JPH01100052A - Dielectric porcelain composition and piezoelectric element using said composition - Google Patents

Dielectric porcelain composition and piezoelectric element using said composition

Info

Publication number
JPH01100052A
JPH01100052A JP63165274A JP16527488A JPH01100052A JP H01100052 A JPH01100052 A JP H01100052A JP 63165274 A JP63165274 A JP 63165274A JP 16527488 A JP16527488 A JP 16527488A JP H01100052 A JPH01100052 A JP H01100052A
Authority
JP
Japan
Prior art keywords
ferroelectric ceramic
lead
ferroelectric
ceramic composition
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63165274A
Other languages
Japanese (ja)
Other versions
JP2682022B2 (en
Inventor
Toshio Ogawa
敏夫 小川
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63165274A priority Critical patent/JP2682022B2/en
Publication of JPH01100052A publication Critical patent/JPH01100052A/en
Application granted granted Critical
Publication of JP2682022B2 publication Critical patent/JP2682022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To contrive to improve energy conversion efficiency and to prevent occurrence of spurious emission in the case of use as an oscillator, by blending a ferroelectric porcelain composition containing lead oxide as a main component with a specific amount of a PbO.GeO2 glass compound having a specific composition as a subsidiary component. CONSTITUTION:The ferroelectric porcelain component comprises a ferroelectric porcelain composition containing lead oxide as a main component and 0.01-30wt.% glass compound having a general formula shown by xPbO.yGeO2 (x=1-6, y=1-3) as a subsidiary component. One or more of lead titanate- based, lead titanate zirconate-based, lead metaniobate-based and lead-containing complex perovskite-based porcelain compositions may be cited as the main components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強誘電性磁器組成物、特に、電気機械結合係数
が大きく、低温焼結可能な強誘電性磁器組成物およびそ
れを利用した圧電素子に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferroelectric ceramic composition, particularly a ferroelectric ceramic composition that has a large electromechanical coupling coefficient and can be sintered at a low temperature, and a piezoelectric ceramic composition using the same. Regarding elements.

(従来の技術) 一般に、磁器圧電材料は加工性、量産性および特性に優
れていることから、フィルター、圧電ブザー、バイモル
フなど圧電素子に応用されているが、この種の圧電材料
としては、チタン酸鉛系強誘電性磁器およびチタン酸ジ
ルコン酸鉛系強誘電性磁器が実用に供されている。
(Prior art) In general, porcelain piezoelectric materials have excellent workability, mass production, and characteristics, and are therefore applied to piezoelectric elements such as filters, piezoelectric buzzers, and bimorphs. Acid-lead-based ferroelectric porcelain and lead-zirconate titanate-based ferroelectric porcelain are in practical use.

しかし、これらの強誘電性磁器は、その成分として揮発
性のPbを含むためζ焼成時にPbOの一部が組成から
失われ易く、特性の再現性および均一性を図ることが困
難であった。しかも、焼結温度が1100℃以上と高い
ことから金属板等の基板と一体化した複合体を得ること
ができず、また電気機械結合係数が大きいためフィルタ
ーの帯域幅が広くなく、使用に際し一部安定性に欠ける
という問題があった。
However, since these ferroelectric ceramics contain volatile Pb as a component, part of the PbO is likely to be lost from the composition during ζ firing, making it difficult to achieve reproducibility and uniformity of characteristics. Moreover, since the sintering temperature is as high as 1100°C or higher, it is not possible to obtain a composite body that is integrated with a substrate such as a metal plate, and the electromechanical coupling coefficient is large, so the filter bandwidth is not wide, making it difficult to use There was a problem of lack of stability.

このため特開昭58−204579号公報にて、圧電セ
ラミックにケイ酸ガラス化合物、ソーダガラス化合物、
あるいは鉛ガラス化合物を1〜30wt%添加させるこ
とにより、フィルターの帯域幅を狭くし、安定度を向上
させた化合物入り圧電磁器が提案されている。
For this reason, in Japanese Patent Application Laid-Open No. 58-204579, piezoelectric ceramics are made of silicate glass compounds, soda glass compounds,
Alternatively, a compound-containing piezoelectric ceramic has been proposed in which the filter bandwidth is narrowed and the stability is improved by adding 1 to 30 wt % of a lead glass compound.

