JPH01100870A - Manufacture of lead storage battery - Google Patents

Manufacture of lead storage battery

Info

Publication number
JPH01100870A
JPH01100870A JP62258568A JP25856887A JPH01100870A JP H01100870 A JPH01100870 A JP H01100870A JP 62258568 A JP62258568 A JP 62258568A JP 25856887 A JP25856887 A JP 25856887A JP H01100870 A JPH01100870 A JP H01100870A
Authority
JP
Japan
Prior art keywords
sulfuric acid
electrode group
separator
lead
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62258568A
Other languages
Japanese (ja)
Inventor
Kiyoshi Koyama
潔 小山
Kenjiro Kishimoto
岸本 健二郎
Tadashi Nakada
中田 正
Kenichiro Yamazaki
健一郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP62258568A priority Critical patent/JPH01100870A/en
Publication of JPH01100870A publication Critical patent/JPH01100870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To manufacture a lead storage battery at a low cost and simply by arranging a separator including a high polymer material which swells by absorbing sulfuric acid between positive and negative electrode plates to form an electrode group, inserting the electrode group in a battery jar without applying pressure, and pouring a sulfuric acid water solution. CONSTITUTION:A separator including a high polymer material which swells by absorbing sulfuric acid is arranged between a positive electrode and a negative electrode to form an electrode group. The electrode group is inserted in a battery jar without applying pressure, and a sulfuric acid water solution is poured. As the high polymer material, a normal chain form of amino- polyvinylchloride made by displacing a part of hydrogen atoms of polyvinylchloride with an amino radical, for example, can be used. Since the separator absorbs sulfuric acid and generates and keeps a pressure, it is not necessary to apply a pressure when the electrode group is inserted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の製造方法の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to improvements in the manufacturing method of lead-acid batteries.

従来技術とその問題点 従来、鉛蓄電池の寿命原因は、正極活物質の脱落による
正極板の容量低下が主であった。正極活物質の脱落を防
止する方法としては、■正、負極板をセパレータを介し
て積層した極群の両側から2019/(M程度の圧力を
加える方法、■正極活物質の充填密度を大きくする方法
、■正、負極板間に弾力性を有するガラスマットを配す
る方法がある。しかし、■の方法では、極群を加圧しな
がら電槽内に挿入する工程が必要となり、この極群の加
圧挿入工程は製造工程全体の中でもかなり困難な工程と
なっていた。また■の方法では、高率放電特性が低下し
、初期容量も劣るという欠点があった。更に■の方法で
は、ガラスマットが非常に高価であるため、製造コスト
が上昇するという欠点があった。
Prior art and its problems Conventionally, the main cause of the lifespan of lead-acid batteries was a decrease in the capacity of the positive electrode plate due to shedding of the positive electrode active material. Methods for preventing the cathode active material from falling off include: ■ Applying pressure of about 2019/(M) from both sides of the electrode group in which positive and negative electrode plates are laminated with a separator in between; ■ Increasing the packing density of the cathode active material. There is a method (1) in which an elastic glass mat is placed between the positive and negative electrode plates. However, method (2) requires a step of inserting the electrode group into the battery case while pressurizing it. The pressurized insertion process was a fairly difficult process in the entire manufacturing process.In addition, the method (■) had the drawbacks of poor high-rate discharge characteristics and inferior initial capacity.Furthermore, the method (■) Since the mat is very expensive, the manufacturing cost has increased.

発明の目的 本発明は上記欠点を解消したもので、安価な鉛蓄電池を
簡単に製造できる方法を提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned drawbacks and provides a method for easily manufacturing inexpensive lead-acid batteries.

発明の構成 本発明は、その特許請求の範囲に記載した通りの鉛蓄電
池の製造方法であるり 実施例 本発明の一実施例を詳述する。先ず最初に、電解液であ
る硫酸水溶液中の硫酸を吸収することによって膨潤し、
その体積がマクロ的に増加する高分子材料を含有するセ
パレータを準備する。次に該セパレータを正、負極板間
に配して極群を形成した後、該極群を加圧せずに電槽内
に挿入し、その後硫酸水溶液を注入する・本発明に用い
る上記高分子材料としては、例えばポリ塩化ビニμの水
素原子の一部をアミノ基で置換した直鎖状のアミノ化ポ
リ塩化ビニルを用いることができる。アミノ化ポリ塩化
ビニルは、アミノ基(−NH2)の部分でプロトン(水
素イオン)を固定し、アニオン(硫酸イオン)を直錯状
の高分子間に吸着する能力を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a method for manufacturing a lead-acid battery as set forth in the claims thereof.Embodiment An embodiment of the present invention will be described in detail. First, it swells by absorbing sulfuric acid in an electrolytic solution, sulfuric acid aqueous solution.
A separator containing a polymeric material whose volume increases macroscopically is prepared. Next, after placing the separator between the positive and negative electrode plates to form an electrode group, the electrode group is inserted into the battery case without applying pressure, and then an aqueous sulfuric acid solution is injected. As the molecular material, for example, a linear aminated polyvinyl chloride obtained by substituting some of the hydrogen atoms of polyvinyl chloride μ with amino groups can be used. Aminated polyvinyl chloride has the ability to fix protons (hydrogen ions) at the amino group (-NH2) and adsorb anions (sulfate ions) between the straight polymer molecules.

なお、本発明に用いる高分子材料としてはアミノ化ポリ
塩化ビニ〃に限定されるものではなく、硫酸を吸収する
ことによって膨潤して体積がマクロ的に増加するもので
あれば他の材料な月いてもよい。
The polymer material used in the present invention is not limited to aminated polyvinyl chloride, but other materials may be used as long as they swell and increase their volume macroscopically by absorbing sulfuric acid. You can stay there.

第1表は本発明に用いるセパレータの硫酸吸収時の特性
表である。セパレータとしては、直径10〜100μm
1長さ10〜30鰭のアミノ化ポリ塩化ビニ/L/(ア
ミノ化度30%)の繊維を、厚さ1.Q鶴、重さ7.5
7g/d!の不織布に形成して用いた。
Table 1 shows the characteristics of the separator used in the present invention when it absorbs sulfuric acid. As a separator, the diameter is 10 to 100 μm.
1 Fibers of aminated polyvinyl chloride/L/(degree of amination 30%) having a length of 10 to 30 fins are woven into a fiber having a thickness of 1. Q crane, weight 7.5
7g/d! It was formed into a nonwoven fabric and used.

1g1表 第1表から明らかな通り、本発明に用いるセパレータの
厚さは、硫酸を吸収して膨潤すると、その体積がマクロ
的に増加し、厚さが約1.5倍に増大する。また、上記
セパレータの厚さを1略に固定した状態で硫酸を吸収さ
せると、約20k(i / d!の圧力を発生させるこ
とができる。この圧力は硫酸水溶液の比重によって大き
く変動することはなく、氷続的に圧力を保持できる。従
って、極群を電槽内に挿入する際に加圧しなくてもよく
、挿入後に電解液を注入するだけで極群を加圧すること
ができる。
As is clear from Table 1, when the separator used in the present invention absorbs sulfuric acid and swells, its volume increases macroscopically and its thickness increases by about 1.5 times. Furthermore, if sulfuric acid is absorbed while the thickness of the separator is fixed to approximately 1, a pressure of about 20 k (i/d!) can be generated. This pressure does not vary greatly depending on the specific gravity of the sulfuric acid aqueous solution. Therefore, there is no need to apply pressure when inserting the electrode group into the battery container, and the electrode group can be pressurized simply by injecting electrolyte after insertion.

次に上記厚さ1継のセパレータを用い、極群に発生する
圧力を約20 kf/(Mに設定した本発明方法による
鉛蓄電池(21−t!yv )と、正、負極板間に厚さ
1鰭のガラスマットを2枚配して形成した極群に約20
帥/dAの圧力を加えた従来方法による鉛蓄電池(2V
セ/L/)とをそれぞれ試作した。試作電池の容量はい
ずれも4.2AH(20時間率)である。この試作電池
を用いて初期放電特性(第1図)とサイクル使用中の放
電容量変化(第2図)を測定した。なお、初期放電特性
は、25℃、1.03A(3時間率)で放電した時の電
圧変化で示した。また、サイクル使用中の放電容量変化
は、25℃、1.03ム(3時間率)で定格容量の75
%放電と、25℃、0.681(5時間率)で放電量の
125%充電とを1サイク〃として充放電を繰返した時
の放電容量変化で示した。
Next, a lead-acid battery (21-t!yv) according to the method of the present invention in which the pressure generated in the electrode group was set to about 20 kf/(M) using the above-mentioned one-thickness separator, and a thickness between the positive and negative electrode plates. Approximately 20
A lead-acid battery (2V
C/L/) were prototyped. The capacity of the prototype batteries is 4.2AH (20 hour rate). Using this prototype battery, initial discharge characteristics (Figure 1) and changes in discharge capacity during cycle use (Figure 2) were measured. In addition, the initial discharge characteristics were shown by the voltage change when discharging at 25° C. and 1.03 A (3 hour rate). In addition, the discharge capacity change during cycle use is 75% of the rated capacity at 25°C and 1.03 μm (3 hour rate).
% discharge and charging at 125% of the discharge amount at 25° C. and 0.681 (5 hour rate) as one cycle, and the change in discharge capacity is shown when charging and discharging are repeated.

