JPH01101680A - Manufacture of magnetic layer in distortion detector - Google Patents

Manufacture of magnetic layer in distortion detector

Info

Publication number
JPH01101680A
JPH01101680A JP62259937A JP25993787A JPH01101680A JP H01101680 A JPH01101680 A JP H01101680A JP 62259937 A JP62259937 A JP 62259937A JP 25993787 A JP25993787 A JP 25993787A JP H01101680 A JPH01101680 A JP H01101680A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
magnetic field
anisotropy
thin band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259937A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博 佐藤
Yoshihiko Utsui
良彦 宇津井
Hideo Ikeda
英男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62259937A priority Critical patent/JPH01101680A/en
Publication of JPH01101680A publication Critical patent/JPH01101680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To get rid of anisotropy, increase magnetostrictive constant, and to improve sensitivity of magnetic layers by annealing a thin band of a high magnetostrictive material in an alternate magnetic field and then fixedly bonding it in the circumference of a receiving shaft. CONSTITUTION:In preparing magnetic layers 6, 7, a thin band of a high magnetostrictive material such as amorphous magnetic materials is annealed in a high-frequency alternate magnetic field, and such annealed thin band is then fixedly bonded to the circumference of a receiving shaft 1 in a chevron form. using a bonding agent, etc. In other words, the magnetic layers 6, 7 are finely crystallized in the alternate magnetic field, as a result, its coercive force Hc is decreased, its magnetic domain and the direction of magnetized vector being disordered. This allows the magnetic layers to be without anisotropy and their magnetostrictive constants to be increased under a low magnetic field, whereby their sensitivity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は歪検出器における磁性層の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic layer in a strain detector.

〔従来の技術] 第2図は従来の歪検出器の検出原理を示し、受動軸1に
トルクTを印加すると、中心軸2に対して±45°方向
に応カグが生じる。即ち、+45゜の角度に引張応力σ
が発生し、−45°の角度に圧縮応力−σが生じる。従
って、受動軸1の外周に高磁歪材から成る磁性層を固着
し、トルクが加わったとき引張応力によって磁性層の透
磁率が増加し、圧縮応力によって透磁率が減少するので
、この磁気歪効果によりトルク及び歪を検出することが
できる。
[Prior Art] FIG. 2 shows the detection principle of a conventional strain detector. When a torque T is applied to the passive shaft 1, a deflection occurs in the ±45° direction with respect to the central axis 2. That is, the tensile stress σ at an angle of +45°
occurs, and a compressive stress -σ occurs at an angle of -45°. Therefore, a magnetic layer made of a highly magnetostrictive material is fixed to the outer circumference of the passive shaft 1, and when torque is applied, the magnetic permeability of the magnetic layer increases due to tensile stress, and decreases due to compressive stress, resulting in this magnetostrictive effect. Torque and strain can be detected by

そして、上記磁性層の製造に際しては、例えばアモルフ
ァス磁性合金の薄帯に、その製造時に発生する転位、格
子欠陥や格子歪などの残留熱応力を除去するとともに、
異方性を付与して磁気特性を改善する(透磁率μを大き
く、保磁力Hcを小さくする。)ために、直流磁界中で
焼鈍を施すことが行われていた(特開昭59−6173
2号公報)。
When manufacturing the magnetic layer, residual thermal stresses such as dislocations, lattice defects, and lattice distortions generated during manufacturing are removed from, for example, a ribbon of amorphous magnetic alloy, and
In order to impart anisotropy and improve magnetic properties (increase magnetic permeability μ and decrease coercive force Hc), annealing in a direct current magnetic field was carried out (Japanese Patent Laid-Open No. 59-6173).
Publication No. 2).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したように直流磁界中で焼鈍を行っ
た場合には、第3図に示すようにB−H曲線が磁界Hの
小さい範囲で磁束密度Bが大きくなり、立った状態にな
る。第4図はB−Hカーブの焼鈍温度依存性を示し、焼
鈍温度は(a)が150℃、(b)が200 ’C1(
C)が250°C1(d)が300 ”C1(e)が3
50 ’Cである。焼鈍温度が高くなるとB−H曲線が
次第に立った状態となり、応力変化に応じてあまり変化
しなくなる。従って、B−H曲線が立った状態になると
歪検出器としての感度が低下する。
However, when annealing is carried out in a DC magnetic field as described above, the B-H curve becomes erect as the magnetic flux density B increases in a range where the magnetic field H is small, as shown in FIG. Figure 4 shows the annealing temperature dependence of the B-H curve, where the annealing temperature is 150°C in (a) and 200°C in (b).
C) is 250°C1(d) is 300"C1(e) is 3
50'C. As the annealing temperature increases, the B-H curve gradually becomes erect and does not change much in response to changes in stress. Therefore, when the B-H curve stands, the sensitivity as a strain detector decreases.

