JPH07244142A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH07244142A
JPH07244142A JP6037024A JP3702494A JPH07244142A JP H07244142 A JPH07244142 A JP H07244142A JP 6037024 A JP6037024 A JP 6037024A JP 3702494 A JP3702494 A JP 3702494A JP H07244142 A JPH07244142 A JP H07244142A
Authority
JP
Japan
Prior art keywords
magnetization
magnetic field
sensor
pattern
sensor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6037024A
Other languages
Japanese (ja)
Inventor
Michiko Endou
みち子 遠藤
Shinkichi Shimizu
信吉 清水
Shigemi Kurashima
茂美 倉島
Mieko Kawamoto
美詠子 川元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6037024A priority Critical patent/JPH07244142A/en
Publication of JPH07244142A publication Critical patent/JPH07244142A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magnetic sensor whose sensitivity can be made high in a very small magnetic field by a method wherein the direction of spontaneous magnetization is changed forcibly from an easy direction of magnetization to a hard direction of magnetization by properly combining the direction of the strain of a magnetic substance with the positive/the negative of the magnetization constant of the magnetic substance. CONSTITUTION:A meander shaped sensor pattern 21 which uses a ferromagnetic-metal thin film is formed on the surface of a substrate 22. When, e.g. an iron-nickel alloy is used for the ferromagnetic-metal thin film, an easy direction of magnetization in its strainless state is the lengthwise direction of the pattern, and a hard direction of magnetization is the short direction of the pattern. Then, since a magnetization constant is positive, the spontaneous magnetization of the sensor pattern 21 is directed to the hard direction of magnetization when a tensile stress is applied to the short direction of the sensor pattern 21, i.e., to the hard direction of magnetization. As a result, when a magnetic field Hex is applied to the lengthwise direction of the sensor pattern 21 in this state, the direction of magnetization is changed into the easy direction of magnetization. As a result, a change in magnetization in a very small magnetic field is made smooth, and the high sensitivity of the magnetic sensor can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁場(磁界とも言う)
の強さに応じて電気抵抗が変化する磁気センサ、詳細に
は、強磁性金属薄膜(代表例はパーマロイ薄膜やアモル
ファス希土類鉄系合金膜)の磁気抵抗効果を利用し、磁
場の検出、又は変位や位置の検出等様々な用途に用いら
れるいわゆる強磁性体磁気センサの高感度化技術に関す
る。
FIELD OF THE INVENTION The present invention relates to a magnetic field (also called a magnetic field).
Magnetic sensor whose electric resistance changes according to the strength of the magnetic field. Specifically, the magnetoresistive effect of a ferromagnetic metal thin film (typical example is a permalloy thin film or amorphous rare earth iron-based alloy film) is used to detect or displace a magnetic field. The present invention relates to a technique for increasing the sensitivity of a so-called ferromagnetic magnetic sensor used for various purposes such as position detection and position detection.

【0002】[0002]

【従来の技術】第1従来例 図12は従来の強磁性体磁気センサの平面レイアウトを
示す2つの例である。図中の1、2は何れも強磁性金属
薄膜を用いたセンサパターンで、これらのセンサパター
ン1、2は、特に限定しないが全体を折り返した形状を
有しており、両端に端子3a、3b、4a、4bが設け
られている。端子3a、3b間(又は端子4a、4b
間)に電圧Eを加えると、センサパターン1(又は2)
の電気抵抗Rに応じた電流Iが流れる。
2. Description of the Related Art First Conventional Example FIGS. 12A and 12B are two examples showing a planar layout of a conventional ferromagnetic magnetic sensor. In the figure, 1 and 2 are sensor patterns using a ferromagnetic metal thin film, and these sensor patterns 1 and 2 have a shape in which the whole is folded back although not particularly limited, and terminals 3a and 3b are provided at both ends. 4a, 4b are provided. Between terminals 3a and 3b (or terminals 4a and 4b)
When voltage E is applied to (between) sensor pattern 1 (or 2)
A current I corresponding to the electric resistance R of the current flows.

【0003】一般に、強磁性金属薄膜(以下、単に「磁
性体」と言うこともある)の電気抵抗は、磁気抵抗効果
によって、電流と磁化(単位面積当たりの磁化モーメン
ト)の方向が平行になったとき最大、直交したとき最小
となり、その間では交差角度に応じた大きさとなるか
ら、上記の電気抵抗Rはセンサパターン1(又は2)の
置かれた磁場Hexの強さに応じた値になる。
In general, the electric resistance of a ferromagnetic metal thin film (hereinafter, also simply referred to as "magnetic material") has a direction of current and a direction of magnetization (magnetization moment per unit area) parallel to each other due to a magnetoresistive effect. When it is orthogonal, it becomes the maximum, and when it is orthogonal, it becomes the minimum, and since it has a magnitude according to the crossing angle, the electric resistance R has a value according to the strength of the magnetic field Hex in which the sensor pattern 1 (or 2) is placed. .

