きさでのパターンレイアウトが必要であり、チップサイズ縮小の妨げとなっている。   In the above prior art, when the breakdown voltage of the semiconductor element 9 shown in FIG. 3 is increased, the isolation trench 3 is deepened and the single crystal island 8 is enlarged. In addition, the size of the single crystal island 8 requires a pattern layout with the size of the single crystal island 8 in consideration of the amount of polishing and grinding in the final process of manufacturing the dielectric isolation substrate, and hinders reduction of the chip size. It has become.

本願の発明者らの実験では、マスク設計値に対する単結晶島8の寸法シフト量は−1μm〜−15μmと大きい。また支持体の単結晶シリコン7と第1の多結晶シリコン4との熱膨張係数の違いから、半導体素子9形成時の高温熱処理により基板の湾曲や歪みが発生する。本願の発明者らの測定によれば従来技術の誘電体分離基板完成から半導体素子9形成工程が完了するまでの間に、約100μm〜200μmの基板湾曲量の増加が確認されている。このような基板湾曲量の変化は半導体素子9をパターンニングするホトリソ工程での合せ精度低下や、露光光源から基板表面までの距離が変化する(焦点深度が変化する)ことによるパターン解像不良の原因となり、半導体素子9の特性に影響を与える。また、ピエゾ効果等による拡散層の抵抗値変化が知られており、結果として半導体素子9の電気的特性バラツキが大きくなる問題がある。   In the experiments by the inventors of the present application, the dimensional shift amount of the single crystal island 8 with respect to the mask design value is as large as −1 μm to −15 μm. Further, due to the difference in thermal expansion coefficient between the single crystal silicon 7 and the first polycrystalline silicon 4 of the support, the substrate is bent or distorted by the high temperature heat treatment during the formation of the semiconductor element 9. According to the measurement by the inventors of the present application, an increase in the substrate bending amount of about 100 μm to 200 μm has been confirmed between the completion of the dielectric separation substrate of the prior art and the completion of the process of forming the semiconductor element 9. Such a change in the amount of bending of the substrate is caused by a decrease in alignment accuracy in the photolithography process for patterning the semiconductor element 9 and a pattern resolution failure due to a change in the distance from the exposure light source to the substrate surface (a change in the depth of focus). This causes the characteristics of the semiconductor element 9 to be affected. In addition, a change in the resistance value of the diffusion layer due to the piezo effect or the like is known, and as a result, there is a problem that variation in electrical characteristics of the semiconductor element 9 increases.

さらに、単結晶シリコン1と支持体単結晶シリコン7を貼合せる際の位置精度が5mm〜6mmと大きく、単結晶シリコン1上に作製したホトリソ工程用のオートアライメントターゲット位置が基板によって一定せず、半導体素子9形成工程におけるホトリソ作業時のオートアライメント率が低く、作業効率が悪い。また、第1の多結晶シリコン4の成膜は高温(約1000℃〜1250℃)で処理するため、成膜時の金属汚染や成膜温度によってサーマルエッチが発生し、絶縁膜21が部分的に欠損し所望の単結晶島間耐圧が得られないといった不具合が生じることもある。   Furthermore, the position accuracy when bonding the single crystal silicon 1 and the support single crystal silicon 7 is as large as 5 mm to 6 mm, and the position of the auto-alignment target for the photolithography process produced on the single crystal silicon 1 is not constant depending on the substrate. The auto-alignment rate at the time of the photolithography work in the semiconductor element 9 forming process is low, and the work efficiency is poor. In addition, since the first polycrystalline silicon 4 is formed at a high temperature (about 1000 ° C. to 1250 ° C.), thermal etching occurs due to metal contamination or film formation temperature during the film formation, and the insulating film 21 is partially formed. In some cases, a defect occurs such that a desired breakdown voltage between single crystal islands cannot be obtained.

本発明の目的は、以上に述べた問題点を解決した信頼性が高い半導体装置を提供することにある。   An object of the present invention is to provide a highly reliable semiconductor device that solves the problems described above.

本発明の半導体装置は、SOI基板の主表面に形成された1つ以上の閉ループパターンのトレンチがあり、トレンチ側壁部とトレンチ開口部に絶縁膜と多結晶シリコン膜によって埋込みされており、前記のトレンチによってSOI基板上に形成された半導体素子が完全誘電体分離されている。   The semiconductor device of the present invention has one or more closed-loop pattern trenches formed on the main surface of the SOI substrate, and is embedded in the trench sidewall and trench opening with an insulating film and a polycrystalline silicon film. The semiconductor element formed on the SOI substrate by the trench is completely dielectrically separated.

本発明の半導体装置は、誘電体分離基板の湾曲量が少なくかつ、信頼性が高い。   The semiconductor device of the present invention has a small amount of bending of the dielectric isolation substrate and high reliability.

以下、図面を用いて本発明の実施例について詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本実施例の誘電体分離基板を適用した半導体装置の説明図である。図1(a)は本実施例の半導体装置の断面図であり、図1(b)は平面図である。本実施例の半導体装置は、図1に示す様に、例えばSiO2 膜といった絶縁膜22と第2の多結晶シリコン51によって埋込まれたトレンチ10と、絶縁膜2とによって、半導体素子9が形成されている単結晶島8それぞれが完全誘電体分離された構造になっている。以下の説明では、半導体素子9がパワーMOSFETを例に説明するが、IGBT、バイポーラトランジスタなどの電力半導体スイッチング素子であっても同様である。 FIG. 1 is an explanatory view of a semiconductor device to which the dielectric isolation substrate of this embodiment is applied. FIG. 1A is a cross-sectional view of the semiconductor device of this embodiment, and FIG. 1B is a plan view. As shown in FIG. 1, the semiconductor device of the present embodiment has a semiconductor element 9 formed by an insulating film 22 such as a SiO 2 film, a trench 10 buried with a second polycrystalline silicon 51, and an insulating film 2. Each of the formed single crystal islands 8 has a structure in which dielectrics are completely separated. In the following description, the semiconductor element 9 is described by taking a power MOSFET as an example, but the same applies to a power semiconductor switching element such as an IGBT or a bipolar transistor.

