JPH0582706B2 - - Google Patents

Info

Publication number
JPH0582706B2
JPH0582706B2 JP61256471A JP25647186A JPH0582706B2 JP H0582706 B2 JPH0582706 B2 JP H0582706B2 JP 61256471 A JP61256471 A JP 61256471A JP 25647186 A JP25647186 A JP 25647186A JP H0582706 B2 JPH0582706 B2 JP H0582706B2
Authority
JP
Japan
Prior art keywords
lead
weight
separator
titanium oxide
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61256471A
Other languages
Japanese (ja)
Other versions
JPS63110547A (en
Inventor
Kenji Hyodo
Masaoki Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP61256471A priority Critical patent/JPS63110547A/en
Publication of JPS63110547A publication Critical patent/JPS63110547A/en
Publication of JPH0582706B2 publication Critical patent/JPH0582706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(A) 産業上の利用分野 本発明は鉛蓄電池に用いる隔離板に関するもの
であり、特に正極に鉛アンチモン合金を用いてい
る鉛蓄電池用隔離板に関するものである。 (B) 従来の技術 鉛蓄電池の隔離板は、強酸化剤である二酸化鉛
と物理的に接触し、比重1.2−1.3の硫酸水溶液中
に配置されることから、これに耐える材質からな
つている。 現在使われている隔離板には天然コムや合成ゴ
ムに含水シリカと加硫剤なとを添加しシート状に
したのち、飽和水蒸気中で加硫したものやリンタ
ー、リラフトなどの抄造紙にフエノール樹脂溶液
を含浸し、加熱硬化させたものなどが用いられて
いる。 さらに最近ではフイブリル化したポリエチレン
繊維とアクリル繊維及びシリカなどの充填剤から
なるシートを形成し、加熱融着して一体化したも
のやシリカとオイルを混合した溶融ポリエチレン
をシート状に押し出し成形したのち、オイルを抽
出したものなどが使われている。 ゴム隔離板はシリカゲルの細孔を利用し、紙や
合成パルプ隔離板は、構成する繊維の交差した隙
間を孔として利用している。鉛蓄電池の作用物質
は数μm〜十数μ程度の鉛粉を原料としているた
め、作用物質は脱落しやすく、脱落したこれらの
粒子が充電中に発生するガスにより浮遊し隔離板
の細孔中に侵入して、内部抵抗を増加させたり、
粒子が相互に連結し短絡を引き起こしたりする。 したがつて隔離板の最大孔径は此の粒子の大き
さより小さく設計されている。 (C) 発明が解決しようとする問題点 鉛蓄電池の寿命の延長とメンテナンスフリー化
のために、極板格子合金に鉛アンチモン系を使用
しているが、正極板格子中のアンチモンが、電解
液に溶出し負極に析出して局部電池を形成するた
め電池の電位が低くなり、定電圧充電による過充
電量が多くなる等の問題があつた。 従つて隔離板のアンチモンイオンの透過性が重
要である。大部分の鉛蓄電池の極板格子体は、鉛
アンチモン合金からなつていて充電中に正極格子
体中のアンチモンは溶解する。そのアンチモンイ
オンが負極に移動し負極に吸着すると負極の水素
過電圧を低下させ、結果的には蓄電池の寿命を短
くする。このため隔離板は、アンチモンイオンの
透過を抑制する必要がある。 この溶出アンチモンイオンの負極への拡散を防
ぐために例えば、アンチモンの捕捉剤を隔離板に
付着させる方法が提案されているが(特開昭55−
80267)此の場合に用いられる捕捉剤は、有機化
合物であり耐酸性や繰り返し特性に問題がある。 本発明の目的はアンチモンイオン捕捉剤とし
て、無機系の耐酸性や繰り返し特性の優れた鉛蓄
電池用隔離板を提供することにある。 (D) 問題点を解決するための手段 本発明は上記状況に鑑みて、無機系のアンチモ
ンイオン捕捉剤として硫酸中で安定でしかも二酸
化マンガンの様に鉛蓄電池に該を及ぼさない酸化
チタンを用いるものである。即ち本発明は合成パ
ルプと合成繊維および酸化チタンを混合抄紙し加
熱融着したことを特徴とする鉛蓄電池用隔離板で
あり、酸化チタンの含有量は、10重量%以上、70
重量%以下が好ましい。10重量%未満ではアンチ
モンイオンの捕捉能が不十分であるし、70重量%
より多い場合は、隔離板からの酸化チタンの脱離
が問題となる。用いる酸化チタンとしては、アナ
ターゼ型よりもルチル型の方が好ましい。また、
シート中のポロシテイーを制御するために酸化チ
タンと共に従来から使われているシリカを併用し
ても良い。 本発明に用いられる合成パルプはポリオレフイ
ン系のものが好ましく、例えばポリエチレン、ポ
リプロピレン系等が挙げられる。その配合比は鉛
蓄電池用隔離板全重量に対して10重量%以上、60
重量%以下が好ましい。10重量%より少ない場合
は、隔離板中の酸化チタンの量を多くすることが
実質的に困難となる。しかしながら、酸化チタン
の抄紙過程における歩留まりの量は合成パルプの
形状を変えることによりある程度調節できるの
で、その場合は10重量%よりも若干少なくなつて
もよい。また、60重量%より多い場合は、酸化チ
タンの配合比が少なくなるので好ましくない。隔
離板の力学的強度を向上させるためにアクリル系
の合成繊維が用いられるがその配合比は10重量%
以上、30重量%以下が好ましい。10重量%以下で
は、力学的強度の向上が充分ではなく、30重量%
より多い場合は合成パルプとの関係から酸化チタ
ンの配合比を多く出来ないので好ましくない。 孔径の均一な分布を得るためには、あらかじめ
酸化チタン、合成パルプ、アクリル繊維をそれぞ
れ単独に水分散させた後、酸化チタンスラリーを
合成パルプスラリーと混合し、さらにアクリル繊
維スラリーと混合したのち抄造すればよい。なお
此の際抄造時の分散性を向上するために、一般に
使われているアミン、アミド系の分散剤は鉛蓄電
池の特性を阻害するため、無機系の分散剤を使用
するのが好ましい。 抄造されたシートは、酸化チタンの固定を行う
ために熱処理されるが温度は、用いた合成パルプ
の融点より若干高めが好ましい。また、熱処理時
間は、温度にもよるが合成パルプが溶け始める直
前に止めるのがよい。例えば、合成パルプとして
ポリエチレンを用いた場合、130℃で5分間位熱
処理すればよい。 (E) 発明の作用 隔離板中に酸化チタンを含有させることにより
アンチモンの陰極への拡散が抑えられ、鉛蓄電池
の充電終期の電圧を高くすることができ、定電圧
充電時の過充電を受けにくくなる。これにより鉛
蓄電池の寿命を大幅に改善することが出来る。 (F) 実施例 合成ポリエチレンパルプ20重量%とアクリル繊
維(太さ0.1d、長さ3mm)20重量%、酸化チタン
60重量%をそれぞれ0.1%の水性スラリーとした
のち、二酸化チタンスラリーを合成パルプスラリ
ーと混合し、さらにアクリル繊維スラリーと混合
し、この混合スラリーをアジターで約20分間ゆつ
くりと攪拌した。此のスラリーから25cm×25cmの
手抄き抄紙機を用いて坪量130g/m2の湿紙を作
成した。この湿紙を80℃の円筒ドライヤーで乾燥
した後、150℃の熱風乾燥器で約5分間熱処理を
行い合成ポリエチレンパルプと酸化チタン粉末と
の接着性を高め鉛蓄電池用隔離板とした。 比較例 1 合成ポリエチレンパルプ50重量%とアクリル繊
維(太さ0.1d、長さ3mm)50重量%を0.1%の水
性スラリーとしたのち、実施例と同様にして坪量
130g/m2の湿紙を作成した。この湿紙を熱風乾
燥器中150℃で5分間熱処理することにより隔離
板を得た。 比較例 2 比較例1で得た隔離板にアリザリンスルホン酸
ナトリウム10重量%、アクリルエマルジヨン90重
量%の混液を100重量%付着させ、110℃で乾燥
し、隔離板を得た。 上記のようにして得られた隔離板を鉛−アンチ
モン合金格子を用いた2V電池に使用した。表−
1に100回充放電を繰り返した後の電池の特性を
示す。なお、表−1において電位はカドミウム電
極に対して電位を示す。
(A) Industrial Application Field The present invention relates to a separator for use in lead-acid batteries, and particularly to a separator for lead-acid batteries in which a lead-antimony alloy is used for the positive electrode. (B) Prior Art Separators in lead-acid batteries come into physical contact with lead dioxide, a strong oxidizing agent, and are placed in an aqueous sulfuric acid solution with a specific gravity of 1.2-1.3, so they are made of materials that can withstand this. . The separators currently in use are made by adding hydrated silica and a vulcanizing agent to natural comb or synthetic rubber, forming them into a sheet, and then vulcanizing them in saturated steam, or by vulcanizing them in papermaking such as linters and rerafts using phenol. Those impregnated with a resin solution and cured by heating are used. More recently, sheets made of fibrillated polyethylene fibers, acrylic fibers, and fillers such as silica have been formed and integrated by heat-fusion, and molten polyethylene mixed with silica and oil has been extruded and molded into sheets. , oil extracted from it is used. Rubber separators use the pores of silica gel, and paper and synthetic pulp separators use the intersecting gaps of their constituent fibers as pores. Since the active substance of lead-acid batteries is made from lead powder with a size of several micrometers to over ten micrometers, the active substance easily falls off, and these fallen particles are suspended by the gas generated during charging and become trapped in the pores of the separator. invades and increases internal resistance,
Particles can connect with each other and cause short circuits. Therefore, the maximum pore diameter of the separator is designed to be smaller than the particle size. (C) Problems to be Solved by the Invention In order to extend the life of lead-acid batteries and make them maintenance-free, lead-antimony alloy is used in the electrode grid alloy, but the antimony in the positive electrode grid does not absorb into the electrolyte. Since it is eluted and deposited on the negative electrode to form a local battery, the potential of the battery becomes low and there are problems such as an increase in the amount of overcharge due to constant voltage charging. Therefore, the antimony ion permeability of the separator is important. The plate grids of most lead-acid batteries are made of a lead-antimony alloy, and the antimony in the positive grid dissolves during charging. When the antimony ions move to the negative electrode and are adsorbed on the negative electrode, the hydrogen overvoltage of the negative electrode is reduced, and as a result, the life of the storage battery is shortened. Therefore, the separator needs to suppress the permeation of antimony ions. In order to prevent this eluted antimony ion from diffusing into the negative electrode, a method has been proposed in which, for example, an antimony scavenger is attached to the separator (Japanese Patent Application Laid-Open No. 1983-1999).
80267) The scavenger used in this case is an organic compound and has problems with acid resistance and repeatability. An object of the present invention is to provide an inorganic separator for lead-acid batteries that has excellent acid resistance and cyclic properties as an antimony ion scavenger. (D) Means for Solving the Problems In view of the above circumstances, the present invention uses titanium oxide, which is stable in sulfuric acid and does not affect lead-acid batteries like manganese dioxide, as an inorganic antimony ion scavenger. It is something. That is, the present invention is a separator for lead-acid batteries characterized by paper-making a mixture of synthetic pulp, synthetic fibers, and titanium oxide and heat-sealing the same, and the content of titanium oxide is 10% by weight or more, 70
It is preferably less than % by weight. If it is less than 10% by weight, the ability to capture antimony ions is insufficient, and if it is less than 70% by weight,
If the amount is higher, desorption of titanium oxide from the separator becomes a problem. As the titanium oxide to be used, rutile type is more preferable than anatase type. Also,
In order to control porosity in the sheet, silica, which has been conventionally used, may be used in combination with titanium oxide. The synthetic pulp used in the present invention is preferably a polyolefin-based pulp, such as polyethylene or polypropylene-based pulp. The compounding ratio is 10% by weight or more based on the total weight of the separator for lead-acid batteries, 60
It is preferably less than % by weight. If it is less than 10% by weight, it becomes substantially difficult to increase the amount of titanium oxide in the separator. However, the amount of titanium oxide retained in the papermaking process can be controlled to some extent by changing the shape of the synthetic pulp, so in that case it may be slightly less than 10% by weight. Moreover, if it is more than 60% by weight, the blending ratio of titanium oxide will decrease, which is not preferable. Acrylic synthetic fibers are used to improve the mechanical strength of the separator, but the blending ratio is 10% by weight.
Above, 30% by weight or less is preferable. If the amount is less than 10% by weight, the improvement in mechanical strength will not be sufficient;
If the amount is more, it is not preferable because the blending ratio of titanium oxide cannot be increased due to the relationship with the synthetic pulp. In order to obtain a uniform distribution of pore sizes, titanium oxide, synthetic pulp, and acrylic fibers are each individually dispersed in water, and then the titanium oxide slurry is mixed with synthetic pulp slurry, and then mixed with acrylic fiber slurry before papermaking. do it. In this case, in order to improve the dispersibility during papermaking, it is preferable to use an inorganic dispersant, since commonly used amine and amide dispersants impede the characteristics of lead-acid batteries. The paper-formed sheet is heat-treated to fix the titanium oxide, but the temperature is preferably slightly higher than the melting point of the synthetic pulp used. Further, although the heat treatment time depends on the temperature, it is preferable to stop the heat treatment immediately before the synthetic pulp starts to melt. For example, when polyethylene is used as the synthetic pulp, it may be heat-treated at 130° C. for about 5 minutes. (E) Effect of the invention By containing titanium oxide in the separator, diffusion of antimony to the cathode can be suppressed, making it possible to increase the voltage at the end of charging of lead-acid batteries, and preventing overcharging during constant voltage charging. It becomes difficult. This can greatly improve the lifespan of lead-acid batteries. (F) Example 20% by weight of synthetic polyethylene pulp, 20% by weight of acrylic fiber (thickness 0.1d, length 3mm), titanium oxide
After making 60% by weight into an aqueous slurry of 0.1% each, the titanium dioxide slurry was mixed with synthetic pulp slurry, further mixed with acrylic fiber slurry, and this mixed slurry was slowly stirred in an agitator for about 20 minutes. Wet paper with a basis weight of 130 g/m 2 was made from this slurry using a 25 cm x 25 cm hand paper machine. This wet paper was dried in a cylindrical dryer at 80°C and then heat-treated in a hot air dryer at 150°C for about 5 minutes to improve the adhesion between the synthetic polyethylene pulp and titanium oxide powder and use it as a separator for lead-acid batteries. Comparative Example 1 50% by weight of synthetic polyethylene pulp and 50% by weight of acrylic fibers (thickness: 0.1d, length: 3mm) were made into a 0.1% aqueous slurry, and the basis weight was determined in the same manner as in the example.
A wet paper of 130 g/m 2 was prepared. A separator was obtained by heat-treating this wet paper at 150° C. for 5 minutes in a hot air dryer. Comparative Example 2 100% by weight of a mixture of 10% by weight of sodium alizarin sulfonate and 90% by weight of acrylic emulsion was applied to the separator obtained in Comparative Example 1, and the mixture was dried at 110°C to obtain a separator. The separator obtained as described above was used in a 2V battery using a lead-antimony alloy grid. Table -
Figure 1 shows the characteristics of the battery after repeated charging and discharging 100 times. Note that in Table 1, the potential indicates the potential with respect to the cadmium electrode.

