JP2006073974A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2006073974A
JP2006073974A JP2004291963A JP2004291963A JP2006073974A JP 2006073974 A JP2006073974 A JP 2006073974A JP 2004291963 A JP2004291963 A JP 2004291963A JP 2004291963 A JP2004291963 A JP 2004291963A JP 2006073974 A JP2006073974 A JP 2006073974A
Authority
JP
Japan
Prior art keywords
magnetic
wire
magnetization
magnet
magnetic wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291963A
Other languages
Japanese (ja)
Inventor
Masahiko Nishimoto
雅彦 西本
Tsutomu Yamada
努 山田
Taiji Takemura
泰司 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004291963A priority Critical patent/JP2006073974A/en
Publication of JP2006073974A publication Critical patent/JP2006073974A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor which is independent on the strength and polarity of an outside magnet and exhibits a stable output characteristic. <P>SOLUTION: The magnetic sensor is composed of a magnetic line whose end is worked thin, or, a magnetic line which has a soft magnetic magnet at the end. The magnetic sensor is independent on the size and polarity of the outside applying magnetic field and has a stable output voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気センサに関する。  The present invention relates to a magnetic sensor.

従来の磁気センサにおいて、外部磁石の強度や極性に依存しない、安定した出力特性を示すことは困難である。従って、新規な構造を有する磁気センサが望まれる。  In conventional magnetic sensors, it is difficult to show stable output characteristics that do not depend on the strength or polarity of the external magnet. Therefore, a magnetic sensor having a novel structure is desired.

感磁要素(特許第1238351号)にて開示されている磁気センサは、いわゆる複合磁性線におけるパルス発生を原理とするものである。複合磁性線とは保磁力の異なる2層から構成される磁性線である。保磁力の大きい部分の磁化方向を一定として、保磁力の小さい部分の磁化方向を反転させることにより、複合磁性線の外周部に設置した検出コイルにパルス電圧を誘発する。磁化方向を一定とする保磁力の大きい部分を固定磁化層、外部磁石により磁化方向を反転させる保磁力の小さい部分を自由磁化層と呼ぶ。  The magnetic sensor disclosed in the magnetosensitive element (Japanese Patent No. 1238351) is based on the principle of pulse generation in a so-called composite magnetic wire. A composite magnetic wire is a magnetic wire composed of two layers having different coercive forces. By reversing the magnetization direction of the small coercive force portion while keeping the magnetization direction of the large coercive force portion constant, a pulse voltage is induced in the detection coil installed on the outer peripheral portion of the composite magnetic wire. A portion having a large coercive force with a constant magnetization direction is referred to as a fixed magnetization layer, and a portion having a small coercivity that reverses the magnetization direction by an external magnet is referred to as a free magnetization layer.

複合磁性線における固定磁化層と自由磁化層は、それらの磁化方向が同一である平行状態と、逆向きである反平行状態の2通りの状態をとりうる。自由磁化層が固定磁化層に対して平行状態から反平行状態に移る過程を反平行磁化反転、反平行状態から平行状態に移る過程を平行磁化反転と定義する。  The pinned magnetic layer and the free magnetic layer in the composite magnetic line can take two states: a parallel state in which the magnetization directions are the same and an antiparallel state in the opposite direction. The process in which the free magnetic layer shifts from the parallel state to the antiparallel state with respect to the fixed magnetic layer is defined as antiparallel magnetization reversal, and the process in which the free magnetic layer shifts from the antiparallel state to parallel state is defined as parallel magnetization reversal.