本実施例の半導体装置の製造工程を図2を用いてまず説明する。始めに図2(a)に示す様に、支持体である単結晶シリコン7の主表面を酸化して絶縁膜2を形成し、この絶縁膜2を介して別の単結晶シリコン1を貼合せ、熱処理によって支持体の単結晶シリコン7と単結晶シリコン1との2枚のウエハを接合する。接合後に、単結晶シリコン1の表面をCMP法にて研削、研磨して所定の単結晶島厚みにする。   First, the manufacturing process of the semiconductor device of this embodiment will be described with reference to FIG. First, as shown in FIG. 2A, the main surface of the single crystal silicon 7 as a support is oxidized to form an insulating film 2, and another single crystal silicon 1 is bonded through the insulating film 2. The two wafers of the single crystal silicon 7 and the single crystal silicon 1 as a support are bonded by heat treatment. After bonding, the surface of the single crystal silicon 1 is ground and polished by the CMP method to a predetermined single crystal island thickness.

その後、接合したウエハ外周部の面取り行い、再び酸化によって表面に絶縁膜2′を形成する。次にホトリソによりウエハ上に、その平面形状が閉ループ形状、例えば正方形や長方形のような4辺形にパターンニングを行い、異方性ドライエッチによって絶縁膜2′をエッチングする。次にこの異方性ドライエッチした絶縁膜2′をマスクにして、さらに異方性ドライエッチにより単結晶シリコン1をエッチングし、図2(b)に示すトレンチ10を形成する。異方性ドライエッチにはマイクロ波ドライエッチやICPドライエッチ装置等を用いることが一般的である。また、異方性ドライエッチではエッチングガスにCl2 、SF6 、HBr、O2 等を用いる。ここで、例えばCl2 とO2 とをエッチングガスに用いると、マイクロ波ドライエッチにおけるシリコンのエッチング速度と絶縁膜であるSiO2 とのエッチング速度との比である選択比が約15〜30程度であるために、貼合せ界面の絶縁膜2が露出すると、エッチングレートが単結晶シリコン1のエッチング速度より遅くなるので、貼合せ界面の絶縁膜2がエッチングストッパとしての役割を果たし所望のトレンチ10深さを得ることができる。トレンチエッチング後にマスクに使用した絶縁膜2′をHF液等を用いて全面除去し、酸化によって図2(c)に示す様に表面とトレンチ内部を覆う絶縁膜22を形成する。この際、絶縁膜22の厚みがトレンチ10の幅に対して厚すぎると、トレンチ底部の応力集中により結晶欠陥等が発生する原因となる。発明者らの実験結果によると、トレンチ10の幅が2μmの場合では、絶縁膜22の最大膜厚は1μm以下とする必要がある。すなわち、酸化のみでトレンチ10を完全に埋込む構造にすると応力集中による結晶欠陥が発生する。 Thereafter, the outer peripheral portion of the bonded wafer is chamfered, and an insulating film 2 'is formed on the surface again by oxidation. Next, patterning is performed on the wafer by a photolithography so that the planar shape thereof is a closed loop shape, for example, a quadrilateral such as a square or a rectangle, and the insulating film 2 'is etched by anisotropic dry etching. Next, using this anisotropic dry-etched insulating film 2 'as a mask, the single crystal silicon 1 is further etched by anisotropic dry etching to form a trench 10 shown in FIG. For the anisotropic dry etching, it is common to use a microwave dry etching, an ICP dry etching apparatus or the like. In anisotropic dry etching, Cl 2 , SF 6 , HBr, O 2 or the like is used as an etching gas. Here, for example, when Cl 2 and O 2 are used as an etching gas, the selection ratio, which is the ratio between the etching rate of silicon in microwave dry etching and the etching rate of SiO 2 that is an insulating film, is about 15 to 30. Therefore, when the insulating film 2 at the bonding interface is exposed, the etching rate becomes slower than the etching rate of the single crystal silicon 1, so that the insulating film 2 at the bonding interface serves as an etching stopper and serves as a desired trench 10. Depth can be obtained. After the trench etching, the entire surface of the insulating film 2 'used as a mask is removed using HF solution or the like, and an insulating film 22 covering the surface and the inside of the trench is formed by oxidation as shown in FIG. At this time, if the thickness of the insulating film 22 is too thick with respect to the width of the trench 10, it causes crystal defects and the like due to stress concentration at the bottom of the trench. According to the experiment results of the inventors, when the width of the trench 10 is 2 μm, the maximum film thickness of the insulating film 22 needs to be 1 μm or less. That is, if the trench 10 is completely buried only by oxidation, crystal defects due to stress concentration occur.

次に約500℃〜800℃の低温で、気相成長法(CVD法)により第2の多結晶シリコン51をトレンチ10が完全に埋まる厚みで堆積させる。例えばトレンチ10の幅が2μmでトレンチ10内部の2つの絶縁膜22の合計膜厚が0.8μm の場合には、1.2μm 以上の厚みの第2の多結晶シリコン51が必要である。その後、表面に堆積した多結晶シリコンをCMP等の方法により研削、研磨を行って除去する。これによって、第2の多結晶シリコン51はトレンチ内部に残り、トレンチの開口部から盛り上がったり、はみ出す部分がなく、他の箇所は全て絶縁膜22に覆われた図2(d)に示す構造となる。つまり、表面に堆積した第2の多結晶シリコン51の研削、研磨によって、トレンチ10に埋め込んだ第2の多結晶シリコン51の表面は、図2(d)に示す様に、表面に形成した絶縁膜22と同じ面になって露出している。続けて、ホトリソによりトレンチ10以外の箇所、すなわち、後の工程で半導体素子9を形成する箇所の絶縁膜22を、パターンニングとエッチングとによって除去し、半導体素子形成領域を作製する。以上の製造工程を経て、誘電体分離基板が完成する。   Next, at a low temperature of about 500 ° C. to 800 ° C., the second polycrystalline silicon 51 is deposited by a vapor deposition method (CVD method) with a thickness that allows the trench 10 to be completely filled. For example, when the width of the trench 10 is 2 μm and the total film thickness of the two insulating films 22 inside the trench 10 is 0.8 μm, the second polycrystalline silicon 51 having a thickness of 1.2 μm or more is necessary. Thereafter, the polycrystalline silicon deposited on the surface is removed by grinding and polishing using a method such as CMP. As a result, the second polycrystalline silicon 51 remains inside the trench, and there is no portion that rises or protrudes from the opening of the trench, and all other portions are covered with the insulating film 22 as shown in FIG. Become. That is, the surface of the second polycrystalline silicon 51 embedded in the trench 10 by grinding and polishing of the second polycrystalline silicon 51 deposited on the surface is an insulating film formed on the surface as shown in FIG. The same surface as the film 22 is exposed. Subsequently, the insulating film 22 is removed by patterning and etching at a place other than the trench 10 by photolithography, that is, a place where the semiconductor element 9 is to be formed in a later process, thereby producing a semiconductor element forming region. The dielectric separation substrate is completed through the above manufacturing steps.

上記方法により作製された誘電体分離基板を、LSI製造プロセスと同様のプロセスにより各単結晶島8内に半導体素子9を形成し半導体集積回路を作製する。本実施例では、図1に示す様に、単結晶島8の上面に制御電極であるゲート電極13と、主電極であるソース電極S及びドレイン電極Dとを配置した横型の電力半導体素子であるパワーMOSFETを作成した。横型のIGBTも同様に作成できる事は言うまでもない。   A semiconductor integrated circuit is manufactured by forming a semiconductor element 9 in each single crystal island 8 by a process similar to an LSI manufacturing process from the dielectric isolation substrate manufactured by the above method. In this embodiment, as shown in FIG. 1, a horizontal power semiconductor device in which a gate electrode 13 as a control electrode and a source electrode S and a drain electrode D as main electrodes are arranged on the upper surface of a single crystal island 8. A power MOSFET was created. It goes without saying that a horizontal IGBT can be similarly produced.

発明者らの単結晶島8間の絶縁耐圧と基板の湾曲量との実験結果を図5、図6に示す。図5は、トレンチ10の幅が2μm、2つの絶縁膜22の合計した厚みが0.8μm、第2の多結晶シリコン51の厚みが1.2μm 、トレンチ10の深さ5μmの場合の単結晶島8間の絶縁耐圧と、図3、図4に示した従来構造の誘電体分離基板に形成した単結晶島8間の絶縁耐圧とを示す。図5に示す様に、本実施例の誘電体分離基板の単結晶島8は、図3、図4に示した従来技術の誘電体分離基板に形成した単結晶島8間の平均絶縁耐圧1200Vに対して1250Vと同等の絶縁耐圧特性を示した。   FIG. 5 and FIG. 6 show the experimental results of the inventors' dielectric breakdown voltage between the single crystal islands 8 and the bending amount of the substrate. FIG. 5 shows a single crystal when the width of the trench 10 is 2 μm, the total thickness of the two insulating films 22 is 0.8 μm, the thickness of the second polycrystalline silicon 51 is 1.2 μm, and the depth of the trench 10 is 5 μm. 5 shows the withstand voltage between the islands 8 and the withstand voltage between the single crystal islands 8 formed on the dielectric isolation substrate having the conventional structure shown in FIGS. As shown in FIG. 5, the single crystal island 8 of the dielectric isolation substrate of the present example is an average withstand voltage of 1200 V between the single crystal islands 8 formed on the prior art dielectric isolation substrate shown in FIGS. In contrast, the dielectric strength characteristics equivalent to 1250V were exhibited.

また、図6に示す様に、誘電体分離基板完成時点での基板湾曲量は、図3、図4に示した従来構造では約100μm〜200μmであったが、本実施例では0〜30μmに改善された。さらに、マスク設計値に対する単結晶島8に形成した半導体素子9の寸法シフト量は、従来技術の−1μm〜−15μmに対し、本実施例では−0.5μm〜1.5μmと大幅に改善した。また、本実施例における誘電体分離基板の製造方法では1回目のホトリソがウエハ貼合せ工程の後であることから、ホトリソターゲット位置精度が向上し、従来技術の誘電体分離基板ではホトリソターゲット位置精度が約1mm〜3mmのバラツキだったのに対し、本実施例では約100μm〜300μmと大きく向上できた。さらに、図4に示した従来技術の製造工程にあった1000℃〜1300℃での第1の多結晶シリコン4の成膜工程が不要となり、非常に簡便な製造工程となっている。   As shown in FIG. 6, the substrate bending amount at the time of completion of the dielectric separation substrate was about 100 μm to 200 μm in the conventional structure shown in FIGS. Improved. Further, the dimensional shift amount of the semiconductor element 9 formed on the single crystal island 8 with respect to the mask design value is greatly improved to -0.5 .mu.m to 1.5 .mu.m in this embodiment, compared to -1 .mu.m to -15 .mu.m of the prior art. . Further, in the method for manufacturing a dielectric separation substrate in this embodiment, since the first photolithography is after the wafer bonding process, the photolithography target position accuracy is improved, and in the conventional dielectric separation substrate, the photolithography target is improved. Whereas the positional accuracy varied from about 1 mm to 3 mm, in this example, it was greatly improved to about 100 μm to 300 μm. Further, the film forming process of the first polycrystalline silicon 4 at 1000 ° C. to 1300 ° C. which is the manufacturing process of the prior art shown in FIG. 4 is not required, and the manufacturing process is very simple.

図7に本実施例の半導体装置を示す。本実施例では誘電体分離基板作製時に、支持体の単結晶シリコン7に張合わせる側の単結晶シリコン1の主面に、イオン注入によって高濃度(1×1018cm-3〜1020cm-3)の拡散層を形成しておき、あらかじめ酸化して絶縁膜2を形成した支持体の単結晶シリコン7と貼合せ、熱処理によって2枚のウエハを接合させた。その後、実施例1と同様の方法でトレンチ10を形成した後、図7に示す様に、単結晶島8の底部とトレンチ10の側壁に単結晶島8が接する部分とに高濃度拡散層11を形成する。形成する高濃度拡散層11が、高濃度n+ 層であればアンチモンやリンの拡散等を行い、高濃度p+層であればボロン拡散等を行って、高濃度拡散層11を形成する。高濃度拡散層11を形成した後は、実施例1と同様の製造方法によって基板を完成させる。 FIG. 7 shows a semiconductor device of this example. In this embodiment, when the dielectric separation substrate is manufactured, a high concentration (1 × 10 18 cm −3 to 10 20 cm − is applied to the main surface of the single crystal silicon 1 on the side bonded to the single crystal silicon 7 of the support by ion implantation. The diffusion layer of 3 ) was formed, bonded to the single crystal silicon 7 of the support that was previously oxidized to form the insulating film 2, and the two wafers were bonded by heat treatment. After that, after forming the trench 10 by the same method as in the first embodiment, as shown in FIG. 7, the high concentration diffusion layer 11 is formed at the bottom of the single crystal island 8 and the portion where the single crystal island 8 is in contact with the sidewall of the trench 10. Form. If the high-concentration diffusion layer 11 to be formed is a high-concentration n + layer, antimony or phosphorus is diffused, and if it is a high-concentration p + layer, boron diffusion or the like is performed to form the high-concentration diffusion layer 11. After the high concentration diffusion layer 11 is formed, the substrate is completed by the same manufacturing method as in the first embodiment.

本実施例でも実施例1と同様に、良好な絶縁耐圧、基板湾曲量、半導体素子9の寸法シフト量、ホトリソターゲット位置精度を示した。   In this example, as in Example 1, good dielectric strength voltage, substrate bending amount, dimensional shift amount of the semiconductor element 9 and photolithography target position accuracy were shown.

図8に本実施例の半導体装置を示す。本実施例の半導体装置は、実施例1で作製した誘電体分離基板上で図8に示す様に分離された素子領域内に、LOCOS法(Local Oxidation of Silicon法)で形成されたLOCOS酸化膜14と、ゲート酸化膜12と、ゲート電極13と、絶縁膜2とを順次設け、ゲート電極13とSOI基板表面の単結晶島8のシリコンからコンタクトホール15を介して電極配線16を接続した構造になっている。   FIG. 8 shows a semiconductor device of this example. The semiconductor device of this example is a LOCOS oxide film formed by a LOCOS method (Local Oxidation of Silicon method) in an element region isolated as shown in FIG. 8 on the dielectric isolation substrate manufactured in Example 1. 14, a gate oxide film 12, a gate electrode 13, and an insulating film 2 are sequentially provided, and the electrode electrode 16 is connected to the gate electrode 13 from the silicon of the single crystal island 8 on the surface of the SOI substrate through the contact hole 15. It has become.

本実施例の半導体装置では、図8に示す様にLOCOS酸化膜14がトレンチ内部の絶縁膜22と第2の多結晶シリコン51とを覆っている点が図1、図7の半導体装置と相違する。本実施例でも実施例1や実施例2と同様に、良好な絶縁耐圧、基板湾曲量、半導体素子9の寸法シフト量、ホトリソターゲット位置精度を示した。   The semiconductor device of this embodiment is different from the semiconductor device of FIGS. 1 and 7 in that the LOCOS oxide film 14 covers the insulating film 22 and the second polycrystalline silicon 51 inside the trench as shown in FIG. To do. In the present embodiment as well, similar to the first and second embodiments, good withstand voltage, substrate bending amount, dimensional shift amount of the semiconductor element 9 and photolithography target position accuracy were shown.

図9に本実施例の半導体装置を示す。本実施例では、実施例1で作製した誘電体分離基板上の分離された素子領域内に、図9に示す様にLOCOS法で形成されたLOCOS酸化膜14と、ゲート酸化膜12と、ゲート電極13と、絶縁膜2とを順次設け、ゲート電極13とSOI基板表面の単結晶シリコン1からコンタクトホール15を介して電極配線16を取り出した。   FIG. 9 shows a semiconductor device of this example. In the present embodiment, the LOCOS oxide film 14 formed by the LOCOS method, the gate oxide film 12, and the gate are formed in the isolated element region on the dielectric isolation substrate manufactured in the first embodiment as shown in FIG. The electrode 13 and the insulating film 2 were sequentially provided, and the electrode wiring 16 was taken out through the contact hole 15 from the gate electrode 13 and the single crystal silicon 1 on the SOI substrate surface.

さらに、本実施例の半導体装置では、図9に示す様に、実施例3の電極配線16に代えて3層構造の電極配線を備えており、TiW電極19の第1の電極および第3の電極が、AlSiCu電極20の第2の電極を上下から挟むサンドイッチ構造となっている。本実施例の半導体装置では配線材料に融点の高いTiWを用いているので、組立熱処理(450℃〜600℃)に対する電極配線の信頼性を向上できる。本実施例でも実施例1や実施例2と同様に、良好な絶縁耐圧、基板湾曲量、半導体素子9の寸法シフト量、ホトリソターゲット位置精度を示した。   Further, as shown in FIG. 9, the semiconductor device of the present embodiment includes a three-layer electrode wiring instead of the electrode wiring 16 of the third embodiment, and the first electrode and the third electrode of the TiW electrode 19 are provided. The electrode has a sandwich structure in which the second electrode of the AlSiCu electrode 20 is sandwiched from above and below. In the semiconductor device of this embodiment, TiW having a high melting point is used as the wiring material, so that the reliability of the electrode wiring with respect to the assembly heat treatment (450 ° C. to 600 ° C.) can be improved. In the present embodiment as well, similar to the first and second embodiments, good withstand voltage, substrate bending amount, dimensional shift amount of the semiconductor element 9 and photolithography target position accuracy were shown.

図10に本実施例の半導体装置を示す。本実施例では、実施例1で作製した誘電体分離基板上の分離された素子領域内に、LOCOS法で形成されたLOCOS酸化膜14と、ゲート酸化膜12と、ゲート電極13と、絶縁膜2と図10に示す様に順次設けた。本実施例の半導体装置では、LOCOS酸化膜14が単結晶島8のシリコン表面を基準として10°〜30°のテーパー角をもつ絶縁膜段差部18を備えた構造になっている。この絶縁膜段差部18は、図10に示す様に、トレンチ内に形成した絶縁膜22より内側の単結晶島8のシリコンの上方に配置されており、絶縁膜段差部18では、絶縁膜22側から単結晶島8の内側に向けてLOCOS酸化膜14が薄くなっている。   FIG. 10 shows a semiconductor device of this example. In the present embodiment, a LOCOS oxide film 14, a gate oxide film 12, a gate electrode 13, and an insulating film formed by the LOCOS method in the isolated element region on the dielectric isolation substrate manufactured in the first embodiment. 2 and as shown in FIG. In the semiconductor device of this embodiment, the LOCOS oxide film 14 has a structure including an insulating film step 18 having a taper angle of 10 ° to 30 ° with respect to the silicon surface of the single crystal island 8. As shown in FIG. 10, the insulating film step 18 is disposed above the silicon on the single crystal island 8 inside the insulating film 22 formed in the trench. In the insulating film step 18, the insulating film 22 The LOCOS oxide film 14 becomes thinner from the side toward the inside of the single crystal island 8.

本実施例の半導体装置の10°〜30°のテーパー角をもつ絶縁膜段差部18は、誘電体分離基板作製の最終工程で半導体素子を形成する箇所をパターンニングとエッチングによって作製する工程のホトリソで、レジストをポジレジストとし、エッチングをHF液等を用いたウエットエッチにすることで形成することができる。このウエットエッチの代わりにドライエッチを用いると、段差部のテーパー角が70°〜90°になるので、後のゲート電極13の配線形成工程で、段差部での断線が発生し易くなる。   The insulating film step 18 having a taper angle of 10 ° to 30 ° of the semiconductor device of the present embodiment is a photolithography process in which a portion where a semiconductor element is formed in the final step of manufacturing the dielectric isolation substrate is formed by patterning and etching. Then, the resist can be formed by using a positive resist and performing wet etching using HF liquid or the like. When dry etching is used in place of this wet etching, the taper angle of the step portion becomes 70 ° to 90 °. Therefore, disconnection at the step portion is likely to occur in the wiring formation process of the gate electrode 13 later.

本実施例では上記のポジレジストとウエットエッチングの組み合わせにより緩やかなテーパーを持つ絶縁膜段差部18を形成し、段差部における電極配線16の断線を防ぎ半導体装置の信頼性を高めた。   In this embodiment, the insulating film step portion 18 having a gentle taper is formed by the combination of the positive resist and the wet etching, and the disconnection of the electrode wiring 16 in the step portion is prevented, thereby improving the reliability of the semiconductor device.

図11に本実施例の半導体装置を示す。本実施例では、実施例1で作製した誘電体分離基板上の分離された素子領域内に、LOCOS法で形成されたLOCOS酸化膜14、ゲート酸化膜12、ゲート電極13、絶縁膜2を図11に示す様に順次設け、第2の多結晶シリコン51上部のLOCOS酸化膜14に高さ0.3μm〜0.7μmの段差部23を備えた。   FIG. 11 shows a semiconductor device of this example. In the present embodiment, the LOCOS oxide film 14, the gate oxide film 12, the gate electrode 13, and the insulating film 2 formed by the LOCOS method are illustrated in the isolated element region on the dielectric isolation substrate manufactured in the first embodiment. As shown in FIG. 11, the LOCOS oxide film 14 on the second polycrystalline silicon 51 is provided with a step portion 23 having a height of 0.3 μm to 0.7 μm.

実施例1にて作製した誘電体分離基板ではトレンチ上部は第2の多結晶シリコン51基板表面に露出しており、半導体素子の形成段階であるLOCOS酸化工程では、第2の多結晶シリコン51が周囲の絶縁膜2領域に比べ酸化速度が速く、そのために第2の多結晶シリコン51上部に段差23が形成される。この構造とすることで、第2の多結晶シリコン51の上のLOCOS酸化膜14が厚くなり、言い換えると第2の多結晶シリコン51の上のLOCOS酸化膜14の間の絶縁距離が長くなり、LOCOS酸化膜14上部のゲート電極の電極配線16との絶縁性能を高めることができる。   In the dielectric isolation substrate fabricated in Example 1, the upper part of the trench is exposed on the surface of the second polycrystalline silicon 51 substrate. In the LOCOS oxidation process, which is the stage of forming the semiconductor element, the second polycrystalline silicon 51 is formed. The oxidation rate is higher than that of the surrounding insulating film 2 region, and therefore a step 23 is formed on the second polycrystalline silicon 51. With this structure, the LOCOS oxide film 14 on the second polycrystalline silicon 51 becomes thicker, in other words, the insulation distance between the LOCOS oxide films 14 on the second polycrystalline silicon 51 becomes longer, The insulation performance of the gate electrode on the LOCOS oxide film 14 from the electrode wiring 16 can be improved.

本実施例で、段差部23の高さが0.3μmより低いと絶縁性能を向上する効果が小さくなる。また、段差部23の高さが0.7μmより高いと絶縁膜2の表面が平坦にならずに凹凸を生じ、ゲート電極13の電極配線16の断線が生じる場合がある。   In this embodiment, when the height of the stepped portion 23 is lower than 0.3 μm, the effect of improving the insulating performance is reduced. In addition, if the height of the step portion 23 is higher than 0.7 μm, the surface of the insulating film 2 may not be flat but may be uneven, and the electrode wiring 16 of the gate electrode 13 may be disconnected.

図12に本実施例の半導体装置を示す。図12(a)は本実施例の半導体装置の断面の説明図であり、図12(b)は実施例の半導体装置の平面の説明図である。本実施例の半導体装置は、実施例1で作製した誘電体分離基板上に形成した。図12(b)に示す様に、本実施例の半導体装置では、4辺形のトレンチパターンで直線部分から続くコーナー部17の平面形状が、図1(b)とは異なり、全て直角でなく円弧状になっている。コーナー部17が直角に交差する場合、トレンチ10内部が酸化された際に、コーナー部17に応カがかかり、結晶欠陥等の原因となることもあるが、円弧状とすることにより応力緩和の効果が得られ信頼性がより高い半導体装置を製造することができる。トレンチパターンのコーナー部17の半径は、図12(b)に示す第2の多結晶シリコン51の幅の2倍以上あれば良く、好ましくは2倍から20倍あればよい。コーナー部の半径が2倍未満では応力の緩和が不十分になり、20倍以上では概略矩形の単結晶島8の基板平面の形状が保持できず、基板面に形成する単結晶島8の密度を上げにくくなる。   FIG. 12 shows a semiconductor device of this example. FIG. 12A is an explanatory view of a cross section of the semiconductor device of this embodiment, and FIG. 12B is an explanatory view of a plane of the semiconductor device of the embodiment. The semiconductor device of this example was formed on the dielectric isolation substrate manufactured in Example 1. As shown in FIG. 12B, in the semiconductor device of the present embodiment, the planar shape of the corner portion 17 continuing from the straight portion in the quadrilateral trench pattern is not all right, unlike FIG. It has an arc shape. When the corner portion 17 intersects at a right angle, when the inside of the trench 10 is oxidized, the corner portion 17 is subjected to stress, which may cause crystal defects and the like. A semiconductor device having an effect and higher reliability can be manufactured. The radius of the corner portion 17 of the trench pattern may be at least twice the width of the second polycrystalline silicon 51 shown in FIG. 12B, and preferably from 2 to 20 times. If the corner radius is less than twice, the stress relaxation becomes insufficient, and if it is more than 20 times, the shape of the substrate plane of the substantially rectangular single crystal island 8 cannot be maintained, and the density of the single crystal island 8 formed on the substrate surface It becomes difficult to raise.

実施例1の半導体装置の説明図。1 is an explanatory diagram of a semiconductor device of Example 1. FIG. 実施例1の半導体装置の製造工程の説明図。FIG. 10 is an explanatory diagram of a manufacturing process of the semiconductor device of Example 1; 従来技術の半導体装置の断面図。Sectional drawing of the semiconductor device of a prior art. 従来技術の半導体装置の製造工程の説明図。Explanatory drawing of the manufacturing process of the semiconductor device of a prior art. 実施例1の誘電体分離構造と従来技術との絶縁耐圧の説明図。Explanatory drawing of the withstand voltage of the dielectric isolation structure of Example 1 and a prior art. 実施例1の誘電体分離構造と従来技術との基板湾曲量の説明図。Explanatory drawing of the board | substrate curvature amount of the dielectric material separation structure of Example 1, and a prior art. 実施例2の半導体装置の断面図。FIG. 6 is a cross-sectional view of the semiconductor device of Example 2. 実施例3の半導体装置の断面図。FIG. 10 is a cross-sectional view of the semiconductor device of Example 3; 実施例4の半導体装置の断面図。FIG. 10 is a cross-sectional view of the semiconductor device of Example 4; 実施例5の半導体装置の断面図。FIG. 10 is a cross-sectional view of the semiconductor device of Example 5; 実施例6の半導体装置の断面図。Sectional drawing of the semiconductor device of Example 6. FIG. 実施例7の半導体装置の説明図。FIG. 10 is an explanatory diagram of a semiconductor device of Example 7.

符号の説明Explanation of symbols

1、7…単結晶シリコン、2、2′、21、22…絶縁膜、3…分離溝、4…第1の多結晶シリコン、5、51…第2の多結晶シリコン、6…平滑面、8…単結晶島、9…半導体素子、10…トレンチ、11…高濃度拡散層、12…ゲート酸化膜、13…ゲート電極、14…LOCOS酸化膜、15…コンタクトホール、16…電極配線、17…コーナー部、18…絶縁膜段差部、19…TiW電極、20…AlSiCu電極、23…段差部。
DESCRIPTION OF SYMBOLS 1, 7 ... Single crystal silicon, 2, 2 ', 21, 22 ... Insulating film, 3 ... Separation groove, 4 ... 1st polycrystalline silicon, 5, 51 ... 2nd polycrystalline silicon, 6 ... Smooth surface, DESCRIPTION OF SYMBOLS 8 ... Single crystal island, 9 ... Semiconductor element, 10 ... Trench, 11 ... High concentration diffusion layer, 12 ... Gate oxide film, 13 ... Gate electrode, 14 ... LOCOS oxide film, 15 ... Contact hole, 16 ... Electrode wiring, 17 ... corner part, 18 ... insulating film step part, 19 ... TiW electrode, 20 ... AlSiCu electrode, 23 ... step part.

Claims (14)

支持体基板の上に絶縁膜を介して複数の単結晶島を配置したSOI基板(Silicon on Insulator)に電力半導体素子を形成した半導体装置において、
前記複数の単結晶島の周囲が閉ループパターンのトレンチで囲まれており、
該トレンチの内部が、トレンチ内壁を被覆する絶縁膜と、該絶縁膜で挟まれた多結晶シリコン膜とによって埋め込まれていることを特徴とする半導体装置。
In a semiconductor device in which a power semiconductor element is formed on an SOI substrate (Silicon on Insulator) in which a plurality of single crystal islands are arranged via an insulating film on a support substrate,
The plurality of single crystal islands are surrounded by trenches in a closed loop pattern,
A semiconductor device characterized in that the inside of the trench is filled with an insulating film covering an inner wall of the trench and a polycrystalline silicon film sandwiched between the insulating films.
請求項1に記載の半導体装置において、前記電力半導体素子を形成した単結晶島の、前記トレンチ内壁を被覆する絶縁膜に接する部分と前記支持体基板の絶縁膜に接する部分とに、高濃度の拡散層が形成されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a portion of the single crystal island in which the power semiconductor element is formed is in contact with an insulating film covering the inner wall of the trench and a portion of the supporting substrate in contact with the insulating film is highly concentrated. A semiconductor device, wherein a diffusion layer is formed. 請求項1に記載の半導体装置において、分離された素子領域である前記単結晶島に、LOCOS酸化膜と、ゲート酸化膜と、該ゲート酸化膜の上に配置されたゲート電極と、該ゲート電極と前記LOCOS酸化膜とを覆う絶縁膜とが形成され、該絶縁膜に形成したコンタクトホールを介してゲート電極とS単結晶島とから電極配線が取り出されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a LOCOS oxide film, a gate oxide film, a gate electrode disposed on the gate oxide film, and the gate electrode are formed on the single crystal island which is an isolated element region. And an insulating film covering the LOCOS oxide film, and electrode wiring is taken out from the gate electrode and the S single crystal island through a contact hole formed in the insulating film. 請求項3に記載の半導体装置において、絶縁膜に形成したコンタクトホールを介してゲート電極とS単結晶島とから取り出されている電極配線が、AlSiCu電極配線をTiW電極配線で上下から挟んた積層構造であることを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the electrode wiring taken out from the gate electrode and the S single crystal island through the contact hole formed in the insulating film is formed by sandwiching the AlSiCu electrode wiring from above and below with the TiW electrode wiring. A semiconductor device having a structure. 請求項3に記載の半導体装置において、前記LOCOS酸化膜に単結晶島のシリコン表面を基準として10°〜30°のテーパー角をもつ段差部があり、該段差部があることを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the LOCOS oxide film has a step portion having a taper angle of 10 ° to 30 ° with respect to the silicon surface of the single crystal island, and the step portion is provided. apparatus. 請求項3に記載の半導体装置において、前記LOCOS酸化膜の、前記トレンチ内に埋め込んだ多結晶シリコン上部に高さが0.3μm〜0.7μmの段差部があることを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the LOCOS oxide film has a step portion having a height of 0.3 [mu] m to 0.7 [mu] m above the polycrystalline silicon buried in the trench. 請求項3に記載の半導体装置において、前記単結晶島に形成された電力半導体素子がパワーMOSFETであることを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the power semiconductor element formed on the single crystal island is a power MOSFET. 請求項3に記載の半導体装置において、前記単結晶島に形成された電力半導体素子がIGBTであることを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the power semiconductor element formed on the single crystal island is an IGBT. 請求項1に記載の半導体装置において、SOI基板の表面に形成されたトレンチの閉ループパターンが、直線部分から続くコーナー部を円弧状にしていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the closed loop pattern of the trench formed on the surface of the SOI substrate has a corner portion continuing from the straight portion in an arc shape. 支持体のシリコン基板の上に絶縁膜を介して複数のシリコン単結晶島を配置したSOI基板(Silicon on Insulator)に電力半導体素子を形成した半導体装置において、
前記複数の単結晶島の周囲が4辺形の閉ループの平面パターンのトレンチで囲まれており、
該トレンチの内部が、対向するトレンチ内壁をそれぞれ被覆するSiO2 絶縁膜と、該SiO2 絶縁膜で挟まれた多結晶シリコン膜とによって埋め込まれており、前記トレンチの開口部に前記SiO2 絶縁膜と多結晶シリコン膜とが同じ平面に露出していることを特徴とする半導体装置。
In a semiconductor device in which a power semiconductor element is formed on an SOI substrate (Silicon on Insulator) in which a plurality of silicon single crystal islands are arranged via an insulating film on a silicon substrate of a support,
The plurality of single crystal islands are surrounded by a quadrilateral closed-loop planar trench,
The interior of the trench, and the SiO 2 insulating film covering the opposing inner wall of the trench, respectively, are embedded by a polycrystalline silicon film sandwiched between the SiO 2 insulating film, the SiO 2 insulating the opening of the trench A semiconductor device characterized in that the film and the polycrystalline silicon film are exposed on the same plane.
請求項10に記載の半導体装置において、前記トレンチ開口部に露出しているSiO2絶縁膜と多結晶シリコン膜との上がLOCOS酸化膜で覆われていることを特徴とする半導体装置。 The semiconductor device according to claim 10, the semiconductor device characterized by top of the SiO 2 insulating film and the polycrystalline silicon film exposed in the trench opening is covered by the LOCOS oxide film. 支持体基板の上に絶縁膜を介して複数の単結晶島を配置したSOI基板(Silicon on Insulator)に電力半導体素子を形成した半導体装置において、
前記複数の単結晶島の周囲が閉ループパターンのトレンチで囲まれており、
該トレンチの内部が、トレンチ内壁を被覆する絶縁膜と、該絶縁膜で挟まれた多結晶シリコン膜とによって埋め込まれていて、
前記単結晶島の上面に前記電力半導体素子の制御電極と第1の主電極と第2の主電極とを形成したことを特徴とする半導体装置。
In a semiconductor device in which a power semiconductor element is formed on an SOI substrate (Silicon on Insulator) in which a plurality of single crystal islands are arranged via an insulating film on a support substrate,
The plurality of single crystal islands are surrounded by trenches in a closed loop pattern,
The inside of the trench is buried with an insulating film covering the inner wall of the trench, and a polycrystalline silicon film sandwiched between the insulating films,
A semiconductor device, wherein a control electrode, a first main electrode, and a second main electrode of the power semiconductor element are formed on an upper surface of the single crystal island.
請求項12に記載の半導体装置において、前記単結晶島に形成した電力半導体素子がパワーMOSFETであることを特徴とする半導体装置。   13. The semiconductor device according to claim 12, wherein the power semiconductor element formed on the single crystal island is a power MOSFET. 請求項12に記載の半導体装置において、前記単結晶島に形成した電力半導体素子がIGBTであることを特徴とする半導体装置。

13. The semiconductor device according to claim 12, wherein the power semiconductor element formed on the single crystal island is an IGBT.

