JP3419519B2 - Pulse generating magnetic wire and method of manufacturing the same - Google Patents
Pulse generating magnetic wire and method of manufacturing the sameInfo
- Publication number
- JP3419519B2 JP3419519B2 JP30002793A JP30002793A JP3419519B2 JP 3419519 B2 JP3419519 B2 JP 3419519B2 JP 30002793 A JP30002793 A JP 30002793A JP 30002793 A JP30002793 A JP 30002793A JP 3419519 B2 JP3419519 B2 JP 3419519B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- core wire
- wire
- magnetic
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/0302—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
- H01F1/0304—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions adapted for large Barkhausen jumps or domain wall rotations, e.g. WIEGAND or MATTEUCCI effect
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Magnetic Variables (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば磁気センサなど
のように、外部磁界の変化によってパルス状の出力電圧
等を生じさせる用途に好適なパルス発生用磁性線とその
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic wire for pulse generation suitable for applications such as a magnetic sensor which produces a pulsed output voltage due to a change in an external magnetic field, and a method for manufacturing the magnetic wire.
【0002】[0002]
【従来の技術】大バルクハウゼン効果を有する感磁性線
は、外部磁界の変化に応じて急峻な磁化反転を生じるこ
とから、その磁気的性質を利用して様々な用途への展開
が期待されている。2. Description of the Related Art A magnetically sensitive wire having a large Barkhausen effect causes a sharp magnetization reversal in response to a change in an external magnetic field. Therefore, its magnetic properties are expected to lead to various applications. There is.
【0003】周知の感磁性線の一例は、互いに保磁力が
異なる中心層と外周層とからなり、交番磁界を与えるこ
とによって急峻な磁化反転を生じる。すなわち、中心層
と外周層の双方が同じ方向に磁化するような強い外部磁
界(Hp以上)を与えたのちに、外周層のみ磁界が反転
するような弱い逆向きの外部磁界(Ha)を与えた時
に、感磁性線に巻かれた検出用コイルに弱い電圧パルス
(−Vs)が発生する。そして再び外周層に中心層と同
じ方向の大きな外部磁界(Hp)を与えた時に、外周層
に急激な磁化反転が生じて、上記検出用コイルに急峻で
大きな電圧パルス(+Vs)が発生する。An example of a well-known magnetically sensitive wire is composed of a central layer and an outer peripheral layer having mutually different coercive forces, and abrupt magnetization reversal is caused by applying an alternating magnetic field. That is, after applying a strong external magnetic field (Hp or more) such that both the central layer and the outer peripheral layer are magnetized in the same direction, a weak reverse external magnetic field (Ha) that reverses the magnetic field only in the outer peripheral layer is applied. Then, a weak voltage pulse (-Vs) is generated in the detection coil wound around the magnetically sensitive wire. When a large external magnetic field (Hp) in the same direction as that of the central layer is applied to the outer peripheral layer again, abrupt magnetization reversal occurs in the outer peripheral layer, and a steep and large voltage pulse (+ Vs) is generated in the detection coil.
【0004】従来より、感磁性線を製造する手段とし
て、バイカロイ(Fe−Co−V系合金)やパ−マロイ
(Fe−Ni系合金)等の強磁性材料からなる線材に、
ねじり加工や熱処理等を行うことにより、線材の表層部
に永久ひずみを与えたものが知られている。Conventionally, as a means for producing a magnetically sensitive wire, a wire made of a ferromagnetic material such as baicalloy (Fe-Co-V alloy) or permalloy (Fe-Ni alloy) has been used.
It is known that the surface layer of the wire is permanently set by twisting or heat treatment.
【0005】例えば特公昭55−15797号公報(公
知技術1)に記載されている磁気ワイヤのように、強磁
性材料からなる線材が永久的に伸長するのに充分な長手
方向の張力を与えて円周ひずみを生じさせたものや、特
公昭61−28196号公報(公知技術2)に記載され
ている磁気ディバイスのように、強磁性材料からなる線
材にねじりひずみを生じさせたものが知られている。For example, as in the magnetic wire described in Japanese Patent Publication No. 55-15797 (KOKAI) No. 55-15797, a wire made of a ferromagnetic material is provided with sufficient longitudinal tension so as to be permanently elongated. Those in which a circumferential strain is generated and those in which a wire made of a ferromagnetic material is twisted, such as a magnetic device described in Japanese Patent Publication No. 61-28196 (known art 2), are known. ing.
【0006】また特開平5−159913号公報(公知
技術3)や特開平5−205958号公報(公知技術
4)に記載されているように、強磁性材料からなる線材
の線軸方向に大きな張力を与えることにより、応力−磁
気効果によって線軸方向の磁気異方性を増大させた時に
大バルクハウゼン効果が安定に発生することも知られて
いる。Further, as described in JP-A-5-159913 (known art 3) and JP-A-5-205958 (known art 4), a large tension is applied to a wire made of a ferromagnetic material in the direction of the wire axis. It is also known that the large Barkhausen effect stably occurs when the magnetic anisotropy in the direction of the linear axis is increased by the stress-magnetic effect.