【0004】ここで、センサパターン1、2の長手方向
は、磁気異方性による内部エネルギーが最も低い自発磁
化の方向、すなわち磁化が向きやすい磁化容易方向で、
それと直交する短手方向は、磁化が向きにくい磁化困難
方向である。センサパターン1、2の違いは短手方向の
幅にある。センサパターン1に対してセンサパターン2
の短手幅が大きい。短手幅を大きくすると、磁性体が磁
化されたとき、磁性体の表面に生じた磁荷によって磁性
体の内部につくられる反磁場Hd(磁化とは逆向きの磁
場)を小さくでき、磁化の回転を円滑にして検出感度の
アップを図ることができる。なお、反磁場Hdはセンサ
パターンを薄くすることによっても小さくできる。
Here, the longitudinal directions of the sensor patterns 1 and 2 are the directions of spontaneous magnetization with the lowest internal energy due to magnetic anisotropy, that is, the easy magnetization direction,
The short-side direction orthogonal to that is a difficult-to-magnetize direction. The difference between the sensor patterns 1 and 2 lies in the width in the lateral direction. Sensor pattern 2 for sensor pattern 1
The short width of is large. If the width is increased, the demagnetizing field Hd (the magnetic field in the opposite direction to the magnetization) created inside the magnetic body by the magnetic charge generated on the surface of the magnetic body can be reduced when the magnetic body is magnetized. The rotation can be smoothed to increase the detection sensitivity. The demagnetizing field Hd can be reduced by thinning the sensor pattern.

【0005】図13は図12の特性図であり、実線イで
示す特性線は反磁場Hdが大きい場合(すなわちセンサ
パターン1)、破線ロで示す特性線は反磁場Hdが小さ
い場合(すなわちセンサパターン2)である。破線ロ
(反磁場Hdが小さい)方が、磁場Hexの変化に対す
る電気抵抗の変化率(ΔR/R)が大きいから、磁場H
exの微妙な変化を高感度に検出することができる。
FIG. 13 is a characteristic diagram of FIG. 12, in which the characteristic line indicated by the solid line (a) is large when the demagnetizing field Hd is large (that is, the sensor pattern 1), and the characteristic line indicated by broken line (b) is when the demagnetizing field Hd is small (that is, the sensor). Pattern 2). The broken line B (the demagnetizing field Hd is smaller) has a larger rate of change in electric resistance (ΔR / R) with respect to the change in the magnetic field Hex.
Subtle changes in ex can be detected with high sensitivity.

【0006】しかしながら、反磁界Hdを小さくしただ
けでは、図13の特性図からも理解されるように、磁場
Hexの零点付近、すなわち微小磁場での検出感度が改
善されないため、例えば、地磁気のようにきわめて微小
な磁場を検出できないという欠点がある。第2従来例 図14は図12の欠点を解消した例であり、センサパタ
ーン5の形状をいわゆるバーバーポール型にしたもので
ある。これによれば、外部バイアス磁界(内部磁化の反
転を防止するために必須)との併用によって、図15に
示すように、磁場Hexの零点付近を通る直線的な特性
線ハを得ることができ、微小磁場での高感度化を実現で
きる。
However, as can be understood from the characteristic diagram of FIG. 13, the detection sensitivity in the vicinity of the zero point of the magnetic field Hex, that is, in the minute magnetic field cannot be improved by only decreasing the demagnetizing field Hd. Has the disadvantage that it cannot detect extremely small magnetic fields. Second Conventional Example FIG. 14 shows an example in which the drawback of FIG. 12 is eliminated, and the sensor pattern 5 is formed into a so-called barber pole type. According to this, it is possible to obtain a linear characteristic line c passing through the vicinity of the zero point of the magnetic field Hex as shown in FIG. 15 by using it together with an external bias magnetic field (indispensable for preventing reversal of internal magnetization). It is possible to realize high sensitivity in a minute magnetic field.

【0007】第3従来例 図16は同じく図12の欠点を解消した例であり、図1
2とは逆に、センサセンサパターン6の短手方向を磁化
容易方向としたものである。これによれば、図17に示
すように、磁場Hexの零点で急激に立ち上がる特性線
ニを得ることができ、微小磁場での高感度化を図ること
ができる。
Third Conventional Example FIG. 16 is an example in which the drawbacks of FIG. 12 are also eliminated.
Contrary to 2, the lateral direction of the sensor sensor pattern 6 is the direction of easy magnetization. According to this, as shown in FIG. 17, it is possible to obtain a characteristic line D that sharply rises at the zero point of the magnetic field Hex, and it is possible to achieve high sensitivity in a minute magnetic field.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、かかる
第2又は第3従来例にあっては、第1従来例の欠点、す
なわち微小磁場での感度不足を解決できるという点で有
効なものの、第2従来例にあっては、外部バイアス磁界
が必要であるから、構成が複雑化してコスト的に不利で
あるという欠点があり、また、第3従来例にあっては、
反磁界Hdが大きく自発磁化が揃いにくいためにフルス
ケールでの抵抗変化量が小さく、ダイナミックレンジ
(図17の符号D参照)を広くできないという欠点があ
る。 [目的]そこで、本発明は、このような技術的課題に鑑
みてなされたもので、構成を複雑化することなく、しか
も充分なダイナミックレンジを確保しつつ、微小磁界で
の高感度化を図ることを目的とする。
However, the second or third conventional example is effective in that it can solve the drawback of the first conventional example, that is, the lack of sensitivity in a minute magnetic field. In the conventional example, an external bias magnetic field is required, so that there is a disadvantage that the configuration is complicated and the cost is disadvantageous. In addition, in the third conventional example,
Since the demagnetizing field Hd is large and the spontaneous magnetization is difficult to be aligned, the amount of resistance change at full scale is small, and the dynamic range (see symbol D in FIG. 17) cannot be widened. [Purpose] Therefore, the present invention has been made in view of the above technical problems, and aims to improve the sensitivity in a minute magnetic field without complicating the configuration and while ensuring a sufficient dynamic range. The purpose is to