(発明が解決しようとする問題点) しかしながら、前記ガラス化合物入り圧電磁器は、ガラ
ス化合物の添加により電気機械結合係数が著しく低下す
るため、エネルギー変換効率が低下するという問題があ
った。また、従来の強誘電性磁器組成物を広がり振動モ
ードのセラミック共振子に適用した場合、厚み縦振動で
あるスプリアス振動に起因する異常発振を生ずるという
間層もあった。
(Problems to be Solved by the Invention) However, the glass compound-containing piezoelectric ceramic has a problem in that the electromechanical coupling coefficient decreases significantly due to the addition of the glass compound, resulting in a decrease in energy conversion efficiency. Furthermore, when a conventional ferroelectric ceramic composition is applied to a ceramic resonator in a spread vibration mode, there is an interlayer in which abnormal oscillations due to spurious vibrations, which are thickness longitudinal vibrations, occur.

(問題点を解決するための手段) 本発明は、前記問題点を解決する手段として、鉛酸化物
含有強誘電性磁器組成物を主成分とし、副成分として一
般式:xPbO・yGeO2(x=1〜6゜y=t〜3
)で示されるガラス化合物を0.01〜30重量%含有
してなる強誘電性磁器組成物を提供するものである。
(Means for Solving the Problems) The present invention, as a means for solving the above problems, uses a lead oxide-containing ferroelectric ceramic composition as a main component, and has a general formula: xPbO・yGeO2 (x= 1~6゜y=t~3
) The present invention provides a ferroelectric ceramic composition containing 0.01 to 30% by weight of a glass compound represented by the following formula.

主成分である鉛酸化物含有強誘電性磁器組成物としては
、チタン酸鉛系強誘電性磁器組成物、チタン酸ジルコン
酸鉛系強誘電性磁器組成物、メタニオブ酸鉛系強誘電性
磁器組成物および鉛含有複合ペロブスカイト系磁器組成
物が代表的なものとして挙げられるが、これらに限定さ
れるものではない。
Ferroelectric ceramic compositions containing lead oxide as a main component include lead titanate-based ferroelectric ceramic compositions, lead zirconate titanate-based ferroelectric ceramic compositions, and lead metaniobate-based ferroelectric ceramic compositions. Typical examples include, but are not limited to, lead-containing composite perovskite ceramic compositions.

チタン酸鉛系強誘電性磁器組成物とは、真性および変性
チタン酸鉛を意味し、変性チタン酸鉛には、単純酸化物
であるCr1.Os、Nb*Os、Taxes、B i
 t Os、MnO,など遷移元素酸化物を添加したも
の、pbサイトをMg、Ca、Sr、Ba等のアルカリ
土類金属やLa*Os、Nd、O,、YtO3等の希土
類で置・換したもの、およびPbTiOsの一部を後述
の一般式(1)〜(VI)で示される少なくとも一種の
複合ペロブスカイト化合物で置換した2成分系、3成分
系その他の多成分系磁器組成物あるいはこれらの組合わ
せたものが含まれる。
The lead titanate-based ferroelectric ceramic composition refers to both intrinsic and modified lead titanate, and the modified lead titanate includes simple oxides of Cr1. Os, Nb*Os, Taxes, B i
t Added transition element oxides such as Os, MnO, etc.; pb sites replaced with alkaline earth metals such as Mg, Ca, Sr, Ba, etc., and rare earths such as La*Os, Nd, O, YtO3, etc. and two-component, three-component and other multi-component ceramic compositions in which a part of PbTiOs is replaced with at least one kind of composite perovskite compound represented by general formulas (1) to (VI) described below, or combinations thereof. Includes a combination.

また、チタン酸ジルコン酸鉛系強誘電性磁器組成物とは
、真性および変性チタン酸ジルコン酸鉛を意味し、変性
チタン酸ジルコン酸鉛には、Pb(Ti、Zr)Osに
CrtOs、Nb、05、Ta5ks、Bi。
In addition, the lead zirconate titanate-based ferroelectric ceramic composition means genuine and modified lead zirconate titanate, and the modified lead zirconate titanate includes Pb(Ti, Zr)Os, CrtOs, Nb, 05, Ta5ks, Bi.

01、M n Otなど金属酸化物を添加したもの、P
bサイトをMg、CB、Sr、Ba等のアルカリ土類金
属やI、atos、NdtOs、Y、03等の希土類で
置換したもの、およびPb(Ti、Zr)Osの一部を
下記−数式(I)〜(W)で示される少なくとも一種の
複合ペロブスカイト形化合物で置換した3成分系、4成
分系その他の多成分系磁器組成物あるいはこれらの組合
わせたものが含まれる。
01, those added with metal oxides such as M n Ot, P
Those in which the b site is substituted with alkaline earth metals such as Mg, CB, Sr, Ba, etc. or rare earths such as I, atos, NdtOs, Y, 03, etc., and a part of Pb(Ti, Zr)Os are replaced by the following formula ( Included are three-component, four-component and other multi-component ceramic compositions substituted with at least one kind of complex perovskite compound represented by I) to (W), or a combination thereof.