【0007】[0007]
【発明が解決しようとする課題】前述した公知技術1,
2は、いずれも、細い線材に所望のひずみを与えるため
の製造方法がきわめて複雑なため、量産性に劣るだけで
なく、加工を均一に行うことが難しいため、特性のばら
つきが大きいという欠点があった。例えば線材をねじっ
たり、ねじり戻すといった加工を行う場合、線材の硬さ
(特に表面硬さ)にばらつきがあると、線材をねじった
時に線材の全長にわたって均一な歪を与えることが困難
となり、所望の磁気特性を有する均一な製品を安定して
製造することができない。特に、細い線材ではその傾向
が顕著に現れる。しかも、ねじり加工のための装置が複
雑であり量産性に劣るという問題がある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In both cases, since the manufacturing method for imparting a desired strain to a thin wire is extremely complicated, not only is mass productivity inferior, but it is difficult to perform uniform processing, resulting in a large variation in characteristics. there were. For example, when performing processing such as twisting or untwisting a wire rod, if the hardness of the wire rod (particularly the surface hardness) varies, it becomes difficult to give a uniform strain over the entire length of the wire rod when twisting the wire rod. It is not possible to consistently manufacture a uniform product having the magnetic properties described above. In particular, this tendency is remarkable in a thin wire rod. In addition, there is a problem that the apparatus for twisting is complicated and mass productivity is poor.
【0008】また、ねじり加工により中心層と外周層と
で保磁力を異ならせた複合磁性線であるため、中心層と
外周層がいずれも同じ方向に磁化するような強い磁界と
中心層のみが磁化反転するような弱い磁界を交互に与え
ることがパルス発生のために必要である。つまり、磁性
線に印加する交番磁界を非対称にしなければならないと
いう煩わしさがある。Further, since it is a composite magnetic wire in which the coercive force is made different between the central layer and the outer layer by twisting, only the strong magnetic field and the central layer are magnetized in the same direction in both the central layer and the outer layer. It is necessary for pulse generation to alternately apply a weak magnetic field for reversing the magnetization. That is, there is a trouble that the alternating magnetic field applied to the magnetic wire has to be asymmetric.
【0009】一方、先行技術3,4の場合には、張力を
取り除くと大バルクハウゼン効果が消失するため、張力
を与えた状態を保持するための構造や機構が必要とな
り、設備費も高くなってしまう。また、保持すべき張力
がきわめて大きいため、これを均一に保持するのは難し
く、仮に保持できたとしても、経年変化等の信頼性にも
問題がある。On the other hand, in the case of the prior arts 3 and 4, since the large Barkhausen effect disappears when the tension is removed, a structure or mechanism for maintaining the tensioned state is required, and the equipment cost becomes high. Will end up. Further, since the tension to be held is extremely large, it is difficult to hold it evenly, and even if it can be held, there is a problem in reliability such as secular change.
【0010】従って本発明の目的は、加工が容易で能率
良く製造することができるとともに安定した磁気特性を
発揮できるようなパルス発生用磁性線とその製造方法を
提供することにある。Therefore, an object of the present invention is to provide a magnetic wire for pulse generation which is easy to process, can be manufactured efficiently, and can exhibit stable magnetic characteristics, and a manufacturing method thereof.
【0011】[0011]
【課題を解決するための手段】上記の目的を果たすため
に開発された本発明のパルス発生用磁性線は、磁性材料
からなる芯線と、この芯線とは熱膨張率の異なる非磁性
材料からなりかつ上記芯線を覆うように芯線の外側に密
着させられた被覆層とを有し、上記芯線と被覆層との熱
膨張率の相違から上記被覆層によって上記芯線に引張り
または圧縮のひずみが付与されかつこのひずみが上記被
覆層によって固定・保持されたことを特徴とするもので
ある。The magnetic wire for pulse generation of the present invention developed to achieve the above object is composed of a core wire made of a magnetic material and a non-magnetic material having a different coefficient of thermal expansion from the core wire. And having a coating layer adhered to the outside of the core wire so as to cover the core wire, strain of tensile or compression is applied to the core wire by the coating layer due to the difference in thermal expansion coefficient between the core wire and the coating layer. In addition, this strain is characterized by being fixed and held by the coating layer.