平行状態、反平行状態は互いに等価ではないために、反平行磁化反転に伴い誘発されるパルス電圧は一般的に、平行磁化反転に伴い誘発されるパルス電圧に比べて不安定であり、小出力であることが知られている。平行磁化反転に伴う出力を最大限にするために非対称励磁方式(特許第1769763号)と呼ばれる方法が提案されている。この方法では反平行磁化反転を起こす磁石と、平行磁化反転を起こす磁石の強さを不等にする必要があり、実用上は好ましくない。  Since the parallel state and antiparallel state are not equivalent to each other, the pulse voltage induced by the antiparallel magnetization reversal is generally unstable compared to the pulse voltage induced by the parallel magnetization reversal and has a small output. It is known that In order to maximize the output accompanying the parallel magnetization reversal, a method called an asymmetric excitation method (Japanese Patent No. 1776963) has been proposed. In this method, it is necessary to make the strengths of a magnet that causes antiparallel magnetization reversal and a magnet that causes parallel magnetization reversal unequal, which is not preferable in practice.

平行状態では固定磁化層、自由磁化層の磁化方向がそろっており、磁性線には反磁界が生じている。この反磁界は複合磁性線の両端部においてそれぞれ正、負の磁極が存在することに起因するものである。反磁界は複合磁性線を反転させるための外部磁界を非対称にすることの一因を担う。  In the parallel state, the magnetization directions of the fixed magnetization layer and the free magnetization layer are aligned, and a demagnetizing field is generated in the magnetic wire. This demagnetizing field is caused by the presence of positive and negative magnetic poles at both ends of the composite magnetic wire. The demagnetizing field contributes to making the external magnetic field for reversing the composite magnetic wire asymmetric.

一方、反平行状態では固定磁化層、自由磁化層が静磁的に結合している。そのために外部磁界による自由磁化層の反転を妨げる働きを有する。  On the other hand, in the antiparallel state, the fixed magnetization layer and the free magnetization layer are magnetostatically coupled. Therefore, it has the function of preventing the reversal of the free magnetic layer by an external magnetic field.

磁気センサの実用上、外部磁界はより小さく、かつ平行磁化過程、反平行磁化過程を誘起するためのそれぞれ正負の磁界の大きさを同一にすることが求められる。しかしながら反磁界や静磁結合の存在はこれらの要請に対して相容れないものであり、正負同じ大きさの磁界印加により安定した出力特性を示す磁気センサを実現することが望まれる。
特許第1238351号 特許第1769763号
In practical use of a magnetic sensor, it is required that the external magnetic field is smaller and that the magnitudes of positive and negative magnetic fields for inducing parallel and antiparallel magnetization processes are the same. However, the presence of a demagnetizing field and magnetostatic coupling is incompatible with these requirements, and it is desired to realize a magnetic sensor that exhibits stable output characteristics by applying a magnetic field having the same magnitude as positive and negative.
Japanese Patent No. 1238351 Patent No. 1769763

外部磁石の強度や極性に依存しない、安定した出力特性を示す磁気センサを提供することである。  It is an object of the present invention to provide a magnetic sensor that exhibits stable output characteristics independent of the strength and polarity of an external magnet.

本発明は、端部を加工、若しくは端部に軟磁性磁石を備えた磁性線から構成される磁気センサを提供すること。  The present invention provides a magnetic sensor composed of a magnetic wire having a processed end or a soft magnetic magnet at the end.

端部の直径が中央部分の直径に対して細くなるような形状を有する磁性線、若しくは端部に軟磁性磁石を備えた磁性線により構成される磁気センサを提供すること。  To provide a magnetic sensor composed of a magnetic wire having a shape such that the diameter of the end portion is smaller than the diameter of the central portion, or a magnetic wire having a soft magnetic magnet at the end portion.

前記磁性線の両端部のうち、少なくとも一方の端部の直径が他部分の直径に対して細くなるような形状を有すること、若しくは少なくとも一方の端部に軟磁性磁石を備えていることを特徴とする磁気センサを提供すること。  Of the both ends of the magnetic wire, the diameter of at least one end is smaller than the diameter of the other portion, or at least one end is provided with a soft magnetic magnet. To provide a magnetic sensor.