さらに、メタニオブ酸鉛系強誘電性磁器組成物とは、真
性および変性メタニオブ酸鉛を意味し、変性メタニオブ
酸鉛には、単純酸化物であるCrtOl、Nb*Os、
Taxes、Bit’s、M n Oxなど遷移元素酸
化物を添加したもの、Pbの一部をMg。
Furthermore, the lead metaniobate-based ferroelectric ceramic composition means both intrinsic and modified lead metaniobate, and the modified lead metaniobate includes simple oxides such as CrtOl, Nb*Os,
Taxes, Bit's, MnOx, etc. with transition element oxides added, Mg with a part of Pb.

Ca、Sr、Ba等のアルカリ土類金属やLaw’s、
NdtOs、Y、03等の希土類で置換したもの、およ
びメタニオブ酸鉛に後述の一般式(I)〜(VI)で示
される少なくとも一種の複合ペロブスカイト化合物を添
加した2成分系、3成分系その他の多成分系のものが含
まれる。
Alkaline earth metals such as Ca, Sr, Ba, Law's,
Two-component systems, three-component systems, and other systems in which at least one composite perovskite compound represented by general formulas (I) to (VI) described below is added to those substituted with rare earth elements such as NdtOs, Y, and 03, and lead metaniobate. Includes multi-component systems.

前記鉛含有複合ペロブスカイト系磁器組成物には、後述
の一般式(I)〜(’Vl)で示される鉛含有複合ペロ
ブスカイト化合物の他、それらの2種以上もしくはそれ
らの少なくとも一種と他の複合ペロブスカイト化合物と
からなる2成分系、3成分系その他の多成分系磁器組成
物が含まれる。例えば、P b(F et/ 3W l
/ 3)03、Pb(F er/lNb+/1)Osな
どの1成分系、Pb(Pe17 tNb+/ t)C)
+−Pb(F e、73W l/ 3) Oaなどの2
成分系、P b(Mn+/3Nbx/3)03− P 
b(F e+/ tNbly1)03  Pb(Fet
/3W+/ 3)0!l、P b(Z n+/ 5Nb
ty 5)03−Pb(Fe+/lNb+/1)03−
Pb(Fe*/。
The lead-containing composite perovskite ceramic composition includes, in addition to lead-containing composite perovskite compounds represented by general formulas (I) to ('Vl) described below, two or more thereof, or at least one kind thereof and another composite perovskite. This includes two-component, three-component, and other multi-component ceramic compositions consisting of compounds. For example, P b(F et/3W l
/ 3) 03, one-component systems such as Pb(Fer/lNb+/1)Os, Pb(Pel7tNb+/t)C)
+-Pb (Fe, 73W l/3) 2 such as Oa
Component system, Pb(Mn+/3Nbx/3)03-P
b(F e+/tNbly1)03 Pb(Fet
/3W+/ 3)0! l, P b(Z n+/ 5Nb
ty 5)03-Pb(Fe+/lNb+/1)03-
Pb(Fe*/.

W+/3)03などの3成分系複合ペロブスカイト化合
物などが挙げられる。
Examples include three-component composite perovskite compounds such as W+/3)03.