【0012】本発明のパルス発生用磁性線の第1の製造
方法は、上記芯線用の素材の外側に上記被覆層用の素材
を設けた状態でこれらが溶融あるいは軟化する温度まで
加熱するとともに、上記芯線と被覆層が同時に所望の径
となるまで引き伸ばしたのち冷却することにより、芯線
と被覆層とを互いに密着させかつ両者の熱膨張率の相違
から上記被覆層によって芯線に引張りまたは圧縮のひず
みを付与するとともにこのひずみを上記被覆層によって
固定・保持することを特徴とする。In the first method for producing a magnetic wire for pulse generation of the present invention, while heating the material for the coating layer outside the material for the core wire to a temperature at which these melt or soften, By stretching the core wire and the coating layer at the same time until they have a desired diameter and then cooling them, the core wire and the coating layer are brought into close contact with each other and strain of tensile or compression on the core wire by the coating layer due to the difference in thermal expansion coefficient between the core wire and the coating layer. And the strain is fixed and held by the coating layer.
【0013】また、第2の製造方法は、予め所定の線径
に作られた上記芯線の外側に、加熱状態のもとで上記被
覆層をコーティングしたのち、冷却することにより、芯
線と被覆層との熱膨張率の相違から上記被覆層によって
芯線に引張りまたは圧縮のひずみを付与するとともに、
このひずみを上記被覆層によって固定・保持することを
特徴とする。In the second manufacturing method, the core wire and the cover layer are formed by coating the outside of the core wire having a predetermined wire diameter with the covering layer under a heated condition and then cooling the core wire. While imparting tensile or compression strain to the core wire by the coating layer from the difference in thermal expansion coefficient with,
It is characterized in that this strain is fixed and held by the coating layer.
【0014】上記芯線が正の磁歪材の場合は、被覆層と
してガラスを用いるとよい。正の磁歪材とは、磁化され
ると伸びる磁性材である。被覆層にガラスを用いた場
合、芯線に比べて被覆層の熱膨張率が小さいため、被覆
層の溶融温度まで加熱した状態で芯線に被覆層を被覆す
れば、室温に戻った時に芯線に引張りのひずみが生じる
ことになる。If the core wire is a positive magnetostrictive material, glass is preferably used as the coating layer. A positive magnetostrictive material is a magnetic material that expands when magnetized. When glass is used for the coating layer, the coefficient of thermal expansion of the coating layer is smaller than that of the core wire.Therefore, if the coating layer is coated on the core wire while being heated to the melting temperature of the coating layer, the core wire will be pulled when the temperature returns to room temperature. Distortion will occur.
【0015】逆に、芯線が負の磁歪材の場合には、被覆
層は例えばアルミニウム合金のように芯線よりも熱膨張
率の大きい非磁性金属を採用するとよい。負の磁歪材と
は、磁化されると縮む磁性材である。このように被覆層
に熱膨張率の大きい非磁性金属を用い、高温状態で被覆
層を芯線に被覆すれば、室温に戻った時に芯線に圧縮の
ひずみが生じることになる。On the other hand, when the core wire is a negative magnetostrictive material, the coating layer may be made of a non-magnetic metal such as an aluminum alloy having a larger coefficient of thermal expansion than the core wire. A negative magnetostrictive material is a magnetic material that contracts when magnetized. If the coating layer is made of a non-magnetic metal having a large coefficient of thermal expansion and the coating layer is coated on the core wire at a high temperature, compressive strain is generated in the core wire when the temperature returns to room temperature.
【0016】[0016]
【作用】磁性体の磁区が外部磁界の方向に向く時、すな
わち磁性体が磁化される時に磁性体にひずみが発生する
現象は磁歪として知られている。逆に、磁歪材を磁化す
る時に外部から磁界方向にひずみを加えれば磁化の時の
変形を助けることになるため磁化が容易になる。The phenomenon that strain occurs in the magnetic body when the magnetic domain of the magnetic body faces the direction of the external magnetic field, that is, when the magnetic body is magnetized is known as magnetostriction. On the contrary, when the magnetostrictive material is magnetized, if a strain is applied from the outside in the magnetic field direction, the deformation during the magnetization is assisted, and thus the magnetization is facilitated.
【0017】例えば、正の磁歪材を磁化する時に外部か
ら磁界方向に引張りひずみを加えれば磁化の時の変形を
助けることになり磁化が容易になる。つまり、磁気ヒス
テリシス曲線(B−H曲線)が角形になる傾向を示し、
磁界の変化に対して磁束密度の変化が急激になる。この
磁束密度の急激な変化に対応して検出用コイルに発生す
る電圧パルス出力が大きくなる。For example, if a tensile strain is applied from the outside when magnetizing a positive magnetostrictive material in the direction of the magnetic field, the deformation during the magnetization is assisted and the magnetization becomes easier. That is, the magnetic hysteresis curve (B-H curve) tends to be rectangular,
The change in the magnetic flux density becomes rapid with respect to the change in the magnetic field. The voltage pulse output generated in the detection coil increases in response to this rapid change in the magnetic flux density.