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
その原理図を図1に示すように、磁場の強さに応じて磁
化の向きが磁化容易方向と磁化困難方向との間で変化す
る強磁性金属薄膜を用いたセンサパターン10を備える
磁気センサにおいて、前記強磁性金属薄膜が正の磁歪定
数を持つ場合、前記センサパターンの磁化困難方向に継
続的な引っ張り応力を加え、又は、前記センサパターン
の磁化容易方向に継続的な圧縮応力を加えられたことを
特徴とする。
The invention according to claim 1 is
In a magnetic sensor including a sensor pattern 10 using a ferromagnetic metal thin film whose direction of magnetization changes between an easy magnetization direction and a difficult magnetization direction according to the strength of a magnetic field as shown in FIG. When the ferromagnetic metal thin film has a positive magnetostriction constant, continuous tensile stress was applied in the direction of hard magnetization of the sensor pattern, or continuous compressive stress was applied in the direction of easy magnetization of the sensor pattern. It is characterized by

【0010】請求項2記載の発明は、その原理図を図2
に示すように、磁場の強さに応じて磁化の向きが磁化容
易方向と磁化困難方向との間で変化する強磁性金属薄膜
を用いたセンサパターン11を備える磁気センサにおい
て、前記強磁性金属薄膜が負の磁歪定数を持つ場合、前
記センサパターンの磁化困難方向に継続的な圧縮応力を
加え、又は、前記センサパターンの磁化容易方向に継続
的な引っ張り応力を加えられたことを特徴とする。
The invention according to claim 2 is the principle diagram of FIG.
As shown in FIG. 3, in a magnetic sensor including a sensor pattern 11 using a ferromagnetic metal thin film whose magnetization direction changes between an easy magnetization direction and a difficult magnetization direction according to the strength of a magnetic field, Has a negative magnetostriction constant, it is characterized in that a continuous compressive stress is applied in the direction of hard magnetization of the sensor pattern or a continuous tensile stress is applied in the direction of easy magnetization of the sensor pattern.

【0011】[0011]

【作用】磁場がゼロのときの強磁性金属薄膜の磁化(自
発磁化)は、磁化容易方向に向いているが、これは磁性
体に歪みを与えない場合であり、歪みを与えた場合に
は、その歪みの方向と磁性体の磁歪定数の正/負との適
切な組み合せにより、自発磁化の方向を磁化容易方向か
ら磁化困難方向へと強制的に変えることができる。
[Operation] The magnetization (spontaneous magnetization) of the ferromagnetic metal thin film when the magnetic field is zero is oriented in the easy magnetization direction. This is the case where no strain is applied to the magnetic substance, and when strain is applied. By appropriately combining the direction of the strain and the positive / negative of the magnetostriction constant of the magnetic material, the direction of spontaneous magnetization can be forcibly changed from the easy magnetization direction to the difficult magnetization direction.

【0012】すなわち、磁歪定数が「正」の磁性体で
は、引っ張り応力の方向(又は圧縮応力の方向と直交す
る方向)に自発磁化が向き、若しくは、磁歪定数が
「負」の磁性体では、圧縮応力の方向(又は引っ張り応
力の方向と直交する方向)に自発磁化が向く。したがっ
て、上記の請求項1又は請求項2のようにすれば、磁場
がゼロのときの磁化の向きを磁化容易方向から磁化困難
方向へと変えることができ、磁場がゼロ以外のときの磁
化の向きをこの逆の磁化容易方向へと変化させることが
できるから、きわめて微小な磁場での磁化の変化を円滑
にして高感度化を図ることができる。
That is, in a magnetic material having a magnetostriction constant of "positive", spontaneous magnetization is oriented in the direction of tensile stress (or in a direction orthogonal to the direction of compressive stress), or in a magnetic material having a magnetostriction constant of "negative", Spontaneous magnetization is oriented in the direction of compressive stress (or the direction orthogonal to the direction of tensile stress). Therefore, according to claim 1 or claim 2, the direction of magnetization when the magnetic field is zero can be changed from the easy magnetization direction to the difficult magnetization direction, and the magnetization direction when the magnetic field is other than zero can be changed. Since the direction can be changed to the opposite easy magnetization direction, it is possible to smoothly change the magnetization in an extremely minute magnetic field and achieve high sensitivity.