外部磁石の移動、若しくは外部磁界の変化に対して、パルス電圧を発生することを特徴とする磁気センサを提供すること。  A magnetic sensor that generates a pulse voltage in response to movement of an external magnet or change in an external magnetic field is provided.

素材や組成を異にすることにより保磁力が異なる2つの磁性体を2層構造にした磁性線、若しくは、ひねり処理などを施して外周部と内周部が異なる保磁力を有する磁性線を複合磁性線と呼ぶ。保磁力の大きい部分の磁化方向を一定として、保磁力の小さい部分の磁化方向を反転させた際には、いわゆる大バルクハウゼンジャンプを伴う高速な磁化反転が生じることから、複合磁性線の外周部に設置した検出コイルにはパルス電圧が誘発される。この現象は感磁要素(特許第1238351号)において開示されており、回転を検出する磁気センサなどとして実用化されているものである。  Two magnetic materials with different coercive forces due to different materials and compositions are combined into a magnetic wire with a two-layer structure, or a magnetic wire with a different coercive force at the outer and inner peripheral parts by twisting etc. Called magnetic wire. When the magnetization direction of the part with a large coercive force is kept constant and the magnetization direction of the part with a small coercive force is reversed, a high-speed magnetization reversal accompanied by a so-called large Barkhausen jump occurs. A pulse voltage is induced in the detection coil installed in the. This phenomenon is disclosed in a magnetosensitive element (Japanese Patent No. 1238351), and is practically used as a magnetic sensor for detecting rotation.

複合磁性線において、保磁力の大きい部分は磁化を反転させずに、通常は磁化方向を一定とするために固定磁化層と呼び、一方、外部磁石により磁化方向を反転させる保磁力の小さい部分を自由磁化層と呼ぶ。固定磁化層と自由磁化層は、それらの磁化方向が同一である平行状態と、逆向きである反平行状態の2通りの状態をとりうる。  In a composite magnetic wire, a portion with a large coercive force is called a fixed magnetization layer in order to keep the magnetization direction constant without reversing the magnetization, while a portion with a small coercivity that reverses the magnetization direction with an external magnet. This is called a free magnetic layer. The fixed magnetic layer and the free magnetic layer can take two states: a parallel state in which the magnetization directions thereof are the same and an antiparallel state in which the magnetization directions are opposite.

自由磁化層が固定磁化層に対して反平行状態から平行状態に移る過程を平行磁化反転と呼び、この際には大バルクハウゼンジャンプを伴う高速な磁化反転を生じることから、検出コイルには波高値の大きいパルス出力が誘起される。  The process in which the free magnetic layer moves from the antiparallel state to the parallel state with respect to the pinned magnetic layer is called parallel magnetization reversal. In this case, high-speed magnetization reversal accompanied by a large Barkhausen jump occurs, so that the detection coil has a wave. A high pulse output with a high value is induced.

一方、自由磁化層が固定磁化層に対して平行状態から反平行状態に移る過程である反平行磁化反転に伴い誘発されるパルス電圧は一般的に、平行磁化反転に伴い誘発されるパルス電圧に比べて不安定であり、小出力であることが知られている。  On the other hand, the pulse voltage induced by the antiparallel magnetization reversal, which is the process in which the free magnetic layer moves from the parallel state to the antiparallel state with respect to the fixed magnetic layer, is generally a pulse voltage induced by the parallel magnetization reversal. It is known that it is unstable and has a small output.

これら平行磁化反転、及び反平行磁化反転における出力の非対称性は磁性線に生じる反磁界と静磁結合に起因するものである。平行状態では固定磁化層、自由磁化層の磁化方向がそろっており、磁性線には反磁界が生じている。一方、反平行状態では固定磁化層、自由磁化層が静磁的に結合している。  The output asymmetry in these parallel magnetization reversal and antiparallel magnetization reversal is caused by the demagnetizing field and magnetostatic coupling generated in the magnetic wire. In the parallel state, the magnetization directions of the fixed magnetization layer and the free magnetization layer are aligned, and a demagnetizing field is generated in the magnetic wire. On the other hand, in the antiparallel state, the fixed magnetization layer and the free magnetization layer are magnetostatically coupled.