【0018】従って本発明のパルス発生用磁性線におい
て、正の磁歪材からなる芯線が被覆層によって引張りひ
ずみが与えられている場合、あるいは負の磁歪材からな
る芯線が被覆層によって圧縮のひずみが与えられている
場合、この磁性線に臨界磁界が与えられた時に、磁性線
の近傍に配置された検出用コイルに急峻な電圧パルスが
発生する。Therefore, in the pulse generating magnetic wire of the present invention, when the core wire made of the positive magnetostrictive material is given tensile strain by the coating layer, or the core wire made of the negative magnetostrictive material is compressed by the coating layer When given, when a critical magnetic field is applied to this magnetic wire, a steep voltage pulse is generated in the detection coil arranged near the magnetic wire.
【0019】本発明のパルス発生用磁性線は、前述した
先行技術1,2の複合磁性線のように中心層と外周層と
で保磁力が異なることによってパルス出力を発生させる
のではないため、印加する外部磁界を非対称にする必要
がなく、角形ヒステリシスループの臨界磁界以上の磁界
変化を与えれば急峻な電圧パルスが発生する。The pulse generating magnetic wire of the present invention does not generate a pulse output due to the difference in coercive force between the central layer and the outer peripheral layer unlike the composite magnetic wires of the prior arts 1 and 2 described above. It is not necessary to make the applied external magnetic field asymmetrical, and a steep voltage pulse is generated if a magnetic field change greater than the critical magnetic field of the rectangular hysteresis loop is applied.
【0020】[0020]
【実施例】図3に示すように、本実施例のパルス発生用
磁性線10は、磁性材料からなる芯線11と、この芯線
11とは熱膨張率の異なる非磁性材料からなる被覆層1
2とを有している。被覆層12は、芯線11の全周を覆
うように芯線11に密着・固定させられている。芯線1
1の一例はFe−Ni合金(パーマロイ)等の正の磁歪
材であり、被覆層12の一例はホウケイ酸ガラス(パイ
レックス)等のガラスである。EXAMPLE As shown in FIG. 3, a pulse generating magnetic wire 10 of this embodiment has a core wire 11 made of a magnetic material and a coating layer 1 made of a non-magnetic material having a different coefficient of thermal expansion from the core wire 11.
2 and. The coating layer 12 is in close contact with and fixed to the core wire 11 so as to cover the entire circumference of the core wire 11. Core wire 1
One example is a positive magnetostrictive material such as Fe-Ni alloy (permalloy), and one example of the coating layer 12 is glass such as borosilicate glass (Pyrex).
【0021】このパルス発生用磁性線10は、芯線11
と被覆層12との熱膨張率の相違により、芯線11に引
張りのひずみが付与されているとともに、このひずみが
被覆層12によって固定・保持されている。The magnetic wire 10 for pulse generation has a core wire 11
Due to the difference in the coefficient of thermal expansion between the core layer 11 and the coating layer 12, a tensile strain is applied to the core wire 11, and the strain is fixed and held by the coating layer 12.
【0022】上記磁性線10を製造する手段の一例とし
て、芯線11の紡糸と同時に被覆層12を被覆するガラ
ス被覆紡糸法が採用される。例えば、図1に模式的に示
す製造装置20において、芯線用の素材11aの外側に
被覆層用の素材12aが設けられており、この製造装置
20は、上記素材11a,12aを一体に軸線方向に送
る材料供給機構21と、これらの素材11a,12aが
溶融する温度まで素材11a,12aを加熱する高周波
誘導コイル等の加熱装置22と、素材11a,12aに
張力を加えることによって所望の径に引き伸ばされたも
のを冷却する冷却装置23と、得られた磁性線10を巻
取る巻取装置24などを備えている。As an example of means for producing the magnetic wire 10, a glass-coated spinning method is adopted in which the core wire 11 is spun and the coating layer 12 is coated at the same time. For example, in a manufacturing apparatus 20 schematically shown in FIG. 1, a material 12a for a coating layer is provided outside a material 11a for a core wire, and this manufacturing apparatus 20 integrates the materials 11a and 12a into an axial direction. To the material feeding mechanism 21, a heating device 22 such as a high frequency induction coil that heats the materials 11a and 12a to a temperature at which the materials 11a and 12a melt, and a tension is applied to the materials 11a and 12a to obtain a desired diameter. A cooling device 23 for cooling the stretched product, a winding device 24 for winding the obtained magnetic wire 10 and the like are provided.