第1図、第2図から明らかな通り、本発明方法による鉛
蓄電池は、初期放電特性及びサイクル使用中の放電容量
変化共に従来方法による鉛蓄電池とほぼ同等の特性を示
している。
As is clear from FIGS. 1 and 2, the lead-acid battery manufactured by the method of the present invention exhibits characteristics that are almost the same as those of the lead-acid battery manufactured by the conventional method, both in terms of initial discharge characteristics and changes in discharge capacity during cycle use.

上記実施例では、セパレータ全体を前記高分子材料の繊
維のみで形成した例を示したが、セパレータを前記高分
子材料の繊維で主体に形成すると共にその一部に他の繊
維又は粉粒体を混抄又は混合して形成してもよい。
In the above embodiment, an example was shown in which the entire separator was formed only from the fibers of the polymeric material, but the separator may be formed mainly from the fibers of the polymeric material, and part of it may also contain other fibers or powder particles. It may be formed by mixing or mixing.

また、上記実施例では、セパレータとして不織布を用い
た例を示したが、本発明はこれに限定されるものではな
い・他の例としてセパレータを前記高分子材料を主体と
した織布又はフィルム又はシートで形成してもよい。セ
パレータとして前記高分子材料からなるフィルム又はシ
−トを用いた場合、このフィルム又はシートは無孔であ
るが、硫酸を吸収して膨潤すると体積がマクロ的に増加
すると共に、吸収した硫酸を充放電反応に伴って放出又
は再吸収できるようになる0即ち、放電により極板中の
硫酸イオンが消費され濃度が低下するとフィルム又はシ
ート中に吸収されていた硫酸が極板中に供給され、充電
により極板中の硫酸イオンが増加して高濃度になるとフ
ィルム又はシート中に硫酸を吸収する。また、このフィ
ルム又はシートは無孔であるため、正、負極板間の短絡
の恐れを少なくできる。
Further, in the above embodiment, an example was shown in which a nonwoven fabric was used as the separator, but the present invention is not limited to this. As another example, the separator may be a woven fabric or film mainly made of the above-mentioned polymeric material. It may also be formed from a sheet. When a film or sheet made of the above-mentioned polymer material is used as a separator, the film or sheet is non-porous, but when it absorbs sulfuric acid and swells, its volume increases macroscopically and it fills with the absorbed sulfuric acid. In other words, when the sulfate ions in the electrode plate are consumed by discharge and the concentration decreases, the sulfuric acid that was absorbed in the film or sheet is supplied to the electrode plate, and charging When the sulfate ions in the electrode plate increase and reach a high concentration, the sulfuric acid is absorbed into the film or sheet. Furthermore, since this film or sheet is non-porous, the possibility of short circuit between the positive and negative electrode plates can be reduced.

更に前記本発明方法による鉛蓄電池(27セ〃)を3七
μ構造にした鉛蓄電池・(6v)と、前記従来方法によ
る鉛蓄電池(2V−に/I/)を5セル構造にした鉛蓄
電池(6v)とを試作し、それぞれの製造時間を測定し
た。その結果、本発明方法による上記鉛蓄電池の製造時
間は、従来方法による上記鉛蓄電池の製造時間に比較し
て、約40%の時間短縮を実現できた。
Furthermore, a lead-acid battery (6V) made by the method of the present invention (27 cells) made into a 37μ structure, and a lead-acid battery made by the conventional method (2V-/I/) made into a 5-cell structure. (6v) and the manufacturing time of each was measured. As a result, the manufacturing time of the lead-acid battery according to the method of the present invention was reduced by about 40% compared to the manufacturing time of the lead-acid battery according to the conventional method.

発明の効果 本発明はその特許請求の範囲に記載した通りの製造方法
であるため、下記の効果がある。
Effects of the Invention Since the present invention is a manufacturing method as described in the claims, it has the following effects.

(1)極群を電槽内に挿入する際に加圧しなくてもよく
、挿入後に電解液を注入するだけで標群な加圧すること
ができる。
(1) There is no need to apply pressure when inserting the electrode group into the battery container, and standard pressure can be applied just by injecting electrolyte after insertion.

(2)(1)の効果により、製造工程が簡単になると共
に製造時間を短縮することができる。
(2) Due to the effect of (1), the manufacturing process can be simplified and the manufacturing time can be shortened.

(3)従来のガラスマットを用いる必要がなく、製造コ
ストが低下する。
(3) There is no need to use conventional glass mats, reducing manufacturing costs.

(4)  セパレータの厚さを薄くでき、鉛蓄電池を薄
型にすることかできる。
(4) The thickness of the separator can be reduced, allowing lead-acid batteries to be made thinner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は初期放電特性を示す関係図、第2図はサイクル
使用中の放電容量変化を示す関係図である。
FIG. 1 is a relational diagram showing initial discharge characteristics, and FIG. 2 is a relational diagram showing changes in discharge capacity during cycle use.

Claims (1)

【特許請求の範囲】 1)硫酸を吸収することによって膨潤してマクロ的に体
積が増加する高分子材料を含有するセパレータを準備し
、該セパレータを正、負極板間に配して極群を形成した
後、該極群を加圧せずに電槽内に挿入し、その後硫酸水
溶液を注入することを特徴とする鉛蓄電池の製造方法。 2)前記セパレータが、前記高分子材料を主体として形
成された不織布である特許請求の範囲第1項に記載の鉛
蓄電池の製造方法。 3)前記セパレータが、前記高分子材料を主体として形
成されたフィルム又はシートである特許請求の範囲第1
項に記載の鉛蓄電池の製造方法。
[Claims] 1) A separator containing a polymeric material that swells and macroscopically increases in volume by absorbing sulfuric acid is prepared, and the separator is arranged between positive and negative electrode plates to form an electrode group. A method for manufacturing a lead-acid battery, which comprises inserting the electrode group into a battery case without applying pressure after forming the electrode group, and then injecting a sulfuric acid aqueous solution. 2) The method for manufacturing a lead-acid battery according to claim 1, wherein the separator is a nonwoven fabric mainly made of the polymer material. 3) Claim 1, wherein the separator is a film or sheet mainly made of the polymer material.
A method for manufacturing a lead-acid battery as described in section.
JP62258568A 1987-10-14 1987-10-14 Manufacture of lead storage battery Pending JPH01100870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258568A JPH01100870A (en) 1987-10-14 1987-10-14 Manufacture of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258568A JPH01100870A (en) 1987-10-14 1987-10-14 Manufacture of lead storage battery

Publications (1)

Publication Number Publication Date
JPH01100870A true JPH01100870A (en) 1989-04-19

Family

ID=17322047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258568A Pending JPH01100870A (en) 1987-10-14 1987-10-14 Manufacture of lead storage battery

Country Status (1)

Country Link
JP (1) JPH01100870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251357A1 (en) * 2001-04-19 2002-10-23 Acam-messelectronic GmbH Resistance measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251357A1 (en) * 2001-04-19 2002-10-23 Acam-messelectronic GmbH Resistance measurement

Similar Documents

Publication Publication Date Title
JPH0584033B2 (en)
JPH01100870A (en) Manufacture of lead storage battery
JP3555177B2 (en) Sealed lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH0197372A (en) Lead-acid battery
JPS6065475A (en) Enclosed lead storage battery
JPH01115054A (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH04206165A (en) Negative electrode gas absorbing type sealed type lead acid battery
JPS6211466B2 (en)
JPS601757A (en) Manufacture of sealed lead storage battery
JPS63152853A (en) Process for manufacturing separator for enclosed type lead storage battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP2581237B2 (en) Manufacturing method of sealed lead-acid battery
JPH03152860A (en) Separator for lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPS60185370A (en) Enclosed type lead storage battery
JPH03246871A (en) Manufacture of sealed lead-acid battery
JPS62170173A (en) Sealed lead-acid battery
JPH046757A (en) Manufacture of sealed lead-acid battery
JPH0582706B2 (en)
JPH03152864A (en) Separator for lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPS62216159A (en) Separator for sealed type lead-storage battery
JPH01267950A (en) Separator for battery