前記複合ペロブスカイト形化合物の代表的なものとして
は、 一般式(1):  A”″(B″“l/ sB” !/
 3)03で示される化合物、例えば、 Ba(Zr+1/5Nbti 5hos、Ba(Cd+
/3Nbt/3)03、Ba(Mg+/3Nbt/3)
03、S r(CaI25Nbt/3)Os、Pb(M
g+/3Nbt/3)03、Pb(Nit/5Nbt/
 5)03、Pb(Mn+/aNt)t/5)Os、P
b(Mg+/1Tat/5)Os、Pb(Ni+/3T
at/JOs、Pb(CdI/3Nb、/、)0.;−
数式(It):  A″“(B”l、1B”+/1)0
3で示される化合物、例えば、 Ba(Fe+/ tNb+/*)Os、BaCSc+y
 tNbly *)Os、Ca(Cr+/ tNbly
1)Os、Pb(Fe+/ tNbly1)03、P 
b(Fel/1TaI/*)03、Pb(Set/lN
b+/1)03、PbC3cl/1TaI/1)Os、
Pb(Yb+7 tNbly1)03、Pb(Yb+/
 *Ta+7 *)Os、Pb(Lu+、z tNb1
7 *)03、Pb(I n+/1Ntl+/ *)O
s;−数式(III):  A″4(B2″″t/lB
”“l/り03で示される化合物、例えば、 Pb(Cd+/xVL/り03、Pb(Mn+72wl
/1)03、Pb(Zn+/lWl/り03、P b(
Mg+/lWl/l)o s、Pb(Got/lWI/
*)03、Pb(Ni+/lWI/1)Os、P b(
ML/yTe+/1)Os、Pb(Mn+/lTe+/
1)03、Pb(Co+/*Tet/*)Os; −数式(IV):  A” (B” t/sB” I/
 *)03で示される化合物、例えば、Pb(Fet/
3Wl/ 3)03;−数式(■)’  ”+(B””
 I/ tB44″l/1)03で示される化合物、例
えば、 Pb(Sn+/1sbt/1)Os、 La(Mg+/
*Ti+/*)03%Nd(Mg+/lTi+/*)O
s;及び、−数式(VI):  (A“I/ *A” 
I/ z)B’”03で示される化合物、例えば、 (Na+/lLa+/ t)TiOs、(Kl/ =L
a、7 *)TiOs、(Nap/ tcely t)
TiOs、CNa17 tNd+z *)Ti03、(
Nd+/lB i+/ りT io s、(Kl/ *
B1l1 t)TiOs、などが挙げられる。
Typical examples of the composite perovskite compound include the general formula (1): A""(B""l/sB"!/
3) Compounds represented by 03, for example, Ba(Zr+1/5Nbti 5hos, Ba(Cd+
/3Nbt/3)03, Ba(Mg+/3Nbt/3)
03, S r(CaI25Nbt/3)Os, Pb(M
g+/3Nbt/3)03, Pb(Nit/5Nbt/
5)03,Pb(Mn+/aNt)t/5)Os,P
b(Mg+/1Tat/5)Os, Pb(Ni+/3T
at/JOs, Pb(CdI/3Nb,/,)0. ;-
Formula (It): A″″(B″l, 1B″+/1)0
Compounds represented by 3, for example, Ba(Fe+/tNb+/*)Os, BaCSc+y
tNbly *)Os, Ca(Cr+/tNbly
1) Os, Pb(Fe+/tNbly1)03, P
b(Fel/1TaI/*)03, Pb(Set/IN
b+/1)03, PbC3cl/1TaI/1)Os,
Pb(Yb+7 tNbly1)03, Pb(Yb+/
*Ta+7 *)Os, Pb(Lu+,z tNb1
7 *)03, Pb(I n+/1Ntl+/ *)O
s;-Formula (III): A″4(B2″″t/lB
""Compounds represented by l/li03, for example, Pb(Cd+/xVL/li03, Pb(Mn+72wl
/1)03,Pb(Zn+/lWl/ri03,Pb(
Mg+/lWl/l)os, Pb(Got/lWI/
*)03,Pb(Ni+/lWI/1)Os,Pb(
ML/yTe+/1)Os, Pb(Mn+/lTe+/
1) 03, Pb(Co+/*Tet/*)Os; - Formula (IV): A"(B"t/sB" I/
*) A compound represented by 03, for example, Pb(Fet/
3Wl/ 3)03;-Formula (■)' ”+(B””)
I/tB44″l/1)03, for example, Pb(Sn+/1sbt/1)Os, La(Mg+/
*Ti+/*)03%Nd(Mg+/lTi+/*)O
s; and -Formula (VI): (A"I/ *A"
Compounds represented by I/z)B'"03, for example, (Na+/lLa+/t)TiOs, (Kl/=L
a, 7 *) TiOs, (Nap/tcelyt)
TiOs, CNa17 tNd+z *) Ti03, (
Nd+/lB i+/ riTios, (Kl/ *
B1l1 t) TiOs, etc.

副成分である一般式xPbO・yGeOzで示されるガ
ラス化合物としては、x=l〜e、y=t〜3の範囲か
ら選ばれた種々のものがあるが、例えば、PbO−Ge
O7、Pb5Gepa+、3PbO−GeOt、÷←←
→→÷−6PbO−Ge0tなどが挙げられる。
As the glass compound represented by the general formula xPbO・yGeOz, which is a subcomponent, there are various compounds selected from the range of x=l to e and y=t to 3. For example, PbO—Ge
O7, Pb5Gepa+, 3PbO−GeOt, ÷←←
→→÷−6PbO−Ge0t and the like.