【0023】上記素材11a,12aが加熱装置22に
よって所定温度まで加熱され、芯線用の素材11aが溶
融した箇所11b付近において芯線11と被覆層12が
所望の線径となるように引き伸ばされたのち、冷却装置
23によって冷却される。こうして得られた磁性線10
は、その冷却過程で芯線11の収縮量に比べて被覆層1
2の収縮量が小さいため、芯線11と被覆層12との熱
膨張率の相違から、被覆層12によって芯線11に引張
りひずみが付与されるとともに、このひずみが被覆層1
2によって固定・保持される。After the materials 11a and 12a are heated to a predetermined temperature by the heating device 22, the core wire 11 and the coating layer 12 are stretched so as to have a desired wire diameter near a portion 11b where the core wire material 11a is melted. , And is cooled by the cooling device 23. Magnetic wire 10 thus obtained
In comparison with the shrinkage of the core wire 11 during the cooling process, the coating layer 1
Since the shrinkage amount of 2 is small, a tensile strain is applied to the core wire 11 by the coating layer 12 due to the difference in thermal expansion coefficient between the core wire 11 and the coating layer 12, and this strain is applied to the coating layer 1 as well.
It is fixed and held by 2.
【0024】なお、芯線11の外側に被覆層12を設け
るための手段として、図4に示すコーティング装置30
のように、予め所定の線径に作られた芯線11の外側
に、軟化あるいは溶融温度まで加熱された被覆層用の素
材12aをコーティングしたのち、冷却するようにして
もよい。このコーティング装置30は、芯線供給機31
と、加熱装置32と、巻取機33などを備えている。こ
の場合も、芯線11と被覆層12との熱膨張率の相違か
ら、被覆層12によって芯線11に引張りまたは圧縮の
ひずみが付与されるとともに、このひずみが被覆層12
によって固定・保持される。なお、上述のコーティング
装置30は芯線11を紡糸する設備と直結してもよい
し、あるいは一度巻取った芯線11に、コーティング装
置30によって被覆層12のコーティングを行うように
してもよい。As a means for providing the coating layer 12 on the outside of the core wire 11, the coating device 30 shown in FIG.
As described above, the core wire 11 having a predetermined wire diameter may be coated on the outside with the material 12a for the coating layer that has been heated to the softening or melting temperature and then cooled. The coating device 30 includes a core wire feeder 31.
And a heating device 32, a winder 33, and the like. Also in this case, due to the difference in the coefficient of thermal expansion between the core wire 11 and the coating layer 12, the coating layer 12 gives a tensile or compressive strain to the core wire 11, and this strain is applied to the coating layer 12 as well.
It is fixed and held by. The above-mentioned coating device 30 may be directly connected to the equipment for spinning the core wire 11, or the once wound core wire 11 may be coated with the coating layer 12 by the coating device 30.
【0025】上記磁性線10は、正の磁歪材からなる芯
線11に、熱膨張率の小さい被覆層12によって引張り
のひずみが付与・固定されているので、外部から臨界磁
界が与えられた時に、検出用コイルに急峻な電圧パルス
が発生する。この電圧パルスは、中心部と表面部とで保
磁力が異なる複合磁性線に見られるようなパルス出力で
はないので、印加する交番磁界を非対称にする必要がな
く、図5に示すように角形ヒステリシスループの臨界磁
界以上の磁界変化を与えれば急峻な電圧パルスが発生す
る。このため、磁界センサや回転センサへの応用が容易
である。Since the magnetic wire 10 has tensile strain applied and fixed to the core wire 11 made of a positive magnetostrictive material by the coating layer 12 having a small coefficient of thermal expansion, when a critical magnetic field is applied from the outside, A steep voltage pulse is generated in the detection coil. Since this voltage pulse does not have a pulse output as seen in a composite magnetic wire having different coercive force between the central portion and the surface portion, it is not necessary to make the alternating magnetic field to be applied asymmetrical, and as shown in FIG. A steep voltage pulse is generated when a magnetic field change greater than the critical magnetic field of the loop is applied. Therefore, it can be easily applied to a magnetic field sensor and a rotation sensor.
【0026】図6は上記実施例の磁性線10のパルス出
力と従来の磁性線(パーマロイ線)のパルス出力を比較
したものであり、本実施例の磁性線10は従来品に比べ
て大きなパルス出力が得られている。FIG. 6 compares the pulse output of the magnetic wire 10 of the above embodiment with the pulse output of the conventional magnetic wire (permalloy wire). The magnetic wire 10 of this embodiment has a larger pulse than the conventional product. The output is obtained.
【0027】本実施例の磁性線10は、ねじりひずみで
はなく、芯線11と被覆層12との熱膨張率の違いによ
ってひずみを付与するため芯線11の全長にわたって連
続的に安定したひずみを付与できる。従ってパルス出力
が安定しており、ばらつきが小さい磁性線10が得られ
る。この場合、芯線11に被覆層12を被覆することで
芯線11に引張りまたは圧縮ひずみを簡単に付与でき、
しかもひずみの固定が被覆層12の被覆によって同時に
行われるため生産性が高く、低コスト化が可能であり、
しかも経年劣化が少なく、信頼性が高いものである。The magnetic wire 10 of this embodiment is not a torsional strain but a strain due to the difference in the coefficient of thermal expansion between the core wire 11 and the coating layer 12. Therefore, a stable strain can be continuously applied over the entire length of the core wire 11. . Therefore, the pulse output is stable, and the magnetic wire 10 having a small variation can be obtained. In this case, by covering the core wire 11 with the coating layer 12, tensile or compressive strain can be easily applied to the core wire 11,
Moreover, since the strain is fixed simultaneously by the coating of the coating layer 12, the productivity is high and the cost can be reduced.