これらの反磁界、静磁結合はいずれも磁性線の端部に局所的に生じる問題であるために、磁性線端部に何らかの加工や部品付与を施すことにより、これを解決した。  Since these demagnetizing field and magnetostatic coupling are both problems that occur locally at the end of the magnetic wire, this problem has been solved by applying some processing and parts to the end of the magnetic wire.

磁性線の端部の直径を中央部分の直径に対して細くなるような形状とした場合には、平行磁化状態において磁性線端部、及び直径に段差が生じる部分に反磁界が分散される。そのために自由磁化層に実効的に寄与する反磁界の影響を軽減することが達成される。また反平行磁化状態での静磁結合も端部が揃っていないために軽減されることは明白である。  When the diameter of the end portion of the magnetic wire is made smaller than the diameter of the central portion, the demagnetizing field is distributed to the end portion of the magnetic wire and the portion where the step has a diameter in the parallel magnetization state. Therefore, it is possible to reduce the influence of the demagnetizing field that effectively contributes to the free magnetic layer. It is also clear that magnetostatic coupling in the antiparallel magnetization state is reduced because the ends are not aligned.

磁性線の端部に軟磁性磁石を付与させた場合には、外部から印加される磁束が軟磁性磁石に集中するために、磁性線に印加される実効的な磁界強度は低減される。結果的に外部印加磁界は、平行磁化状態における反磁界の影響を受けないこととなる。また反平行磁界状態での静磁結合磁界も軟磁性磁石が吸収するためにその影響を軽減することとなる。  When a soft magnetic magnet is applied to the end of the magnetic wire, the magnetic field applied from the outside concentrates on the soft magnetic magnet, so that the effective magnetic field strength applied to the magnetic wire is reduced. As a result, the externally applied magnetic field is not affected by the demagnetizing field in the parallel magnetization state. In addition, since the soft magnetic magnet absorbs the magnetostatic coupling magnetic field in the antiparallel magnetic field, the influence is reduced.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

磁性線としてFeCoV合金(バイカロイ合金)を素材とした場合では、ひねり処理を施すことにより、図2のような磁気的に性質を異とする2層構造となる。ここで外周部13は保磁力の小さい自由磁化層、内周部14は保磁力の大きい固定磁化層である。同図(a)は平行磁化状態、同図(b)は反平行磁化状態をそれぞれ表す。  In the case where an FeCoV alloy (Bikaloy alloy) is used as a magnetic wire, a two-layer structure having magnetically different properties as shown in FIG. 2 is obtained by performing a twisting process. Here, the outer peripheral portion 13 is a free magnetic layer having a small coercive force, and the inner peripheral portion 14 is a fixed magnetic layer having a large coercive force. FIG. 4A shows a parallel magnetization state, and FIG. 4B shows an antiparallel magnetization state.

磁気的に性質を異にする複数の部分から構成される磁性線、いわゆる複合磁性線は、ひねり処理を施したFeCoV合金線以外にもNiFe合金など幅広い磁性体により構成が可能である。またひねり処理以外にも、内部応力分布、組成、素材等を変化させることにより複合磁性線としての機能を実現することが可能である。  A magnetic wire composed of a plurality of portions having different magnetic properties, so-called composite magnetic wire, can be composed of a wide range of magnetic materials such as NiFe alloy in addition to a twisted FeCoV alloy wire. In addition to the twisting process, the function as a composite magnetic wire can be realized by changing the internal stress distribution, composition, material, and the like.

ここではバイカロイ合金線を磁性線として採用した際の実施例で本発明を説明する。  Here, the present invention will be described with reference to an example in which a bicalloy alloy wire is adopted as a magnetic wire.