又、第5図は受動軸1の周囲に長方形の磁性層3を45
°の方向で固着したもので、矢印イは磁化容易軸即ち異
方性の方向、口は応力作用軸を示し、異方性の方向イと
応力作用軸口は方向が一致するとB−H曲線が立った状
態となって好ましくないので、はぼ直交する位置関係と
するが、このような位置関係を得るために製造上手間が
かかるという問題点があった。
In addition, FIG. 5 shows a rectangular magnetic layer 3 around the passive shaft 1.
The arrow A indicates the axis of easy magnetization, that is, the direction of anisotropy, and the opening indicates the axis of stress action. When the direction of anisotropy A and the axis of stress action coincide, the B-H curve This is not preferable since the two parts are in an upright position, so the positional relationship is made such that they are perpendicular to each other, but there is a problem in that it takes a lot of manufacturing time to obtain such a positional relationship.

なお、磁界を印加しない状態で焼鈍を行っても地磁気に
より直流磁界を印加した場合と同様になる。
Note that even if annealing is performed without applying a magnetic field, the result will be the same as when a DC magnetic field is applied due to earth's magnetism.

この発明は上記のような問題点を解決するために成され
たものであり、感度が良く製造も容易な歪検出器におけ
る磁性層の製造方法を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a magnetic layer in a strain detector that has good sensitivity and is easy to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る歪検出器における磁性層の製造方法は、
高磁歪材の薄帯を交番磁界中で焼鈍する工程を備えたも
のである。
A method for manufacturing a magnetic layer in a strain detector according to the present invention includes:
This method includes the step of annealing a ribbon of high magnetostrictive material in an alternating magnetic field.

〔作 用〕[For production]

この発明における磁性層は交番磁界中で焼鈍されており
、異方性を持たず、磁歪定数が大きくなる。
The magnetic layer in this invention is annealed in an alternating magnetic field, has no anisotropy, and has a large magnetostriction constant.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの発明に係る歪検出器の構成を示し、4.5は受
動軸1を回転自在に支持する軸受、6.7は受動軸1の
外周面上に固着された第1及び第2の磁性層で、各磁性
層6.7はアモルファス合金などの高磁歪材の薄帯で形
成されており、第1の磁性層6は中心軸2に対して+4
5度方向に、第2の磁性層7は中心軸2に対して一45
度方向にそれぞれ細長く複数条形成されている。8は各
磁性層6.7の外周に受動軸1と同軸状に設けられた円
筒状のコイルボビンで、その外周には第1及び第2の磁
性層6,7と対応して第1及び第2の検出コイル9.1
0が巻装され、各検出コイル9.10は図示しない検出
回路に接続される。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of the strain detector according to the present invention, where 4.5 is a bearing that rotatably supports the passive shaft 1, and 6.7 is a first and second bearing fixed on the outer peripheral surface of the passive shaft 1. Each magnetic layer 6.7 is formed of a thin ribbon of a highly magnetostrictive material such as an amorphous alloy, and the first magnetic layer 6 is at an angle of +4 with respect to the central axis 2.
In the 5 degree direction, the second magnetic layer 7 is at an angle of 145 degrees with respect to the central axis 2.
A plurality of elongated strips are formed in the degree direction. 8 is a cylindrical coil bobbin provided coaxially with the passive shaft 1 on the outer periphery of each magnetic layer 6.7, and on the outer periphery there are first and second coil bobbins corresponding to the first and second magnetic layers 6, 7. 2 detection coil 9.1
0 is wound, and each detection coil 9.10 is connected to a detection circuit (not shown).