Moreover, it has little deterioration over time and is highly reliable.
【0028】なお、芯線11として上述のFe−Ni合
金(パーマロイ)以外に、例えば、Fe2 O3 (フェラ
イト)、Fe−Ni−Mo合金(スーパーマロイ)、F
e−Co−V合金(バイカロイ)、Fe−Si−Al合
金(センダスト)などが使われてもよい。パーマロイの
融点は約1440℃、バイカロイの融点は約1460
℃、センダストの融点は約1480℃であるから、被覆
層12の軟化点との関係で上記磁性合金のうち適当なも
のを選択すればよい。これらの磁性合金の熱膨張率は、
(10〜15)×10-6位である。芯線11の線径は数
μmから数100μm程度が適当である。芯線11の断
面形状は真円であることが望ましいが、楕円や多角形等
であってもかまわない。In addition to the above Fe-Ni alloy (permalloy) as the core wire 11, for example, Fe 2 O 3 (ferrite), Fe-Ni-Mo alloy (supermalloy), F
An e-Co-V alloy (Baicalloy), a Fe-Si-Al alloy (Sendust), etc. may be used. Permalloy has a melting point of about 1440 ° C, Baicalloy has a melting point of about 1460
Since the melting point of C. and Sendust is about 1480.degree. C., an appropriate one may be selected from the above magnetic alloys in relation to the softening point of the coating layer 12. The coefficient of thermal expansion of these magnetic alloys is
It is (10 to 15) × 10 −6 . The diameter of the core wire 11 is preferably several μm to several hundred μm. The cross-sectional shape of the core wire 11 is preferably a perfect circle, but may be an ellipse, a polygon, or the like.
【0029】被覆層12がガラスの場合、96%シリカ
ガラス(バイコール)が採用されてもよい。バイコール
の軟化点1550℃、熱膨張率は(0.8〜15)×1
0-6である。パイレックスの場合は軟化点820℃、熱
膨張率は(3.2〜15)×10-6である。被覆層12
としてこのようなガラスを用いた場合には、芯線11よ
りも熱膨張率が小さいので、芯線11に引張りが作用す
る。このため芯線11が正の磁歪材の場合に適用され
る。When the coating layer 12 is glass, 96% silica glass (Vycor) may be used. Vycor softening point 1550 ° C, coefficient of thermal expansion (0.8-15) x 1
0 -6. In the case of Pyrex, the softening point is 820 ° C. and the coefficient of thermal expansion is (3.2 to 15) × 10 −6 . Coating layer 12
When such a glass is used, the coefficient of thermal expansion is smaller than that of the core wire 11, so that the core wire 11 is pulled. Therefore, it is applied when the core wire 11 is a positive magnetostrictive material.
【0030】芯線11が負の磁歪材の場合、被覆層12
に芯線11よりも熱膨張率の大きいアルミニウム等の非
磁性金属を用いることによって、芯線11に圧縮のひず
みを生じさせる。非磁性金属からなる被覆層12の場
合、アルミニウム以外に、銅,亜鉛などが使われてもよ
い。アルミニウムの融点は660℃、熱膨張率は29×
10-6である。銅の融点は1086℃、熱膨張率は20
×10-6である。亜鉛の融点は420℃、熱膨張率は3
0×10-6である。When the core wire 11 is a negative magnetostrictive material, the coating layer 12
By using a non-magnetic metal such as aluminum having a thermal expansion coefficient larger than that of the core wire 11, a compression strain is generated in the core wire 11. In the case of the coating layer 12 made of a non-magnetic metal, copper, zinc or the like may be used in addition to aluminum. Aluminum has a melting point of 660 ° C and a coefficient of thermal expansion of 29 ×
It is 10 -6 . The melting point of copper is 1086 ° C and the coefficient of thermal expansion is 20.
It is × 10 -6 . Zinc has a melting point of 420 ° C and a coefficient of thermal expansion of 3
It is 0 × 10 -6 .