図3(a)は平行磁化状態における反磁界15を示すものであり、一方、図3(b)は反平行磁化状態における静磁結合磁界16を示すものである。  FIG. 3 (a) shows the demagnetizing field 15 in the parallel magnetization state, while FIG. 3 (b) shows the magnetostatic coupling magnetic field 16 in the antiparallel magnetization state.

図1、及び図6は、本発明に係る磁性線の構成の一例である。本発明の磁気センサにおける基本要素は、図1における端部の直径が中央部分の直径に対して細くなるような形状を有する磁性線12から構成されること、若しくは図6における端部に軟磁性磁石17を備えている磁性線から構成されることである。  1 and 6 are examples of the configuration of the magnetic wire according to the present invention. The basic element of the magnetic sensor of the present invention is composed of a magnetic wire 12 having a shape such that the diameter of the end in FIG. 1 is smaller than the diameter of the central portion, or soft magnetism at the end in FIG. It is composed of a magnetic wire provided with a magnet 17.

図1のような端部が細くなっている磁性線は、端部のみにエッチング処理や研磨処理などを施すことにより実施可能である。  A magnetic wire having a narrow end as shown in FIG. 1 can be implemented by performing an etching process or a polishing process only on the end.

実施一例として図4に示す磁性線では長さ18mm、直径0.25mmのひねり処理を施したバイカロイ合金の磁性線11に関して、その両端部を各両端から4mmの幅に渡ってエッチング処理を施し、それらの直径を15mmとした磁性線12を作製した。  As an example, the magnetic wire shown in FIG. 4 has a length of 18 mm and a diameter of 0.25 mm, and the bicalloy alloy magnetic wire 11 is subjected to an etching process over a width of 4 mm from each end. Magnetic wires 12 having a diameter of 15 mm were produced.

これら磁性線から構成される磁気センサに、正負両極性が対称の正弦波交流磁界を外部から印加した際の出力特性を測定した。端部エッチング処理のない図4における磁性線11では、図5の黒丸で示した出力が得られた。ここでの出力とは、検出コイルに誘起されるパルス電圧の波高値を1ターンあたりの電圧に換算した値である。平行磁化過程で生じる正電圧側の出力と、反平行磁化過程で生じる負電圧側の出力は非対称である。この現象は前述のように磁性線に存在する反磁界と静磁結合に起因する、実用上は磁気センサの適応範囲を限定する、好ましくない特性である。さらに外部印加磁界の増加とともに、正出力、負出力ともに減少しており、外部磁界に対する磁気センサの適応範囲が狭いことを意味する。  The output characteristics were measured when a sinusoidal alternating current magnetic field having both positive and negative polarities symmetrically applied to a magnetic sensor composed of these magnetic wires. With the magnetic wire 11 in FIG. 4 without the edge etching treatment, the output indicated by the black circle in FIG. 5 was obtained. The output here is a value obtained by converting the peak value of the pulse voltage induced in the detection coil into a voltage per turn. The output on the positive voltage side generated in the parallel magnetization process and the output on the negative voltage side generated in the antiparallel magnetization process are asymmetric. This phenomenon is an unfavorable characteristic that limits the adaptive range of the magnetic sensor in practical use due to the demagnetizing field and magnetostatic coupling existing in the magnetic wire as described above. Further, as the externally applied magnetic field increases, both the positive output and the negative output decrease, which means that the applicable range of the magnetic sensor with respect to the external magnetic field is narrow.