【0013】因みに、図3は図1の特性図であり、磁場
Hexの零点付近での電気抵抗の変化率(ΔR/R)が
大きく、しかもダイナミックレンジDが広くなってい
る。
Incidentally, FIG. 3 is a characteristic diagram of FIG. 1, in which the change rate (ΔR / R) of the electric resistance near the zero point of the magnetic field Hex is large and the dynamic range D is wide.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。第1実施例 図4、図5は本発明に係る磁気センサの第1実施例を示
す図である。図4において、20は基板(例えばシリコ
ン基板)であり、この基板20の表面には、強磁性金属
薄膜を用いたつづら折のいわゆるミアンダー状センサパ
ターン21(以下、単に「センサパターン」と言う)が
形成されている。なお、22a、22bはセンサパター
ン21の両端に形成された端子である。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIGS. 4 and 5 are views showing a first embodiment of the magnetic sensor according to the present invention. In FIG. 4, reference numeral 20 denotes a substrate (for example, a silicon substrate), and the surface of the substrate 20 is a so-called meander-shaped sensor pattern 21 (hereinafter simply referred to as “sensor pattern”) that is formed by using a ferromagnetic metal thin film. Are formed. Note that 22a and 22b are terminals formed at both ends of the sensor pattern 21.

【0015】強磁性金属薄膜には、鉄(Fe)−ニッケ
ル(Ni)の合金(Ni76%、膜厚2000オングス
トローム)を使用し、その無歪み状態での磁化容易方向
はパターンの長手方向、磁化困難方向はパターンの短手
方向である。鉄−ニッケル合金薄膜の磁歪定数は「正」
であるため、この例では、センサパターン21の短手方
向すなわち磁化困難方向に引っ張り応力(好ましくは
0.1%程度の歪みを生じる大きさの応力)を加える
(又は、センサパターン21の長手方向すなわち磁化容
易方向に同程度の圧縮応力を加えてもよい)。
An iron (Fe) -nickel (Ni) alloy (Ni 76%, film thickness 2000 Å) is used for the ferromagnetic metal thin film, and the easy magnetization direction in the unstrained state is the longitudinal direction of the pattern and the magnetization. The difficult direction is the lateral direction of the pattern. Magnetostriction constant of iron-nickel alloy thin film is "positive"
Therefore, in this example, a tensile stress (preferably a stress that causes a strain of about 0.1%) is applied in the short-side direction of the sensor pattern 21, that is, in the direction of hard magnetization (or in the longitudinal direction of the sensor pattern 21). That is, a similar compressive stress may be applied in the easy magnetization direction).

【0016】このようにすると、センサパターン21の
自発磁化が磁化困難方向に向くので、この状態のまま、
センサパターン21の長手方向に磁場Hexをかける
と、磁化の向きが磁化容易方向へと変化することにな
り、微小磁場での磁化の変化を円滑にして高感度化を図
ることができる。図5は図4の特性図であり、実線ホは
応力だけを与えたもの、破線ヘは磁性体の磁気異方性の
方向をパターンの長手方向に一致させたものである。何
れのものも磁場Hexの零点付近での感度アップとダイ
ナミックレンジの拡大を達成できているが、磁場Hex
の変化に対する電気抵抗の変化率(ΔR/R)の大きさ
を見ると、破線への方が変化率(ΔR/R)が大きいの
で望ましい。
By doing so, the spontaneous magnetization of the sensor pattern 21 is oriented in the difficult magnetization direction.
When the magnetic field Hex is applied in the longitudinal direction of the sensor pattern 21, the direction of magnetization changes to the direction of easy magnetization, and the change of magnetization in a minute magnetic field can be smoothed to achieve high sensitivity. FIG. 5 is a characteristic diagram of FIG. 4, in which the solid line E gives only stress, and the broken line F shows the direction of the magnetic anisotropy of the magnetic material aligned with the longitudinal direction of the pattern. All of them have been able to achieve increased sensitivity and expanded dynamic range near the zero point of the magnetic field Hex.
Looking at the magnitude of the change rate (ΔR / R) of the electric resistance with respect to the change of, the change rate (ΔR / R) to the broken line is larger, which is desirable.