【0031】このように被覆層12に芯線11よりも熱
膨張率の大きい非磁性金属が用いられた場合には、冷却
の過程で芯線11の収縮量に比べて被覆層12の収縮量
が大きいため、被覆層12によって芯線11に圧縮のひ
ずみが付与されるとともに、このひずみが被覆層12に
よって固定・保持される。When a non-magnetic metal having a coefficient of thermal expansion larger than that of the core wire 11 is used for the coating layer 12 as described above, the shrinkage amount of the coating layer 12 is larger than the shrinkage amount of the core wire 11 in the cooling process. Therefore, the coating layer 12 imparts a compressive strain to the core wire 11, and the strain is fixed and held by the coating layer 12.
【0032】[0032]
【発明の効果】本発明のパルス発生用磁性線によれば、
印加する交番磁界を非対称にする必要がなく、角形ヒス
テリシスループの臨界磁界以上の簡単な磁界変化を与え
ることによって急峻な電圧パルスが発生するため、磁界
センサや回転センサへの応用が容易である。そして本発
明によれば、芯線に均一にひずみを与えることが容易で
あるため、パルスの出力特性が均一かつ安定した磁性線
を低コストで製造でき、量産性がきわめて良い。そして
本発明のパルス発生用磁性線は経年劣化が少なく信頼性
が高いものである。According to the magnetic wire for pulse generation of the present invention,
Since it is not necessary to make the applied alternating magnetic field asymmetrical and a sharp voltage pulse is generated by giving a simple magnetic field change above the critical magnetic field of the rectangular hysteresis loop, application to a magnetic field sensor or a rotation sensor is easy. Further, according to the present invention, since it is easy to uniformly apply strain to the core wire, a magnetic wire having uniform and stable pulse output characteristics can be manufactured at low cost, and mass productivity is extremely good. The magnetic wire for pulse generation of the present invention has little deterioration over time and has high reliability.
【図1】本発明のパルス発生用磁性線を製造する装置と
素材を模式的に示す断面図。FIG. 1 is a sectional view schematically showing an apparatus and a material for producing a magnetic wire for pulse generation of the present invention.
【図2】図1に示された装置と素材の一部の拡大図。2 is an enlarged view of a portion of the apparatus and material shown in FIG.
【図3】本発明の一実施例を示すパルス発生用磁性線の
断面図。FIG. 3 is a sectional view of a magnetic wire for pulse generation showing an embodiment of the present invention.
【図4】芯線に被覆層をコーティングする装置を模式的
に示す断面図。FIG. 4 is a cross-sectional view schematically showing an apparatus for coating a core wire with a coating layer.
【図5】本発明の磁性線と従来の磁性線の磁気ヒステリ
シス曲線を比較した図。FIG. 5 is a diagram comparing magnetic hysteresis curves of a magnetic wire of the present invention and a conventional magnetic wire.
【図6】本発明の磁性線と従来の磁性線のパルス出力を
比較した図。FIG. 6 is a diagram comparing pulse outputs of the magnetic wire of the present invention and a conventional magnetic wire.
10…パルス発生用磁性線 11…芯線 12…被覆層 20…磁性線製造装置 10 ... Magnetic wire for pulse generation 11 ... Core wire 12 ... Coating layer 20. Magnetic wire manufacturing device
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 41/00 G01R 33/02 H01F 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01F 41/00 G01R 33/02 H01F 1/00
Claims (5)
膨張率の異なる非磁性材料からなりかつ上記芯線を覆う
ように芯線の外側に密着させられた被覆層とを有し、上
記芯線と被覆層との熱膨張率の相違から上記被覆層によ
って上記芯線に引張りまたは圧縮のひずみが付与されか
つこのひずみが上記被覆層によって固定・保持されたこ
とを特徴とするパルス発生用磁性線。1. A core wire made of a magnetic material, and a coating layer made of a non-magnetic material having a different coefficient of thermal expansion from the core wire and being closely adhered to the outside of the core wire so as to cover the core wire. A magnetic wire for pulse generation characterized in that a tensile or compressive strain is applied to the core wire by the coating layer due to a difference in thermal expansion coefficient between the coating layer and the coating layer, and the strain is fixed and held by the coating layer.
層がガラスであることを特徴とする請求項1記載のパル
ス発生用磁性線。2. The magnetic wire for pulse generation according to claim 1, wherein the core wire is a positive magnetostrictive material and the coating layer is glass.
層が上記芯線よりも熱膨張率の大きい非磁性金属である
ことを特徴とする請求項1記載のパルス発生用磁性線。3. The pulse generating magnetic wire according to claim 1, wherein the core wire is a negative magnetostrictive material, and the coating layer is a non-magnetic metal having a coefficient of thermal expansion larger than that of the core wire.