一方、端部エッチング処理を施した図4における磁性線12では、図5の白丸で示した出力が得られた。正出力と負出力がほぼ同程度の値となり、対称である。即ち外部磁界の極性に依存しない。このセンサ特性は実用上、電子回路で出力信号を処理することにおいて望ましいものである。また負出力はエッチングなしの磁性線では電圧値も微小であったが、エッチング処理を施した磁性線では出力値が増加した。さらに外部印加磁界の増加とともに、正出力、負出力ともに十分大きな出力を確保しており、外部磁界に対して、より広い適応範囲を確保する磁気センサが実現されていることが明白である。  On the other hand, in the magnetic wire 12 in FIG. 4 subjected to the edge etching process, the output indicated by the white circle in FIG. 5 was obtained. The positive output and the negative output are approximately the same value and are symmetric. That is, it does not depend on the polarity of the external magnetic field. This sensor characteristic is practically desirable when processing an output signal in an electronic circuit. In addition, the negative output had a very small voltage value in the magnetic wire without etching, but the output value increased in the magnetic wire subjected to the etching treatment. Further, as the externally applied magnetic field increases, a sufficiently large output for both positive output and negative output is secured, and it is clear that a magnetic sensor that secures a wider adaptive range with respect to the external magnetic field has been realized.

磁性線の端部における反磁界、及び静磁結合が磁気センサ特性の劣化に起因しているとの知見から、磁性線の中央部分のみに外部磁界を印加する方法による問題解決の手段も有効である。そこで図6における磁性線11のように、その両端に軟磁性磁石17を付与した効果を図7に示す。同図は外部より20エルステッド(Oe)の一様な磁界を磁性線全体に渡り印加した際に、磁性線各部に実質的に印加される磁界強度を微小コイルにて測定した結果である。磁性線両端部では印加される磁界強度がほぼゼロとなっていることが確認された。即ち反磁界の影響が存在する磁性線端部には磁界は印加されないこととなる。また静磁結合磁界も軟磁性磁石にその磁束が集中するために、センサ特性の劣化を回避することができる。  From the knowledge that the demagnetizing field at the end of the magnetic wire and magnetostatic coupling are caused by the deterioration of the magnetic sensor characteristics, it is also effective to solve the problem by applying an external magnetic field only to the central part of the magnetic wire. is there. Therefore, FIG. 7 shows the effect of providing the soft magnetic magnets 17 at both ends like the magnetic wire 11 in FIG. The figure shows the result of measuring the magnetic field strength applied to each part of the magnetic wire with a micro coil when a uniform magnetic field of 20 Oersted (Oe) is applied to the entire magnetic wire from the outside. It was confirmed that the applied magnetic field intensity was almost zero at both ends of the magnetic wire. That is, the magnetic field is not applied to the end portion of the magnetic wire where the influence of the demagnetizing field exists. Further, since the magnetic flux of the magnetostatic coupling magnetic field is concentrated on the soft magnetic magnet, it is possible to avoid deterioration of sensor characteristics.

さらにこの軟磁性磁石を付与させた磁性線では、磁性線中央部には外部磁界の20エルステッドよりも大きな、38エルステッド程度の磁界が印加されていることがわかる。これは軟磁性磁石により磁界増加の効果があり、磁気センサの感度向上を実現するものである。  Furthermore, it can be seen that in the magnetic wire provided with the soft magnetic magnet, a magnetic field of about 38 Oersted, which is larger than 20 Oersted of the external magnetic field, is applied to the central portion of the magnetic wire. This has an effect of increasing the magnetic field by the soft magnetic magnet, and realizes an improvement in sensitivity of the magnetic sensor.

図6における軟磁性磁石を付与した磁性線17から構成される磁気センサの出力特性を測定したところ、図5の白丸で示した端部をエッチング処理した磁性線から構成される磁気センサと同様な効果が確認された。即ち、正負の出力が対称であり、外部磁界の広い範囲に渡って安定した出力が得られた。  When the output characteristics of the magnetic sensor composed of the magnetic wire 17 provided with the soft magnetic magnet in FIG. 6 were measured, it was the same as that of the magnetic sensor composed of the magnetic wire having the end indicated by the white circle in FIG. 5 etched. The effect was confirmed. That is, the positive and negative outputs are symmetric, and a stable output can be obtained over a wide range of the external magnetic field.