(作用) 本発明は、主成分のチタン酸鉛系、チタン酸ジルコン酸
鉛系またはメタニオブ酸鉛系などの鉛酸化物を含む強誘
電性磁器組成物に、低融点で強誘電体性挙動を示す性質
を有する一般式:xPbO・yGeOz(x=1〜6.
y=1〜3)で示されるガラス化合物を添加し、液相焼
結により異相セラミックバルクを生成させることによっ
て、チタン酸鉛系、チタン酸ジルコン酸鉛系またはメタ
ニオブ酸鉛系磁器組成物が本来有する電気機械結合係数
を低下させることなく850〜1000℃の低温で焼結
させることを可能にし、それによって、従来、不可能で
あった金属板との一体焼結を可能にしたものである。
(Function) The present invention imparts ferroelectric behavior at a low melting point to a ferroelectric ceramic composition containing a lead oxide such as lead titanate, lead zirconate titanate, or lead metaniobate as a main component. General formula having the following properties: xPbO・yGeOz (x=1 to 6.
By adding a glass compound represented by y = 1 to 3) and producing a different phase ceramic bulk by liquid phase sintering, lead titanate-based, lead zirconate titanate-based, or lead metaniobate-based ceramic compositions are originally This makes it possible to sinter at a low temperature of 850 to 1000° C. without reducing the electromechanical coupling coefficient, thereby making it possible to perform integral sintering with a metal plate, which was previously impossible.

また、本発明に係る強誘電性磁器組成物は、スクリーン
印刷法、塗布法、プレス成形法、押出し成形法、シート
成形法、ホットプレス法など任意の方法で成形あるいは
加工でき、例えば、厚膜ペーストをスクリーン印刷法に
より金属板の表面に印刷し、焼結させることにより、一
体焼結型の圧電素子を得ることができる。
Further, the ferroelectric ceramic composition according to the present invention can be formed or processed by any method such as screen printing, coating, press molding, extrusion, sheet molding, hot pressing, etc. By printing the paste on the surface of a metal plate using a screen printing method and sintering it, an integrally sintered piezoelectric element can be obtained.

副成分である一般式:xPbO−yGeo、で示される
化合物は、焼結温度を低下させるが、その含有量を0.
01〜30重量%としたのは、0.01重量%未満では
その効果がさほど期待できず、また、30重量%を越え
ると、焼結温度は低くなるが、電気機械結合係数の低下
が目立つようになるからである。特に、xPbO・yG
eo、(x=1〜6.y=1〜3)の含有量をo、t−
to重量%にすると、焼結温度が低く、かつ、電気機械
結合係数が大きな強誘電性磁器組成物が得られる。また
、x、yの値をx=1〜6.y=1〜3としたのは、低
温で溶融できてガラス化できるとともに、このガラス化
合物を熱処理して再結晶さ任ると強誘電体的性質を示す
からである。さらに、本発明に係る強誘電性磁器組成物
は、高抗折強度を示す。これは主成分中の酸化鉛とガラ
ス化合物中の酸化鉛との間に化学的結合力を生じ、粒界
での機械的強度が高められるからであると考えられる。
A compound represented by the general formula: xPbO-yGeo, which is a subcomponent, lowers the sintering temperature, but its content is reduced to 0.
The reason why the content is 0.01 to 30% by weight is that if it is less than 0.01% by weight, the effect cannot be expected much, and if it exceeds 30% by weight, the sintering temperature will be lower, but the electromechanical coupling coefficient will be significantly lowered. This is because it becomes like this. In particular, xPbO・yG
eo, the content of (x=1~6.y=1~3) as o, t-
When the amount is 0% by weight, a ferroelectric ceramic composition having a low sintering temperature and a large electromechanical coupling coefficient can be obtained. Also, set the values of x and y to x=1 to 6. The reason for setting y to 1 to 3 is that it can be melted and vitrified at low temperatures, and that when this glass compound is heat treated and left to recrystallize, it exhibits ferroelectric properties. Furthermore, the ferroelectric ceramic composition according to the present invention exhibits high flexural strength. This is thought to be because chemical bonding force is generated between the lead oxide in the main component and the lead oxide in the glass compound, increasing the mechanical strength at the grain boundaries.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例1) 原料としてPbjO,、Tie、、Zr(L、およびN
btOsを用い、これらをPbTio、4aZro、5
tOs−1,Owt%NbtOsの組成を有する強誘電
性磁器が得られるように秤量し、その混合物を20時時
間式混合する。この混合物を脱水、乾燥し、850℃で
2時間仮焼した後、粉砕し、その仮焼粉末に有機バイン
ダを2〜5重量%加えて20時間混合して造粒する。こ
れをプレス成形にて厚さl〜1.5mmの薄板に成形し
た後、この薄板を1200℃で2時間焼成して強誘電性
磁器を得、これを粉砕した後、325メツシユのふるい
を通してPbTlo、4sZro、5tC)+−1、O
wt%NbtO5からなる強誘電性磁器粉末を調製する
(Example 1) PbjO, , Tie, , Zr (L, and N
Using btOs, these were PbTio, 4aZro, 5
A ferroelectric ceramic having a composition of tOs-1, Owt%NbtOs is weighed and the mixture is mixed for 20 hours. This mixture is dehydrated, dried, calcined at 850° C. for 2 hours, and then pulverized. 2 to 5% by weight of an organic binder is added to the calcined powder, and the mixture is mixed for 20 hours and granulated. After forming this into a thin plate with a thickness of 1 to 1.5 mm by press molding, this thin plate was fired at 1200°C for 2 hours to obtain ferroelectric porcelain, which was crushed and passed through a 325 mesh sieve to produce PbTlo , 4sZro, 5tC)+-1,O
A ferroelectric ceramic powder consisting of wt% NbtO5 is prepared.