【0017】第2実施例 図6、図7は本発明に係る磁気センサの第2実施例を示
す図である。図6において、30は基板(例えばシリコ
ン基板)であり、この基板30の表面には、第1実施例
と同様の強磁性金属薄膜を用いた第1〜第4のミアンダ
ー状センサパターン31〜34(以下、単に「第1〜第
4のセンサパターン」と言う)が形成されている。な
お、35a〜35dは第1〜第4のセンサパターン31
〜34の接続点に形成された端子であり、対角線上に位
置する一対の端子間に定電流を与え、他の一対の端子間
の電圧を測定する。
Second Embodiment FIGS. 6 and 7 are views showing a second embodiment of the magnetic sensor according to the present invention. In FIG. 6, reference numeral 30 denotes a substrate (for example, a silicon substrate), and on the surface of the substrate 30, first to fourth meander-shaped sensor patterns 31 to 34 using the same ferromagnetic metal thin film as in the first embodiment. (Hereinafter, simply referred to as “first to fourth sensor patterns”) are formed. Note that 35a to 35d are first to fourth sensor patterns 31.
These terminals are terminals formed at connection points of ~ 34, and a constant current is applied between a pair of terminals located on a diagonal line to measure a voltage between the other pair of terminals.

【0018】第1〜第4のセンサパターン31〜34
(便宜的に1本の線で図示しているが実際には所定の幅
を持つパターンである)の長手方向は、基板30の各辺
に対して約45度の傾きをもっており、基板30の任意
の1辺の方向に引っ張り応力又は圧縮応力(好ましくは
0.1%程度の歪みを生じる大きさの応力)を与える
と、全てのパターン31〜34に対して、その長手方向
の約45度の向きに上記応力が印加されるようになって
いる。
First to fourth sensor patterns 31 to 34
The lengthwise direction (which is illustrated as a single line for convenience, but actually has a predetermined width) has an inclination of about 45 degrees with respect to each side of the substrate 30. When a tensile stress or a compressive stress (preferably a stress that causes a strain of about 0.1%) is applied in the direction of any one side, about 45 degrees in the longitudinal direction of all patterns 31 to 34. The above stress is applied in the direction of.

【0019】このような構成によっても、引っ張り応力
の方向(又は圧縮応力の方向と直交する方向)すなわち
磁化困難方向に自発磁化を向かせることができ、磁場を
与えたときの磁化の変化方向を磁化容易方向とすること
ができる。したがって、第1実施例と同様に微小磁界で
の高感度化を図ることができると共に、その特性図を図
7に示すように、磁場Hexの零点を境にして出力が直
線的に変化するから、印加磁界の正負も検出できる利便
性の高い磁気センサを提供できる。
With such a structure as well, it is possible to direct the spontaneous magnetization in the direction of the tensile stress (or the direction orthogonal to the direction of the compressive stress), that is, the difficult magnetization direction, and the direction of change of the magnetization when a magnetic field is applied. The direction of easy magnetization can be used. Therefore, as in the first embodiment, it is possible to achieve high sensitivity in a minute magnetic field, and as shown in the characteristic diagram of FIG. 7, the output linearly changes at the zero point of the magnetic field Hex. Thus, it is possible to provide a highly convenient magnetic sensor capable of detecting whether the applied magnetic field is positive or negative.

【0020】第3実施例 図8、図9は本発明に係る磁気センサの第3実施例を示
す図であり、第1実施例又は第2実施例に用いて好まし
い応力印加の技術を開示するものである。図8におい
て、40は配線パターン41a、41bを形成したフレ
キシブル基板であり、このフレキシブル基板40の上に
は、第1実施例の基板20(又は第2実施例の基板3
0;以下、基板20で代表)が接着固定されている。な
お、42a、42bは基板20に形成されたセンサパタ
ーン21の端子22a、22bと配線パターン41a、
41bとの間を接続するボンディング用ワイヤである。
Third Embodiment FIGS. 8 and 9 are views showing a third embodiment of the magnetic sensor according to the present invention, and a preferred stress application technique is disclosed for use in the first embodiment or the second embodiment. It is a thing. In FIG. 8, reference numeral 40 denotes a flexible substrate on which wiring patterns 41a and 41b are formed. On the flexible substrate 40, the substrate 20 of the first embodiment (or the substrate 3 of the second embodiment) is provided.
0; hereinafter, the substrate 20 is representatively bonded and fixed. Note that 42a and 42b are terminals 22a and 22b of the sensor pattern 21 formed on the substrate 20 and a wiring pattern 41a,
41b is a bonding wire for connecting to 41b.

【0021】43、44はそれぞれモールド部材であ
り、一方のモールド部材43には、少なくともフレキシ
ブル基板40の面積よりも広い面積で一定曲率を有する
円弧状表面の凸部43aが形成されている。また、他方
のモールド部材44には、所定形状の凹部44aが形成
されており、これら2つのモールド部材43、44を重
ね合わせると、凸部43aが凹部44aの内部に余裕を
持って収まるようになっている。
Reference numerals 43 and 44 denote mold members, respectively, and one mold member 43 is provided with a convex portion 43a having an arcuate surface having a constant curvature at least in an area larger than the area of the flexible substrate 40. Further, the other mold member 44 is formed with a recess 44a having a predetermined shape, and when these two mold members 43, 44 are overlapped, the projection 43a fits inside the recess 44a with a margin. Has become.