上記構成において、受動軸lに外部から応力が印加され
ると、各磁性層6,7の一方に引張力が発生すると他方
に圧縮力が発生し、歪が生じる。
In the above configuration, when stress is applied to the passive shaft l from the outside, when a tensile force is generated in one of the magnetic layers 6 and 7, a compressive force is generated in the other, resulting in distortion.

この歪が生じると透磁率が変化し、引張力による場合と
圧縮力による場合では透磁率が逆方向に変化する。検出
コイル9,10は透磁率の変化を磁気的インピーダンス
の変化として検出し、図示しない検出回路は各検出コイ
ル9.10出力を入力され、受動軸1の歪量に応じた検
出電圧Vを出力する。
When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in opposite directions depending on whether the tensile force is applied or the compressive force is applied. The detection coils 9 and 10 detect changes in magnetic permeability as changes in magnetic impedance, and a detection circuit (not shown) receives the outputs of each detection coil 9 and 10 and outputs a detection voltage V according to the amount of distortion of the passive shaft 1. do.

磁性層6.7の製造に際しては、アモルファス磁性材な
どの高磁歪材の薄帯を10〜100KHzの高周波の交
番磁界中で焼鈍し、この焼鈍された薄帯を受動軸1の周
囲に接着剤などを介して図示のようなシェブロン形状に
固着する。
When manufacturing the magnetic layer 6.7, a thin ribbon of a highly magnetostrictive material such as an amorphous magnetic material is annealed in a high-frequency alternating magnetic field of 10 to 100 KHz, and the annealed ribbon is wrapped around the passive shaft 1 with an adhesive. It is fixed in the chevron shape as shown in the figure.

上記した磁性層5.6は交番磁界中での焼鈍により微結
晶化し、保磁力Heが低下し、磁区及びその磁化ベクト
ルの向きが無秩序となり、異方性を持たず、低磁場下で
の磁歪定数が大きくなる。
The magnetic layer 5.6 described above becomes microcrystalline by annealing in an alternating magnetic field, the coercive force He decreases, the directions of the magnetic domains and their magnetization vectors become disordered, they do not have anisotropy, and magnetostriction under a low magnetic field increases. The constant becomes larger.

従って、B−H曲線は第3図に示すように寝た状態とな
り、感度が上昇する。このことは高周波磁界の印加によ
り顕著となる。又、感度の上昇により交番磁界の印加効
率も上昇し、検出コイル9゜10の印加電流も小さくな
り、検出コイル9.10及び検出回路に設けられたトラ
ンジスタ、コンデンサ、砥抗などの発熱が減り、パワー
オンドリフト、経時変化、経年変化が小さくなり、信頼
性も向上する。
Therefore, the B-H curve becomes flat as shown in FIG. 3, and the sensitivity increases. This becomes more noticeable when a high frequency magnetic field is applied. In addition, due to the increase in sensitivity, the application efficiency of the alternating magnetic field also increases, and the applied current to the detection coils 9 and 10 becomes smaller, which reduces heat generation in the transistors, capacitors, abrasives, etc. provided in the detection coils 9 and 10 and the detection circuit. , power-on drift, changes over time, and changes over time are reduced, and reliability is improved.