また、これとは別に、原料としてPb3O4およびGe
 Oxを用い、これらをxPbO−yGeoz(x=1
〜6,y= 1〜3)の組成となるように秤量し、その
混合物を16〜20時間湿式混合する。この混合物を脱
水、乾燥し、650℃で3時間仮焼した後、これを高純
度アルミするつぼに入れて875℃にて熔融させる。こ
の熔融物を純水中に投入し、急冷破砕して一般入:xP
bO・yGeos(x= 1〜6 。
Apart from this, Pb3O4 and Ge are also used as raw materials.
Using Ox, these are xPbO-yGeoz (x=1
6, y=1 to 3), and wet-mix the mixture for 16 to 20 hours. This mixture is dehydrated, dried, and calcined at 650°C for 3 hours, then placed in a high-purity aluminum crucible and melted at 875°C. This melt is poured into pure water, rapidly cooled and crushed, and then released into the general public: xP
bO・yGeos (x=1~6.

y=t〜3)で示される組成のガラス化合物を得る。A glass compound having a composition represented by y=t~3) is obtained.

このガラス化合物を乳鉢と乳棒で粉砕し、325メツシ
ユ以下の粉末を得る。これを650℃で3時間加熱して
再結晶化させた後、再び325メツシユのふるいを通し
てxPbO−yGeot(X= 1〜6、y=1〜3)
粉末を得る。
This glass compound is ground with a mortar and pestle to obtain a powder of 325 mesh or less. This was heated at 650°C for 3 hours to recrystallize it, and then passed through a 325 mesh sieve again to obtain xPbO-yGeot (X = 1-6, y = 1-3).
Get the powder.

前記強誘電性磁器粉末をxPbO−yGeO2(x=1
〜6.F=1〜3)粉末と第1表に示す組成比で混合し
、その混合物に樹脂と溶剤からなる有機バインダを10
重量%混合して厚膜ペーストを調製した。この厚膜ペー
ストを直径20mm厚さ0.1mmの耐熱性金属、例え
ば、Ni−Cr系金属板の上に直径18IIII11の
円としてスクリーン印刷した後、第1表に示す温度で焼
成して50μ厚の一体焼結型の複合体を得た。゛ このセラミック表面に焼付法により銀電極を形成し、銀
電極と金属板の間に80℃で3〜4 kv/mmの直流
電圧を印加して30分間分極処理を行い、磁器圧電体の
試料とした。
The ferroelectric ceramic powder is xPbO-yGeO2 (x=1
~6. F=1 to 3) Mix the powder with the composition ratio shown in Table 1, and add 10% of an organic binder consisting of a resin and a solvent to the mixture.
A thick film paste was prepared by mixing % by weight. This thick film paste was screen printed as a circle with a diameter of 18III11 on a heat-resistant metal plate, such as a Ni-Cr metal plate, with a diameter of 20 mm and a thickness of 0.1 mm, and then baked at the temperature shown in Table 1 to a thickness of 50 μm. An integrally sintered composite was obtained.゛A silver electrode was formed on the surface of this ceramic by a baking method, and a DC voltage of 3 to 4 kv/mm was applied between the silver electrode and the metal plate at 80°C for 30 minutes to perform a polarization treatment to obtain a porcelain piezoelectric sample. .

各試料について、比誘電率(Cr)、円板の屈曲振動の
電気機械結合係数(Kv)を測定した。その結果を第1
表に示す。なお、第1表には、比較例として前記強誘電
性磁器粉末に副成分としてPb0−BtOi・5iOe
系ガラメガラス化 、 I wt%(比較例1)または
NatO’BtO3’5iOt系ガラス化合物5wt%
(比較例2)を添加して調製した厚膜ペーストを用いて
作成した試料についての結果も合わせて示しである。
For each sample, the relative dielectric constant (Cr) and the electromechanical coupling coefficient (Kv) of the bending vibration of the disk were measured. The result is the first
Shown in the table. Table 1 shows, as a comparative example, Pb0-BtOi.5iOe as a subcomponent in the ferroelectric ceramic powder.
Glass-based glass compound I wt% (Comparative Example 1) or NatO'BtO3'5iOt-based glass compound 5wt%
The results for a sample prepared using a thick film paste prepared by adding (Comparative Example 2) are also shown.

(実施例2) 実施例1でそれぞれ調製した強誘電性磁器粉末(P b
T io、4sZro、s*Os−1、Owt%Nbt
Os)をガラス化合物(5Pb0・3GeOt)の粉末
と第2表に示す組成比で配合し、これに有機バインダを
2〜3重量%加え20時間混合して造粒し、プレス成型
して1〜1.5mmX10nmX20+n+nの角板を
形成し、該角板を第2表に示す温度で2時間焼成して磁
器角板を得た。この磁器角板について3点曲げ試験法(
支持点間距離:11mm)により抗折強度を測定した。
(Example 2) Ferroelectric ceramic powders (P b
Tio, 4sZro, s*Os-1, Owt%Nbt
Os) is blended with powder of a glass compound (5Pb0.3GeOt) in the composition ratio shown in Table 2, 2 to 3% by weight of an organic binder is added to this, mixed for 20 hours, granulated, and press molded to form 1 to 3 GeOt. A square plate of 1.5 mm x 10 nm x 20+n+n was formed, and the square plate was fired for 2 hours at the temperature shown in Table 2 to obtain a porcelain square plate. Three-point bending test method (
The bending strength was measured based on the distance between supporting points: 11 mm).

その結果も第2表に示す。The results are also shown in Table 2.

(実施例3) 原料としてPb5O4、Ti0t、ZrO,,5nOz
、5btOsおよびM n Otを用い、仮焼温度を9
00℃とした以外は実施例1と同様にして0.05Pb
(Sn、/lsb、/1)03−0.47PbTiO1
−0,48PbZrOs−〇、7wt%MnO,の組成
を有する強誘電性磁器粉末を調製した。
(Example 3) Pb5O4, Ti0t, ZrO,,5nOz as raw materials
, 5btOs and M n Ot, and the calcination temperature was 9
0.05Pb in the same manner as in Example 1 except that the temperature was 00°C.
(Sn, /lsb, /1)03-0.47PbTiO1
A ferroelectric ceramic powder having a composition of -0,48PbZrOs-〇, 7 wt% MnO was prepared.

この強誘電性磁器粉末に、実施例1で調製したxPbc
lyGeo2(x=1〜6.y=1〜3)を第3表に示
す割合で添加すると共に、有機バインダを6〜7wt%
加えて20時間混合した後、ドクターブレード法により
シート成形し、パンチングして直径IQmm厚さ0 、
1 mmの円板を形成し、該円板を第3表に示す温度で
2時間焼成して磁器円板を得る。得られた磁器円板の両
面に銀電極を焼き付け、両電極間に80℃で3〜4kv
/mmの直流電圧を印加して30分間分極処理を行い磁
器圧電体の試料とした。
xPbc prepared in Example 1 was added to this ferroelectric ceramic powder.
lyGeo2 (x = 1 to 6. y = 1 to 3) in the proportion shown in Table 3, and 6 to 7 wt% of organic binder.
In addition, after mixing for 20 hours, it was formed into a sheet using a doctor blade method, and punched into a sheet with a diameter of IQ mm and a thickness of 0.
A 1 mm disk is formed and the disk is fired for 2 hours at the temperature shown in Table 3 to obtain a porcelain disk. Silver electrodes are baked on both sides of the obtained porcelain disk, and a voltage of 3 to 4 kV is applied at 80°C between both electrodes.
A DC voltage of /mm was applied and polarization was performed for 30 minutes to obtain a porcelain piezoelectric sample.