【表】 (G) 発明の効果 本発明によれば、鉛−アンチモン系合金を用い
た鉛蓄電池において電解液中に溶出したアンチモ
ンイオンの陰極への拡散を抑えることができ、充
電終期端子電圧が高くなり定電圧充電時の過充電
を受けにくくなり、電池の寿命を長くすることが
出来る。
[Table] (G) Effects of the Invention According to the present invention, in a lead-acid battery using a lead-antimony alloy, diffusion of antimony ions eluted into the electrolyte to the cathode can be suppressed, and the terminal voltage at the end of charging can be reduced. This makes it less susceptible to overcharging during constant voltage charging, and can extend the life of the battery.

Claims (1)

【特許請求の範囲】 1 ポリオレフイン系合成パルプと合成繊維およ
び電解液中の溶出アンチモンイオン捕捉剤として
酸化チタンを混合抄紙し加熱融着したことを特徴
とする鉛蓄電池用隔離板。 2 酸化チタンの含有量が10〜70重量%である特
許請求の範囲第1項記載の鉛蓄電池用隔離板。
[Scope of Claims] 1. A separator for a lead-acid battery, characterized in that polyolefin-based synthetic pulp, synthetic fibers, and titanium oxide as a scavenger for antimony ions eluted in an electrolytic solution are mixed into a paper-made paper and heat-fused. 2. The lead-acid battery separator according to claim 1, wherein the content of titanium oxide is 10 to 70% by weight.
JP61256471A 1986-10-27 1986-10-27 Partition plate for lead storage battery Granted JPS63110547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256471A JPS63110547A (en) 1986-10-27 1986-10-27 Partition plate for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256471A JPS63110547A (en) 1986-10-27 1986-10-27 Partition plate for lead storage battery

Publications (2)

Publication Number Publication Date
JPS63110547A JPS63110547A (en) 1988-05-16
JPH0582706B2 true JPH0582706B2 (en) 1993-11-22

Family

ID=17293095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256471A Granted JPS63110547A (en) 1986-10-27 1986-10-27 Partition plate for lead storage battery

Country Status (1)

Country Link
JP (1) JPS63110547A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750708B2 (en) * 1988-10-13 1998-05-13 日本無機株式会社 Lead-acid battery separator
IT1278688B1 (en) * 1995-05-29 1997-11-27 Volta Ind Srl DRY STACK WITH ADDITIVED CATHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530194A (en) * 1978-08-21 1980-03-03 Grace W R & Co Battery separator
JPS55165573A (en) * 1979-06-08 1980-12-24 Grace W R & Co Partition film for battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530194A (en) * 1978-08-21 1980-03-03 Grace W R & Co Battery separator
JPS55165573A (en) * 1979-06-08 1980-12-24 Grace W R & Co Partition film for battery

Also Published As

Publication number Publication date
JPS63110547A (en) 1988-05-16

Similar Documents

Publication Publication Date Title
DE69706783T2 (en) Gas-tight lead acid battery
US3703413A (en) Flexible inorganic fibers and battery electrode containing same
CN111048723B (en) Modified AGM diaphragm for lead-carbon battery and preparation method thereof
US20050271947A1 (en) Separator, battery with separator and method for producing a separator
JPH0582706B2 (en)
KR101118585B1 (en) Lead storage battery
JP5578123B2 (en) Liquid lead-acid battery
WO2015064535A1 (en) Separator for valve-regulated lead battery and control valve-regulated lead battery using same
JP6544126B2 (en) Control valve type lead storage battery
KR102217591B1 (en) Manufacturing method of PE Separator for lead acid battery using SiO2
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery
JPS63152868A (en) Lead-acid battery
CN113937370B (en) Automatic water supplementing type lead-acid battery and preparation method thereof
JP3705146B2 (en) Lead-acid battery separator and lead-acid battery
KR102483444B1 (en) method for manufacturing a negative electrode plate of a lead acid battery that increases the surface area between the electrolyte and the active material by applying expanded perlite
KR102523085B1 (en) Method for manufacturing electrode plate for lead acid battery that improves ion mobility by applying porous polyester nonwoven fabric
JP6769306B2 (en) Separator for lead-acid battery and lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
WO2021070230A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing same
KR20230046114A (en) Electrode plate manufacturing method of lead-acid battery containing porous non-woven fabric
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
JP2020161316A (en) Positive electrode plate and lead acid battery
KR20230046115A (en) Electrode plate manufacturing method of lead-acid battery containing highly crystalline colloidal nonwoven fabric to which syringeless electrospinning technique is applied
JPS63152853A (en) Process for manufacturing separator for enclosed type lead storage battery