又、各磁性層6.7は異方性を持たないために応力作用
軸との関係で固着方向を定める必要がなく、製作が容易
となる。
Furthermore, since each magnetic layer 6.7 does not have anisotropy, there is no need to determine the fixing direction in relation to the axis of stress action, which facilitates manufacturing.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、歪検出器の磁性層を、
高磁歪材の薄帯を交番磁界中で焼鈍した後受動軸の周囲
に固着するようにしており、磁性層は異方性を持たず、
磁歪常数が大きくなり、感度が上昇する。又、異方性を
持たないために応力作用軸との方向関係を考慮する必要
がなく、製作が容易となる。
As described above, according to the present invention, the magnetic layer of the strain detector is
A thin strip of high magnetostrictive material is annealed in an alternating magnetic field and then fixed around the passive shaft, and the magnetic layer has no anisotropy.
The magnetostriction constant increases and the sensitivity increases. In addition, since it does not have anisotropy, there is no need to consider the directional relationship with the stress acting axis, making it easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による歪検出器の断面図、第2図は歪
検出器の検出原理図、第3図は従来及びこの発明による
磁性層のB−H曲線、第4図はアモルファス磁性材の各
焼鈍温度におけるB−H曲線図、第5図は従来の磁性層
の配向図、第6図はこの発明による磁性層の配向図であ
る。 ■・・・受動軸、6.7・・・磁性層、9.10・・・
検出コイル。 尚、図中同一符号は同−又は相当部分を示す。 代理人   大  岩  増  雄 第4図 (e)  350’C 第1図 9、IQ:検出コイル 第3図 第5図     第6図
Fig. 1 is a sectional view of a strain detector according to the present invention, Fig. 2 is a diagram of the detection principle of the strain detector, Fig. 3 is a B-H curve of a magnetic layer according to the conventional method and the present invention, and Fig. 4 is an amorphous magnetic material. FIG. 5 is an orientation diagram of a conventional magnetic layer, and FIG. 6 is an orientation diagram of a magnetic layer according to the present invention. ■... Passive axis, 6.7... Magnetic layer, 9.10...
detection coil. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 4 (e) 350'C Figure 1 9, IQ: Detection coil Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)応力を受ける受動軸と、この受動軸の外周上に固
着された高磁歪材の薄帯から成る磁性層と、磁性層の周
囲にギャップを隔てて配設され、磁性層の上記応力に応
じた歪による透磁率変化を検出する検出コイルを備えた
歪検出器において、高磁歪材の薄帯を交番磁界中で焼鈍
する工程と、焼鈍された高磁歪材の薄帯を受動軸の周囲
に固着する工程を備えたことを特徴とする歪検出器にお
ける磁性層の製造方法。
(1) A passive shaft that is subjected to stress; a magnetic layer made of a thin ribbon of high magnetostrictive material fixed on the outer periphery of the passive shaft; In a strain detector equipped with a detection coil that detects changes in magnetic permeability due to strain according to the 1. A method for manufacturing a magnetic layer in a strain detector, comprising a step of fixing it to the periphery.
JP62259937A 1987-10-14 1987-10-14 Manufacture of magnetic layer in distortion detector Pending JPH01101680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259937A JPH01101680A (en) 1987-10-14 1987-10-14 Manufacture of magnetic layer in distortion detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259937A JPH01101680A (en) 1987-10-14 1987-10-14 Manufacture of magnetic layer in distortion detector

Publications (1)

Publication Number Publication Date
JPH01101680A true JPH01101680A (en) 1989-04-19

Family

ID=17340995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259937A Pending JPH01101680A (en) 1987-10-14 1987-10-14 Manufacture of magnetic layer in distortion detector

Country Status (1)

Country Link
JP (1) JPH01101680A (en)

Similar Documents

Publication Publication Date Title
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
US4823617A (en) Torque sensor
TW201530109A (en) Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor
JP3252004B2 (en) Magnetostrictive torque sensor
WO2021029113A1 (en) Sensor, strain detection sensor, pressure sensor, and microphone
JPS62184323A (en) Magneto-striction type torque sensor
JPH01101680A (en) Manufacture of magnetic layer in distortion detector
JP4171979B2 (en) Magneto-impedance element
JPH0242419B2 (en)
JP2001027664A (en) Magnetic sensor
JPS60123078A (en) Torque sensor
JP2744945B2 (en) Magnetic multilayer film
JP7450919B2 (en) Power generation elements and sensors
JPS63118627A (en) Torque sensor
JPH055660A (en) Torque sensor and preparation thereof
JP3419519B2 (en) Pulse generating magnetic wire and method of manufacturing the same
JP2001522537A (en) How to make a magnetically permeable film
JPH07244142A (en) Magnetic sensor
JPH0763627A (en) Dynamic amount sensor
JP2710165B2 (en) Torque sensor and magnetic anisotropy control method
JPH0210233A (en) Strain detector
JPH02154129A (en) Strain detector
JP2006093202A (en) Manufacturing method of magnetic field sensing element
JP2606972B2 (en) Electromagnetic shielding materials