【0022】今、基板20を載置固定したフレキシブル
基板40の裏面を凸部43aの表面に貼り付けると、図
9に示すように、フレキシブル基板40が凸部43aの
表面形状に合わせて所定曲率で屈曲するので、フレキシ
ブル基板40の表面に固定された基板20にも同様な屈
曲を与えることができ、基板20の上のセンサパターン
21に対し、その屈曲程度に応じた大きさの引っ張り応
力を与えることができる。
Now, when the back surface of the flexible substrate 40 on which the substrate 20 is mounted and fixed is attached to the front surface of the convex portion 43a, the flexible substrate 40 has a predetermined curvature according to the surface shape of the convex portion 43a, as shown in FIG. Since the substrate 20 fixed to the surface of the flexible substrate 40 can be similarly bent, the sensor pattern 21 on the substrate 20 is subjected to a tensile stress of a magnitude corresponding to the bending degree. Can be given.

【0023】したがって、凸部43aの表面曲率を調節
することにより、応力の大きさを加減できると共に、基
板20とフレキシブル基板40との間、及び、フレキシ
ブル基板40と凸部43aとの間の接着が維持されてい
る限り、恒久的に応力を与え続けることができ、微小磁
場での高感度化を長期にわたって持続することができ
る。
Therefore, by adjusting the surface curvature of the convex portion 43a, the magnitude of the stress can be adjusted and the adhesion between the substrate 20 and the flexible substrate 40 and between the flexible substrate 40 and the convex portion 43a can be achieved. As long as the above is maintained, the stress can be continuously applied, and the high sensitivity in a minute magnetic field can be maintained for a long time.

【0024】なお、凹部44aを形成したモールド部材
44は、パッケージの蓋の役目をするもので、応力印加
のために必須のものではない。因みに、フレキシブル基
板40の厚さを50μm、基板20の厚さを250μm
とし、センサパターン21に膜厚2000オングストロ
ームのNi−Fe薄膜を用い、そのパターン幅を約30
μmのミアンダー状パターンとすると共に、基板20と
フレキシブル基板40との間、及び、フレキシブル基板
40と凸部43aとの固定には熱硬化タイプの接着剤を
使用し、凸部43aの曲率を約200mmとして、磁界
検出を行ってみたところ、外部磁界範囲が10〜20O
eで約2%の抵抗変化が得られた。しかもこの磁界範囲
では外部磁界の変化に対する抵抗変化の直線性も良く、
微小磁界での高感度化達成を確認できた。
The mold member 44 in which the recess 44a is formed serves as a lid of the package and is not essential for applying stress. By the way, the thickness of the flexible substrate 40 is 50 μm, and the thickness of the substrate 20 is 250 μm.
The sensor pattern 21 is a Ni-Fe thin film having a film thickness of 2000 angstrom, and the pattern width is about 30.
The meandering pattern of μm is used, and a thermosetting adhesive is used to fix the flexible substrate 40 and the convex portion 43a between the substrate 20 and the flexible substrate 40, and to reduce the curvature of the convex portion 43a to about 100 μm. When the magnetic field was detected at 200 mm, the external magnetic field range was 10 to 20O.
A change in resistance of about 2% was obtained at e. Moreover, in this magnetic field range, the linearity of the resistance change with respect to the change of the external magnetic field is good,
It was confirmed that high sensitivity was achieved in a minute magnetic field.

【0025】第4実施例 図10、図11は本発明に係る磁気センサの第4実施例
を示す図であり、第3実施例と同様に、第1実施例又は
第2実施例に用いて好ましい応力印加の技術を開示する
ものである。図10において、50は配線パターン51
a、51bを形成した樹脂基板であり、この樹脂基板5
0の上には、第1実施例の基板20(又は第2実施例の
基板30;以下、基板20で代表)が、所定の接着剤5
2を用いて接着されるようになっている。
Fourth Embodiment FIGS. 10 and 11 are views showing a fourth embodiment of the magnetic sensor according to the present invention, which is used in the first embodiment or the second embodiment as in the third embodiment. The preferred technique of applying stress is disclosed. In FIG. 10, 50 is a wiring pattern 51.
a resin substrate on which a and 51b are formed.
0, the substrate 20 of the first embodiment (or the substrate 30 of the second embodiment; hereinafter, represented by the substrate 20) is coated with the predetermined adhesive 5
2 is used for adhesion.

【0026】ここで、樹脂基板50と接着剤52には、
基板20の熱膨張係数よりも大きい熱膨張係数を持つも
のを使用しなければならない。高温下で樹脂基板50と
基板20の間の接着を行うと、基板20に比べて樹脂基
板50及び接着剤53が大きく膨張した状態で固定され
るため、室温程度に温度を下げた後では、両者の膨張差
に対応した大きさの歪みが残り、この歪みによる応力が
基板20の上のセンサパターンに加えられる。
Here, the resin substrate 50 and the adhesive 52 are
A substrate having a coefficient of thermal expansion larger than that of the substrate 20 should be used. When the resin substrate 50 and the substrate 20 are bonded at a high temperature, the resin substrate 50 and the adhesive 53 are fixed in a state in which the resin substrate 50 and the adhesive 53 are largely expanded as compared with the substrate 20, so that after the temperature is lowered to about room temperature, A strain having a magnitude corresponding to the difference in expansion between the two remains, and stress due to this strain is applied to the sensor pattern on the substrate 20.