産業上の利用の可能性Industrial applicability

本発明による磁気センサは、外部磁界の広範囲に渡り、磁界の極性に依存しない、安定した出力特性を示す。したがって、例えば回転検出の磁気センサに利用した際には、回転部に設置する磁石の大きさ、強さに対する要請が少なく、かつ磁石の極性に無依存な高出力を確保できる。このような性質を有する磁気センサは、各種装置、機器における回転、速度等を検出する上で利便性が高い。これらの利点は磁性線端部の加工、若しくは軟磁性磁石付与によるものであることは明白であり、本発明の効果は産業応用上、広範囲に渡るものである。  The magnetic sensor according to the present invention exhibits stable output characteristics over a wide range of the external magnetic field and does not depend on the polarity of the magnetic field. Therefore, for example, when used in a magnetic sensor for detecting rotation, there is little demand for the size and strength of the magnet installed in the rotating part, and a high output independent of the polarity of the magnet can be secured. A magnetic sensor having such properties is highly convenient in detecting rotation, speed, etc. in various devices and devices. It is obvious that these advantages are due to the processing of the end of the magnetic wire or the provision of a soft magnetic magnet, and the effects of the present invention are wide-ranging in industrial applications.

本発明の一実施例に係る磁性線の構成を示す図である。It is a figure which shows the structure of the magnetic wire which concerns on one Example of this invention. 磁性線における磁化自由層と磁化固定層がそれぞれ平行状態にある構成、ならびに反平行状態にある構成を示す図である。It is a figure which shows the structure in which the magnetization free layer and magnetization fixed layer in a magnetic wire are in a parallel state, respectively, and the structure in an antiparallel state. 磁性線における磁化自由層と磁化固定層がそれぞれ平行状態にある際に生じる反磁界、ならびに反平行状態にある際に生じる静磁結合を示す図である。It is a figure which shows the demagnetizing field which arises when the magnetization free layer and magnetization fixed layer in a magnetic wire are in a parallel state, respectively, and the magnetostatic coupling which arises when it is in an antiparallel state. 本発明の一実施例に係る磁性線の構成を示す図である。It is a figure which shows the structure of the magnetic wire which concerns on one Example of this invention. 本発明の一実施例に係る磁気センサの出力電圧を示す図である。It is a figure which shows the output voltage of the magnetic sensor which concerns on one Example of this invention. 本発明の一実施例に係る磁性線の構成を示す図である。It is a figure which shows the structure of the magnetic wire which concerns on one Example of this invention. 本発明の一実施例に係る磁性線に印加される磁界強度を示す図である。It is a figure which shows the magnetic field strength applied to the magnetic wire which concerns on one Example of this invention.

符号の説明Explanation of symbols

11 磁性線
12 両端部の直径が中央部の直径に対して細い磁性線
13 自由磁化層
14 固定磁化層
15 平行磁化状態における反磁界
16 反平行磁化状態における静磁結合
17 軟磁性磁石
DESCRIPTION OF SYMBOLS 11 Magnetic wire 12 Magnetic wire 13 whose diameter of both ends is narrower than the diameter of the central portion 13 Free magnetic layer 14 Fixed magnetic layer 15 Demagnetizing field 16 in parallel magnetization state 16 Magnetostatic coupling 17 in antiparallel magnetization state Soft magnetic magnet

Claims (3)

端部の直径が中央部分の直径に対して細くなるような形状を有する磁性線、若しくは端部に軟磁性磁石を備えた磁性線により構成される磁気センサ。  A magnetic sensor comprising a magnetic wire having a shape in which the diameter of the end portion is thinner than the diameter of the central portion, or a magnetic wire having a soft magnetic magnet at the end portion. 請求項1において、前記磁性線の両端部のうち、少なくとも一方の端部の直径が他部分の直径に対して細くなるような形状を有すること、若しくは少なくとも一方の端部に軟磁性磁石を備えていることを特徴とする磁気センサ。  2. The magnetic wire according to claim 1, wherein at least one of the two ends of the magnetic wire has a diameter that is smaller than the diameter of the other portion, or at least one of the ends has a soft magnetic magnet. A magnetic sensor. 請求項1ないし2において、外部磁石の移動、若しくは外部磁界の変化に対して、パルス電圧を発生することを特徴とする磁気センサ。  3. The magnetic sensor according to claim 1, wherein a pulse voltage is generated in response to a movement of an external magnet or a change in an external magnetic field.
JP2004291963A 2004-09-03 2004-09-03 Magnetic sensor Pending JP2006073974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291963A JP2006073974A (en) 2004-09-03 2004-09-03 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291963A JP2006073974A (en) 2004-09-03 2004-09-03 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2006073974A true JP2006073974A (en) 2006-03-16

Family

ID=36154221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291963A Pending JP2006073974A (en) 2004-09-03 2004-09-03 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2006073974A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200361A1 (en) * 2020-04-01 2021-10-07 三菱電機株式会社 Power generation element, magnetic sensor using same, encoder, and motor
WO2022230652A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power generation element, encoder, method for manufacturing magnetic member, and signal acquisition method
WO2022230651A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power-generating element, encoder, and method for producing magnetic member
WO2023079838A1 (en) * 2021-11-02 2023-05-11 パナソニックIpマネジメント株式会社 Power generation element, power generation system, and encoder
DE112021005758T5 (en) 2021-01-12 2023-11-09 Mitsubishi Electric Corporation Energy generation element, magnetic sensor, value transmitter and motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200361A1 (en) * 2020-04-01 2021-10-07 三菱電機株式会社 Power generation element, magnetic sensor using same, encoder, and motor
DE112021005758T5 (en) 2021-01-12 2023-11-09 Mitsubishi Electric Corporation Energy generation element, magnetic sensor, value transmitter and motor
US11913813B2 (en) 2021-01-12 2024-02-27 Mitsubishi Electric Corporation Power generation element, magnetic sensor, encoder, and motor
WO2022230652A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power generation element, encoder, method for manufacturing magnetic member, and signal acquisition method
WO2022230651A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power-generating element, encoder, and method for producing magnetic member
WO2023079838A1 (en) * 2021-11-02 2023-05-11 パナソニックIpマネジメント株式会社 Power generation element, power generation system, and encoder

Similar Documents

Publication Publication Date Title
JP6107942B2 (en) Magnetic current sensor and current measuring method
EP3726237A2 (en) Magnetic field sensor, system, and method for speed measurement
CA1144640A (en) Pulse generator using read head with wiegand wire
US6384595B1 (en) Method of and apparatus for generating a pulse signal
JP2007225536A (en) Device for detecting rotary motion
US7268539B2 (en) Pulse signal generator
JP2006073974A (en) Magnetic sensor
JP2019138807A (en) Magnetic sensor and current sensor
US20130009637A1 (en) Magnetoresistance element and magnetic sensor using the same
JPS599528A (en) Torque sensor
JPH11101861A (en) Magneto-resistance effect type sensor
JP4080438B2 (en) Giant magnetostriction unit
JP2004354181A (en) Thin-film magnetic sensor
JP3673412B2 (en) Pulse signal generator
JP2005274160A (en) Torque sensor
CN109541503B (en) Magnetic sensor
JP2006352608A (en) Electric pulse generator
JP2566640B2 (en) Torque measuring device
JP2009229314A (en) Rotation angle detector
JP2002357488A (en) Stress sensor
JP2003282995A (en) Magnetic field detecting element
Takemura et al. Control of demagnetizing field and magnetostatic coupling in FeCoV wires for zero-speed sensor
WO2022259462A1 (en) Magnetic detection device
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JPH10270775A (en) Magneto-resistance effect element and revolution sensor using the same