JP2005277035A 2005-09-26 2005-09-26 Semiconductor device Active JP5069851B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005277035A JP5069851B2 (en) 2005-09-26 2005-09-26 Semiconductor device
CNB2006101106973A CN100511689C (en) 2005-09-26 2006-08-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277035A JP5069851B2 (en) 2005-09-26 2005-09-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2007088312A true JP2007088312A (en) 2007-04-05
JP5069851B2 JP5069851B2 (en) 2012-11-07

Family

ID=37959351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277035A Active JP5069851B2 (en) 2005-09-26 2005-09-26 Semiconductor device

Country Status (2)

Country Link
JP (1) JP5069851B2 (en)
CN (1) CN100511689C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006905A2 (en) 2007-06-21 2008-12-24 Hitachi, Ltd. Semiconductor apparatus and its manufacturing method
JP2009158588A (en) * 2007-12-25 2009-07-16 Rohm Co Ltd Semiconductor device
JP2013235963A (en) * 2012-05-09 2013-11-21 Panasonic Corp Semiconductor device
JP2014209653A (en) * 2014-06-25 2014-11-06 ローム株式会社 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627252B (en) * 2012-04-19 2014-12-10 西北工业大学 Novel trench isolation groove for filling trench

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178767A (en) * 1983-03-29 1984-10-11 Hitachi Ltd Semiconductor device
JPH01103851A (en) * 1987-02-26 1989-04-20 Toshiba Corp High withstand voltage semiconductor element
JPH0346346A (en) * 1989-07-14 1991-02-27 Hitachi Ltd Semiconductor integrated circuit device
JPH06151576A (en) * 1992-03-09 1994-05-31 Fuji Electric Co Ltd Soi semiconductor device
JPH06196550A (en) * 1992-12-25 1994-07-15 Nippondenso Co Ltd High withstand voltage semiconductor device
JPH1093097A (en) * 1996-09-17 1998-04-10 Toshiba Corp High breakdown voltage semiconductor device and plasma display panel
JP2001144307A (en) * 1999-08-31 2001-05-25 Matsushita Electronics Industry Corp Soi semiconductor device
JP2005123512A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178767A (en) * 1983-03-29 1984-10-11 Hitachi Ltd Semiconductor device
JPH01103851A (en) * 1987-02-26 1989-04-20 Toshiba Corp High withstand voltage semiconductor element
JPH0346346A (en) * 1989-07-14 1991-02-27 Hitachi Ltd Semiconductor integrated circuit device
JPH06151576A (en) * 1992-03-09 1994-05-31 Fuji Electric Co Ltd Soi semiconductor device
JPH06196550A (en) * 1992-12-25 1994-07-15 Nippondenso Co Ltd High withstand voltage semiconductor device
JPH1093097A (en) * 1996-09-17 1998-04-10 Toshiba Corp High breakdown voltage semiconductor device and plasma display panel
JP2001144307A (en) * 1999-08-31 2001-05-25 Matsushita Electronics Industry Corp Soi semiconductor device
JP2005123512A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006905A2 (en) 2007-06-21 2008-12-24 Hitachi, Ltd. Semiconductor apparatus and its manufacturing method
JP2009158588A (en) * 2007-12-25 2009-07-16 Rohm Co Ltd Semiconductor device
JP2013235963A (en) * 2012-05-09 2013-11-21 Panasonic Corp Semiconductor device
JP2014209653A (en) * 2014-06-25 2014-11-06 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
CN1941386A (en) 2007-04-04
CN100511689C (en) 2009-07-08
JP5069851B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP3725708B2 (en) Semiconductor device
KR101166268B1 (en) Semiconductor device having dual-stishallow trench isolation and manufacturing method thereof
JP4827363B2 (en) Method for manufacturing semiconductor device having trench element isolation structure
JP2005026658A (en) Method of fabricating flash memory element
JP2006237455A (en) Semiconductor device and manufacturing method thereof
JP2008533705A (en) Fabrication of carrier substrate contacts to trench-isolated SOI integrated circuits with high voltage components
JP2003092346A (en) Soi element having trench element separating film and manufacturing method therefor
KR100214917B1 (en) Semiconductor device and method of manufacturing the same
TWI690025B (en) Semiconductor-on-insulator (soi)substrate, method for forming thereof, and integrated circuit
JP2009099863A (en) Semiconductor device, and manufacturing method of semiconductor device
JP5069851B2 (en) Semiconductor device
JP2012028805A (en) Manufacturing method of semiconductor device
US7625805B2 (en) Passivation of deep isolating separating trenches with sunk covering layers
JPH1167895A (en) Isolation structure/method for semiconductor element, semiconductor element using isolated structure and its manufacture
JP2007242977A (en) High breakdown voltage semiconductor integrated circuit device
JP4435057B2 (en) Semiconductor device and manufacturing method thereof
JP2003188286A (en) Semiconductor device and manufacturing method thereof
JP2000150807A (en) Semiconductor device and its manufacture
KR100756709B1 (en) Manufacturing process of semiconductor device and semiconductor device
KR100475050B1 (en) Trench element isolation method and structure with nitride liner of thin film protected by spacer
US6835615B2 (en) Method of manufacturing buried gate MOS semiconductor device having PIP capacitor
JP2005322830A (en) Manufacturing method of semiconductor device
KR100403317B1 (en) Manufacturing method for semiconductor device
JP2005093773A (en) Trench gate type semiconductor device and its manufacturing method
JP2006060184A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350