【0027】例えば、基板20にシリコン(熱膨張係数
は2.6×10-6/℃)を用い、樹脂基板50及びと接
着剤52にエポキシ樹脂(熱膨張係数は30〜90×1
-6/℃)を用いて、約150℃の高温下で接着剤52
を硬化させた後、室温に戻すと、熱膨張係数が1桁大き
い樹脂基板50及び接着剤52の収縮が大きいため、図
11の矢印53で示すように、樹脂基板50が基板20
とは反対側の下向きに湾曲することとなり、その結果、
基板20の上のセンサパターン(図示略)に、湾曲度合
に応じた大きさの引っ張り応力が加えられることにな
る。
For example, silicon (coefficient of thermal expansion is 2.6 × 10 −6 / ° C.) is used for the substrate 20, and epoxy resin (coefficient of thermal expansion is 30 to 90 × 1) for the resin substrate 50 and the adhesive 52.
0 -6 / ° C) and the adhesive 52 at a high temperature of about 150 ° C.
After the resin is cured and then returned to room temperature, the resin substrate 50 and the adhesive 52, which have a thermal expansion coefficient of one order of magnitude, greatly contract, so that the resin substrate 50 becomes the substrate 20 as shown by an arrow 53 in FIG.
Will be curved downwards on the opposite side, and as a result,
A tensile stress having a magnitude corresponding to the degree of curvature is applied to the sensor pattern (not shown) on the substrate 20.

【0028】なお、図11において、54はボンディン
グ用ワイヤ、55は封止樹脂である。因みに、本第4実
施例でも、外部磁界範囲が10〜20Oeで約2%の抵
抗変化が得られた。しかもこの磁界範囲では外部磁界の
変化に対する抵抗変化の直線性も良く、微小磁界での高
感度化達成を確認できた。
In FIG. 11, 54 is a bonding wire and 55 is a sealing resin. Incidentally, also in the fourth embodiment, a resistance change of about 2% was obtained in the external magnetic field range of 10 to 20 Oe. Moreover, the linearity of the resistance change with respect to the change of the external magnetic field was good in this magnetic field range, and it was confirmed that the high sensitivity was achieved in the minute magnetic field.

【0029】[0029]

【発明の効果】請求項1又は請求項2記載発明によれ
ば、磁場がゼロのときの磁化の向きを磁化容易方向から
磁化困難方向へと変えることができ、磁場がゼロ以外の
ときの磁化の向きをこの逆の磁化容易方向へと変化させ
ることができるから、きわめて微小な磁場での磁化の変
化を円滑にして高感度化を図ることができる。
According to the first or second aspect of the present invention, the direction of magnetization when the magnetic field is zero can be changed from the easy magnetization direction to the difficult magnetization direction, and the magnetization when the magnetic field is other than zero. Since the direction of can be changed to the opposite direction of easy magnetization, it is possible to smoothly change the magnetization in an extremely minute magnetic field and achieve high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明の原理図である。FIG. 1 is a principle diagram of the invention according to claim 1;

【図2】請求項2記載の発明の原理図である。FIG. 2 is a principle diagram of the invention according to claim 2;

【図3】請求項1記載の発明の特性図である。FIG. 3 is a characteristic diagram of the invention according to claim 1.

【図4】第1実施例の構成図である。FIG. 4 is a configuration diagram of a first embodiment.

【図5】第1実施例の特性図である。FIG. 5 is a characteristic diagram of the first embodiment.

【図6】第2実施例の構成図である。FIG. 6 is a configuration diagram of a second embodiment.

【図7】第2実施例の特性図である。FIG. 7 is a characteristic diagram of the second embodiment.

【図8】第3実施例の構成図である。FIG. 8 is a configuration diagram of a third embodiment.

【図9】第3実施例の断面図である。FIG. 9 is a sectional view of a third embodiment.

【図10】第4実施例の構成図である。FIG. 10 is a configuration diagram of a fourth embodiment.

【図11】第4実施例の断面図である。FIG. 11 is a sectional view of a fourth embodiment.

【図12】第1従来例の構成図である。FIG. 12 is a configuration diagram of a first conventional example.

【図13】第1従来例の特性図である。FIG. 13 is a characteristic diagram of a first conventional example.

【図14】第2従来例の構成図である。FIG. 14 is a configuration diagram of a second conventional example.

【図15】第2従来例の特性図である。FIG. 15 is a characteristic diagram of a second conventional example.

【図16】第3従来例の構成図である。FIG. 16 is a configuration diagram of a third conventional example.

【図17】第3従来例の特性図である。FIG. 17 is a characteristic diagram of a third conventional example.