上記芯線用の素材とは熱膨張率の異なる非磁性材料から
なる被覆層用の素材を設けた状態で、これら双方の素材
が溶融あるいは軟化する温度まで加熱するとともに、上
記芯線と被覆層が同時に所望の径となるまで引き伸ばし
たのち冷却することにより、上記芯線と被覆層とを互い
に密着させかつ両者の熱膨張率の相違から上記被覆層に
よって上記芯線に引張りまたは圧縮のひずみを付与しか
つこのひずみを上記被覆層によって固定・保持すること
を特徴とするパルス発生用磁性線の製造方法。4. An outer surface of a core material made of a magnetic material,
With the material for the coating layer made of a non-magnetic material having a different coefficient of thermal expansion from the material for the core wire, while heating to a temperature at which these two materials melt or soften, the core wire and the coating layer simultaneously. By stretching and cooling to a desired diameter, the core wire and the coating layer are brought into close contact with each other and a tensile or compression strain is applied to the core wire by the coating layer due to the difference in thermal expansion coefficient between the core wire and the coating layer. A method for producing a magnetic wire for pulse generation, characterized in that strain is fixed and held by the coating layer.
る芯線の外側に、この芯線とは熱膨張率の異なる非磁性
材料からなる被覆層を加熱状態のもとでコーティングし
たのち冷却することにより、上記芯線と被覆層との熱膨
張率の相違から上記被覆層によって上記芯線に引張りま
たは圧縮のひずみを付与しかつこのひずみを上記被覆層
によって固定・保持することを特徴とするパルス発生用
磁性線の製造方法。5. A coating layer made of a non-magnetic material having a coefficient of thermal expansion different from that of the core wire is coated on the outside of the core wire made of a magnetic material having a predetermined wire diameter in a heated state and then cooled. By applying a strain of tensile or compression to the core wire by the coating layer from the difference in the coefficient of thermal expansion of the core wire and the coating layer, and this strain is fixed and held by the coating layer pulse Method of manufacturing magnetic wire for generation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30002793A JP3419519B2 (en) | 1993-11-30 | 1993-11-30 | Pulse generating magnetic wire and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30002793A JP3419519B2 (en) | 1993-11-30 | 1993-11-30 | Pulse generating magnetic wire and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07153639A JPH07153639A (en) | 1995-06-16 |
JP3419519B2 true JP3419519B2 (en) | 2003-06-23 |
Family
ID=17879829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30002793A Expired - Fee Related JP3419519B2 (en) | 1993-11-30 | 1993-11-30 | Pulse generating magnetic wire and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3419519B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RO111513B1 (en) * | 1995-12-27 | 1999-12-30 | Institutul Naţional De Cercetare - Dezvoltare Pentru Fizică Tehnică-Ift Iaşi | Amorphous and nano-crystalline magnetic yarns which are covered with glass and preparation process therefor |
JP5799566B2 (en) * | 2011-04-26 | 2015-10-28 | 富士ゼロックス株式会社 | Paper |
-
1993
- 1993-11-30 JP JP30002793A patent/JP3419519B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07153639A (en) | 1995-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vazquez et al. | A soft magnetic wire for sensor applications | |
Vazquez et al. | Magnetic bistability of amorphous wires and sensor applications | |
JP4011849B2 (en) | RESONATOR AND MANUFACTURING METHOD, MARKER AND MAGNETIC MECHANICAL ELECTRONIC MONITORING | |
Marın et al. | Applications of amorphous and nanocrystalline magnetic materials | |
US5032947A (en) | Method of improving magnetic devices by applying AC or pulsed current | |
US4053331A (en) | Method of making amorphous metallic alloys having enhanced magnetic properties by using tensile stress | |
CA1111969A (en) | Bistable magnetostrictive device and methods of manufacture | |
CA1145009A (en) | Magnetic transducer and proximity detection device incorporating such a transducer | |
JPH09148117A (en) | Long-length body for electromagnetic robbery prevention device and its preparation | |
JP3419519B2 (en) | Pulse generating magnetic wire and method of manufacturing the same | |
US5494534A (en) | Method of heat treating an amorphous soft magnetic article | |
US4913750A (en) | Amorphous magnetic wire | |
JPH0470792B2 (en) | ||
US5707753A (en) | Pulse generating element and a method and an apparatus for manufacturing the same | |
Costa et al. | Effects of longitudinal currents and torsion on the magnetization processes in amorphous wires | |
Chizhik et al. | Circular magnetic bistability induced by tensile stress in glass-covered amorphous microwires | |
JPS61181114A (en) | Manufacture of rolled iron core | |
Chizhik et al. | Kerr microscopy study of magnetic domain structure changes in amorphous microwires | |
JP2955998B2 (en) | Composite magnetic wire | |
Takemura et al. | Frequency dependence of output voltage generated from bundled compound magnetic wires | |
Cobero et al. | Matteucci effect in glass coated microwires | |
US6120617A (en) | Method for manufacturing a magnetic pulse generator | |
Onufer et al. | Dynamics of Single Domain Wall Propagating in Bistable Microwire in Rapidly Changing Magnetic Field | |
JPS60123078A (en) | Torque sensor | |
Humphrey | Applications of amorphous wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |