JPH0210233A - Strain detector - Google Patents

Strain detector

Info

Publication number
JPH0210233A
JPH0210233A JP63162805A JP16280588A JPH0210233A JP H0210233 A JPH0210233 A JP H0210233A JP 63162805 A JP63162805 A JP 63162805A JP 16280588 A JP16280588 A JP 16280588A JP H0210233 A JPH0210233 A JP H0210233A
Authority
JP
Japan
Prior art keywords
alloy
magnetostriction
layers
passive member
strain detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63162805A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博 佐藤
Yoshihiko Utsui
良彦 宇津井
Hideo Ikeda
英男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63162805A priority Critical patent/JPH0210233A/en
Publication of JPH0210233A publication Critical patent/JPH0210233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the temperature characteristics of a strain detector by forming magnetostriction layers comprising Fe-Ni alloy incorporating 35-60wt.% Ni on the surface of a passive member, and providing detecting coils around the magnetostriction layers. CONSTITUTION:Magnetostriction layers 4 are formed with Fe-Ni alloy incorporating 35-60wt.% Ni. Said Fe-Ni alloy is heat-treated in an reducing atmosphere at 1,000 deg.C or more, and inner stress is removed. Thereafter, the Fe-Ni alloy is bonded to a passive member 1 with an epoxy based thermosetting bonding agent. Then, a mask is used, the Fe-Ni alloy undergoes photoetching and the magnetostricton layers 4 in a desired chevron pattern are formed. The two magnetostriction layers 4 and two detecting coils are provided. When the Ni content in the Fe-Ni alloy is 35-60wt.%, curie temperature becomes as high as 400-600 deg.C, temperature dependency of the magnetic characteristics of the magnetostriction layer 4 becomes less and the temperature characteristics of a strain detector can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は歪検出器に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to a distortion detector.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭57−211030号公報あるい
は特開昭58−9034号公報に示された従来の歪検出
器を示し、■はトルクを受ける軸状の受動部材、2は受
動部材1に帯状に固着され、受動部材1に印加されたト
ルクによって発生する内部歪量に応じてi3磁率が変化
する一対の高透磁率軟磁性材からなる磁歪層、3は各磁
歪層2の外周にそれぞれ設けられ、そのiJ 1ff率
の変化量を検出する一対の検出コイルである。各磁歪層
2は複数個の短冊状素片から構成されており、左右対称
に±45゛の角度をなすよう配設さ、れている。
FIG. 2 shows a conventional strain detector disclosed in, for example, Japanese Patent Application Laid-Open No. 57-211030 or Japanese Patent Application Laid-Open No. 58-9034, where ■ is a shaft-shaped passive member that receives torque, and 2 is a passive member 1. A pair of magnetostrictive layers made of a high magnetic permeability soft magnetic material whose i3 magnetic properties change according to the amount of internal strain generated by the torque applied to the passive member 1, 3 is attached to the outer periphery of each magnetostrictive layer 2. A pair of detection coils are respectively provided and detect the amount of change in the iJ 1ff rate. Each magnetostrictive layer 2 is composed of a plurality of strip-shaped pieces, which are arranged symmetrically at an angle of ±45°.

次に、動作について説明する。受動部材1に外部からト
ルクが印加されると、短冊状素片からなる磁歪M2の長
軸方向を主軸とする主応力が発生する。この主応力は例
えば一方の磁歪N2の素片群について引張力であるとす
れば、他方のけ歪層2の素片群については圧縮力である
。一般に、磁歪定数がゼロではない磁性材料に応力が加
わるとその磁気的性質が変化し、結果として透磁率が変
化する。この現象は機械エネルギを電気エネルギに変換
するいわゆる磁歪変換器で使われるものであり、磁性体
を変形させると変形量に応じて透磁率が変化するVil
lari効果に該当する。又、磁歪の大きさを定量的に
表わす量である磁歪常数が正の場合は、引張力が働くと
きに透磁率が増大し、圧縮力が働くときは透磁率が減少
すること、及び磁歪定数が負の場合にその逆の結果とな
ることが知られている。従って、外部より印加されたト
ルク量に応じた変形を磁歪層2の透磁率変化として検出
し、このi3磁率変化を検出コイル3により磁気的イン
ピーダンスの変化として検出することにより、受動部材
1に印加されたトルク量及びこれに伴う歪量を検出する
Next, the operation will be explained. When a torque is applied to the passive member 1 from the outside, a principal stress is generated whose main axis is the long axis direction of the magnetostriction M2 made of a strip-shaped element. For example, if this principal stress is a tensile force for one group of magnetostrictive N2 fragments, it is a compressive force for the other fragment group of the strained layer 2. Generally, when stress is applied to a magnetic material whose magnetostriction constant is not zero, its magnetic properties change, resulting in a change in magnetic permeability. This phenomenon is used in so-called magnetostrictive converters that convert mechanical energy into electrical energy.
This corresponds to the lari effect. In addition, if the magnetostriction constant, which is a quantity that quantitatively represents the magnitude of magnetostriction, is positive, the magnetic permeability increases when a tensile force is applied, and decreases when a compressive force acts, and the magnetostrictive constant It is known that the opposite result occurs when is negative. Therefore, the deformation corresponding to the amount of torque applied from the outside is detected as a change in magnetic permeability of the magnetostrictive layer 2, and this i3 magnetic permeability change is detected by the detection coil 3 as a change in magnetic impedance. The amount of torque applied and the amount of distortion associated with it are detected.

(発明が解決しようとする課題〕 上記した従来の歪検出器においては、磁歪層2としてア
モルファス磁性材料が用いられているが、アモルファス
磁性材料はキュリー温度が350℃程度と低いために磁
気特性が温度によって変化し易く、歪検出の誤差を生じ
易かった。又、アモルファス磁性材料は表面に酸化膜が
形成され易く、エポキシ系接着剤によって受動部材1に
接着した場合、剥離強度が弱く、信鎖小菫に欠けるもの
であった。
(Problems to be Solved by the Invention) In the conventional strain detector described above, an amorphous magnetic material is used as the magnetostrictive layer 2, but since the Curie temperature of the amorphous magnetic material is as low as about 350°C, the magnetic properties of the amorphous magnetic material are low. It easily changes depending on the temperature and tends to cause strain detection errors.Also, amorphous magnetic materials tend to form an oxide film on their surfaces, and when bonded to the passive member 1 with epoxy adhesive, the peel strength is weak and the signal chain It was something that Koviolet lacked.

この発明は上記のような課題を解決するために成された
ものであり、温度特性を改善することができるとともに
、磁歪層の受動部材に対する接着強度を高めることがで
き、かつ検出感度を向上することができる歪検出器を得
ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to improve the temperature characteristics, increase the adhesive strength of the magnetostrictive layer to the passive member, and improve the detection sensitivity. The purpose is to obtain a distortion detector that can

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る歪検出器は、磁歪層をNiを35〜60
重間%含んだ、Fe−Ni合金により形成したものであ
る。
The strain detector according to the present invention has a magnetostrictive layer containing 35 to 60% Ni.
It is made of a Fe--Ni alloy containing a heavy weight of %.

〔作 用〕[For production]

この発明における磁歪層は35〜60重盪%のNiを含
んだFe−旧合金により形成されており、キュリー温度
が高く、化学的に比較的安定であり、かつ磁歪常数も大
きい。
The magnetostrictive layer in this invention is formed of an Fe-old alloy containing 35 to 60% by weight of Ni, has a high Curie temperature, is chemically relatively stable, and has a large magnetostriction constant.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図において、磁歪層4はNiを35〜60ffiffi
%含みかつモリブデンなどのその他の成分も多少含んだ
Fe −Ni合金(パーマロイとも言う。)により形成
し、このPe−Ni合金は1000℃以上のI+。
Embodiments of the present invention will be described below with reference to the drawings. 1st
In the figure, the magnetostrictive layer 4 contains 35 to 60 ffiffi of Ni.
% and some other components such as molybdenum (also called permalloy), and this Pe-Ni alloy has an I+ temperature of 1000°C or higher.

等の還元性雰囲気中で熱処理を施し、内部応力除去処理
を行なう。その後、Fe −Ni合金をエポキシ系熱硬
化性接着剤5によって受動部材1に接着し、加圧しなが
ら接着剤5を加熱硬化させ、徐冷する。
A heat treatment is performed in a reducing atmosphere such as the above to remove internal stress. Thereafter, the Fe--Ni alloy is bonded to the passive member 1 using an epoxy thermosetting adhesive 5, and the adhesive 5 is heated and hardened while being pressurized, and then slowly cooled.

その後、マスクを用いてFe−Ni合金のフォトエツチ
ング処理を行ない、所望のシェブロンパターンの磁歪層
4を形成する。磁歪層4及び検出コイル3は従来同様に
2つずつ設けられる。
Thereafter, the Fe--Ni alloy is photo-etched using a mask to form the magnetostrictive layer 4 in a desired chevron pattern. Two magnetostrictive layers 4 and two detection coils 3 are provided as in the conventional case.

上記構成において、歪検出器としての動作は従来同様で
ある。第3図はNi含有量とキュリー温度との関係を示
し、Ni含有壁が40〜60%のFe −Ni合金の場
合キュリー温度が400〜600℃と高くなり、磁歪層
4の磁気的特性の温度依存性が小さくなり、歪検出器と
しての温度特性が改善される。又、Niを35〜60%
含んだFe−Ni合金は透磁率が多少低いが、異方性エ
ネルギKvの影響が小さく、急冷処理が不要である。又
、第4図に示すように飽和磁束密度Bsが大きく、また
第5図に示すように抵抗率Pが大きく高周波で用いる場
合の渦電流損が低くてロスが小さく、高周波大振幅駆動
に適している。又、Ni含有壁が少ないため、安価とな
る。さらに、第6図に示すようにFe−Ni合金多結晶
の磁歪は、磁界強度Hが数Oe以下の領域ではNi含有
量30〜60%にピークがあり・この付近で用いること
により磁歪定数がアモルファス磁性材より大きくなり、
感度が向上する。又、Fe −Ni合金はアモルファス
磁性材より化学的に安定であり、より接着強度の高いも
のが得られる。
In the above configuration, the operation as a distortion detector is the same as the conventional one. FIG. 3 shows the relationship between Ni content and Curie temperature. In the case of a Fe-Ni alloy with a Ni-containing wall of 40 to 60%, the Curie temperature is as high as 400 to 600°C, and the magnetic properties of the magnetostrictive layer 4 are Temperature dependence is reduced, and temperature characteristics as a strain detector are improved. Also, Ni is 35-60%
Although the contained Fe-Ni alloy has a somewhat low magnetic permeability, the influence of the anisotropic energy Kv is small and rapid cooling treatment is not necessary. In addition, as shown in Fig. 4, the saturation magnetic flux density Bs is large, and as shown in Fig. 5, the resistivity P is large and the eddy current loss is low when used at high frequencies, making it suitable for high frequency and large amplitude driving. ing. Furthermore, since there are few Ni-containing walls, the cost is low. Furthermore, as shown in Fig. 6, the magnetostriction of Fe-Ni alloy polycrystals has a peak at Ni content of 30 to 60% in the region where the magnetic field strength H is several Oe or less, and the magnetostriction constant increases when used in this vicinity. Larger than amorphous magnetic material,
Sensitivity is improved. Further, Fe--Ni alloys are chemically more stable than amorphous magnetic materials, and can provide higher adhesive strength.

第7図は受動部材lとして16φの5pcc鋼棒を用い
、磁歪層を各種材料により形成した場合のセンサ出力の
比較を示し、イはFe15N+1゜MoBのの場合、口
はアモルファス磁性材の場合、ハはFe5@Ni5゜の
場合であり、ハの場合はイの場合よりほぼ2倍の感度を
有することが判る。
Fig. 7 shows a comparison of sensor outputs when a 16φ 5pcc steel rod is used as the passive member l, and the magnetostrictive layer is formed of various materials. Case (c) is the case of Fe5@Ni5°, and it can be seen that case (c) has almost twice the sensitivity than case (a).

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、磁歪層のキュリー温度
が高くなるので温度依存性が小さくなり、歪検出器の温
度特性を向上することができる。又、Fe−Ni合金は
アモルファス磁性材より化学的に安定しているので、磁
歪層を受動部材に接着した場合に大きな接着強度が得ら
れる。さらに、磁歪層の磁歪定数が大きいので、検出感
度を向上することができる。
As described above, according to the present invention, the Curie temperature of the magnetostrictive layer is increased, so the temperature dependence is reduced, and the temperature characteristics of the strain detector can be improved. Moreover, since the Fe-Ni alloy is chemically more stable than an amorphous magnetic material, a large adhesive strength can be obtained when a magnetostrictive layer is adhered to a passive member. Furthermore, since the magnetostrictive layer has a large magnetostriction constant, detection sensitivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による歪検出器の要部断面図・第2図
は従来の歪検出器の構成図、第3図はFeNi合金のキ
ュリー温度特性図、第4図はFe−Ni合金の飽和磁束
密度特性図、第5図はFe −Ni合金の抵抗率特性図
、第6図はPe−Ni合金の磁歪特性図、第7図は歪検
出器の出力特性図である。 1・・・受動部材、3・・・検出コイル、4・・・磁歪
層。 なお、図中同一符号は同−又は相当部分を示す。 代理人   大  岩  増  雄 第 図 第 図 t m% 〃Ωcm wt%
Figure 1 is a sectional view of the main parts of a strain detector according to the present invention, Figure 2 is a configuration diagram of a conventional strain detector, Figure 3 is a Curie temperature characteristic diagram of FeNi alloy, and Figure 4 is a diagram of Fe-Ni alloy. FIG. 5 is a saturation magnetic flux density characteristic diagram, FIG. 5 is a resistivity characteristic diagram of an Fe--Ni alloy, FIG. 6 is a magnetostriction characteristic diagram of a Pe--Ni alloy, and FIG. 7 is an output characteristic diagram of a strain detector. DESCRIPTION OF SYMBOLS 1... Passive member, 3... Detection coil, 4... Magnetostrictive layer. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Diagram t m% 〃Ωcm wt%

Claims (1)

【特許請求の範囲】[Claims] 外力を受ける受動部材と、受動部材の表面に形成された
Niを35〜60重量%含んだFe−Ni合金からなる
磁歪層と、磁歪層の周囲に配設され、磁歪層の上記外力
に応じた歪による透磁率変化を検出する検出コイルを備
えたことを特徴とする歪検出器。
a passive member that receives an external force; a magnetostrictive layer made of a Fe-Ni alloy containing 35 to 60% by weight of Ni formed on the surface of the passive member; A strain detector characterized in that it is equipped with a detection coil that detects changes in magnetic permeability due to strain.
JP63162805A 1988-06-29 1988-06-29 Strain detector Pending JPH0210233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162805A JPH0210233A (en) 1988-06-29 1988-06-29 Strain detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162805A JPH0210233A (en) 1988-06-29 1988-06-29 Strain detector

Publications (1)

Publication Number Publication Date
JPH0210233A true JPH0210233A (en) 1990-01-16

Family

ID=15761556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162805A Pending JPH0210233A (en) 1988-06-29 1988-06-29 Strain detector

Country Status (1)

Country Link
JP (1) JPH0210233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634458A (en) * 1992-07-20 1994-02-08 Hitachi Powdered Metals Co Ltd Magnetostriction detector for magnetostriction type torque sensor and its manufacture
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634458A (en) * 1992-07-20 1994-02-08 Hitachi Powdered Metals Co Ltd Magnetostriction detector for magnetostriction type torque sensor and its manufacture
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer

Similar Documents

Publication Publication Date Title
US4627298A (en) Torque sensor of the noncontact type
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US4823617A (en) Torque sensor
US4986137A (en) Strain detector with magnetostrictive elements
US5105667A (en) Strain measuring device employing magnetostriction and having a magnetic shielding layer
US4765192A (en) Torque sensor
JPH0210233A (en) Strain detector
Sasada et al. A new method of assembling a torque transducer by the use of bilayer-structure amorphous ribbons
JPS6320031B2 (en)
JP2006073974A (en) Magnetic sensor
JPH0219733A (en) Strain detector
JPH02213705A (en) Strain detector
JPH02154129A (en) Strain detector
US5267476A (en) Strain detector
JPH02213704A (en) Strain detector
JPS63266326A (en) Strain detector
JPH0224525A (en) Strain detector
JP2006090883A (en) Torque transmission axial body, method for manufacturing the same, and torque sensor using the same
JPH01314932A (en) Method and apparatus for measuring strain
JPS6326541A (en) Torque sensor
JPH055660A (en) Torque sensor and preparation thereof
JPH0210235A (en) Strain detector
JPH07159257A (en) Torque sensor
JP2003098017A (en) Torque sensor
JPH01101680A (en) Manufacture of magnetic layer in distortion detector