【符号の説明】[Explanation of symbols]

10、11、21、31〜34:センサパターン 10, 11, 21, 31-34: Sensor pattern

フロントページの続き (72)発明者 川元 美詠子 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Continued Front Page (72) Inventor Miyoko Kawamoto 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁場の強さに応じて磁化の向きが磁化容易
方向と磁化困難方向との間で変化する強磁性金属薄膜を
用いたセンサパターンを備える磁気センサにおいて、前
記強磁性金属薄膜が正の磁歪定数を持つ場合、前記セン
サパターンの磁化困難方向に継続的な引っ張り応力を加
え、又は、前記センサパターンの磁化容易方向に継続的
な圧縮応力を加えられたことを特徴とする磁気センサ。
1. A magnetic sensor comprising a sensor pattern using a ferromagnetic metal thin film in which the direction of magnetization changes depending on the strength of a magnetic field between an easy magnetization direction and a difficult magnetization direction. In the case of having a positive magnetostriction constant, a continuous tensile stress is applied in the direction of hard magnetization of the sensor pattern, or a continuous compressive stress is applied in the direction of easy magnetization of the sensor pattern. .
【請求項2】磁場の強さに応じて磁化の向きが磁化容易
方向と磁化困難方向との間で変化する強磁性金属薄膜を
用いたセンサパターンを備える磁気センサにおいて、前
記強磁性金属薄膜が負の磁歪定数を持つ場合、前記セン
サパターンの磁化困難方向に継続的な圧縮応力を加え、
又は、前記センサパターンの磁化容易方向に継続的な引
っ張り応力を加えられたことを特徴とする磁気センサ。
2. A magnetic sensor having a sensor pattern using a ferromagnetic metal thin film, the direction of magnetization of which changes between an easy magnetization direction and a difficult magnetization direction according to the strength of a magnetic field. When having a negative magnetostriction constant, a continuous compressive stress is applied in the direction of hard magnetization of the sensor pattern,
Alternatively, the magnetic sensor is characterized in that a continuous tensile stress is applied in the direction of easy magnetization of the sensor pattern.
JP6037024A 1994-03-08 1994-03-08 Magnetic sensor Withdrawn JPH07244142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6037024A JPH07244142A (en) 1994-03-08 1994-03-08 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6037024A JPH07244142A (en) 1994-03-08 1994-03-08 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH07244142A true JPH07244142A (en) 1995-09-19

Family

ID=12486089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6037024A Withdrawn JPH07244142A (en) 1994-03-08 1994-03-08 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH07244142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066030A (en) * 2008-09-09 2010-03-25 Ricoh Co Ltd Magnetic sensing element, magnetic sensing apparatus, direction detection apparatus, and information appliance
WO2010122944A1 (en) * 2009-04-21 2010-10-28 アルプス電気株式会社 Magnetic sensor package
JP2013044545A (en) * 2011-08-22 2013-03-04 Denso Corp Magnetic sensor device and manufacturing method of the same
US11249116B2 (en) 2018-01-25 2022-02-15 Murata Manufacturing Co., Ltd. Magnetic sensor and current sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066030A (en) * 2008-09-09 2010-03-25 Ricoh Co Ltd Magnetic sensing element, magnetic sensing apparatus, direction detection apparatus, and information appliance
WO2010122944A1 (en) * 2009-04-21 2010-10-28 アルプス電気株式会社 Magnetic sensor package
JP5107461B2 (en) * 2009-04-21 2012-12-26 アルプス電気株式会社 Magnetic sensor package
JP2013044545A (en) * 2011-08-22 2013-03-04 Denso Corp Magnetic sensor device and manufacturing method of the same
US11249116B2 (en) 2018-01-25 2022-02-15 Murata Manufacturing Co., Ltd. Magnetic sensor and current sensor

Similar Documents

Publication Publication Date Title
US7642773B2 (en) Magnetic sensor, production method thereof, rotation detection device, and position detection device
US6988414B2 (en) Sensor device having a magnetostrictive force sensor
JP4800452B1 (en) Magnetic film sensor
JP4298691B2 (en) Current sensor and manufacturing method thereof
US7140258B2 (en) Magnetic-based force/torque sensor
JPH0261572A (en) Magnetic field sensor using ferromagnetic thin-film
JP2014512003A (en) Single-chip push-pull bridge type magnetic field sensor
JPH03144909A (en) Magnetic resistance sensor
US6819101B2 (en) Magnetic detector
JPH07244142A (en) Magnetic sensor
JP3645553B2 (en) Strain sensor
US7450353B2 (en) Zig-zag shape biased anisotropic magnetoresistive sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP3282444B2 (en) Magnetoresistive element
JPH09231517A (en) Magnetic reluctance sensor
JP3013031B2 (en) Magnetoresistance effect element and magnetoresistance sensor
JP2002357488A (en) Stress sensor
JP3602235B2 (en) Magnetic sensor
JP7090818B1 (en) Magnetic detector
JP3555412B2 (en) Magnetoresistive sensor
JP4237855B2 (en) Magnetic field sensor
US6211669B1 (en) Magnetic detector with improved noise resistance characteristics
JPH1125430A (en) Spin valve type magneto resistance effect head
JP4069419B2 (en) Magneto-impedance element
JPS6240455Y2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508