(比較例3.4) 実施例3において、副成分としてxPbO−yGeo 
2(X= 1〜6 、’l= 1〜3 )の代わりに、
5wt%のpbo・B = 03・S i Oを系ガラ
ス化合物または0.1wt%のNato−BtOi−S
iot系ガラス化合物を用いた以外は、実施例3と同様
にして磁器圧電体の試料を得た。
(Comparative Example 3.4) In Example 3, xPbO-yGeo was used as a subcomponent.
2 (X=1~6,'l=1~3) instead of
5 wt% pbo・B=03・S i O based glass compound or 0.1 wt% Nato-BtOi-S
A sample of a porcelain piezoelectric material was obtained in the same manner as in Example 3 except that an IOT glass compound was used.

各試料について、比誘電率(εr)、円板の拡がり振動
の電気機械結合係数(Kp)を測定した。その結果を第
3表に示す。
For each sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured. The results are shown in Table 3.

(実施例4) 実施例3で調製した強誘電性磁器粉末(0,0,5Pb
(Sn+/!sb1/y)Os−〇、47PbTiO3
0゜48PbZrO*−0,7wt%Mn0Jと実施例
1で調製したガラス化合物(5Pb0・3GeO7)の
粉末とを用い、実施例2と同様にして磁器角板を得、そ
の抗折強度を測定した。その結果を、主成分とガラス化
合物との配合比および焼成温度と共に、第4表に示す。
(Example 4) Ferroelectric ceramic powder (0,0,5Pb
(Sn+/!sb1/y)Os-〇, 47PbTiO3
Using 0゜48PbZrO*-0.7wt%Mn0J and the powder of the glass compound (5Pb0.3GeO7) prepared in Example 1, a porcelain square plate was obtained in the same manner as in Example 2, and its bending strength was measured. . The results are shown in Table 4 along with the blending ratio of the main component and the glass compound and the firing temperature.

(実施例5) 原料としてPb30.、TiO*、ZrO2、M n 
Ot、およびNbzOsを用い、実施例3と同様にして
、0.05 Pb(Mr++/5Nbt/3)03−0
.45 PbTi0+−0,50PbZrOiの組成を
有する強誘電性磁器粉末を調製した。
(Example 5) Pb30. , TiO*, ZrO2, M n
0.05 Pb(Mr++/5Nbt/3)03-0 in the same manner as in Example 3 using Ot and NbzOs.
.. A ferroelectric ceramic powder having a composition of 45PbTi0+-0,50PbZrOi was prepared.

この強誘電性磁器粉末に実施例!で調製したXPbO・
yGeOt(x= I 〜6.y= 1〜3)を第5表
に示す割合で配合し、有機バインダを2〜3wt%加え
て20時間混合した後、造粒し、プレス成形して直径1
5關厚さ!開の円板を形成し、該円板を第5表に示す温
度で2時間焼成して磁器円板を得る。得られた磁器円板
の両面に銀電極を焼き付け、80℃中で両電極間に3〜
4kv/mmの直流電圧を印加して30分間分極処理を
行い、磁器圧電体の試料とした。
Examples of this ferroelectric porcelain powder! XPbO prepared with
yGeOt (x = I ~ 6. y = 1 ~ 3) was blended in the proportions shown in Table 5, 2 ~ 3 wt% of organic binder was added and mixed for 20 hours, then granulated and press molded to a diameter of 1
5 thickness! An open disk is formed and the disk is fired for 2 hours at the temperature shown in Table 5 to obtain a porcelain disk. Silver electrodes were baked on both sides of the obtained porcelain disk, and a temperature of 3 to 3
A DC voltage of 4 kv/mm was applied and polarization was performed for 30 minutes to obtain a porcelain piezoelectric sample.

(比較例5.6) 実施例5の組成において、副成分としてxP b。(Comparative Example 5.6) In the composition of Example 5, xP b was added as a subcomponent.

・yGeOt(x=1〜6.y= 1〜3)代わりに、
pb。
・Instead of yGeOt (x=1~6.y=1~3),
pb.

・B、03・5iOt系ガラメガラス化添加量0 、1
 wt%)またはNa*O’BtOs”5iOt系ガラ
メガラス化添加115wt%)を用いた以外は、実施例
5と同様にして磁器圧電体の試料を得た。
・B, 03・5iOt type glass vitrification addition amount 0, 1
A sample of a porcelain piezoelectric material was obtained in the same manner as in Example 5, except that Na*O'BtOs (115 wt%) or Na*O'BtOs (115 wt%) was used.

各試料について、測定した比誘電率(εr)および円板
の拡がり振動の電気機械結合係数(Kp)の結果を第5
表に示す。
For each sample, the results of the measured relative dielectric constant (εr) and electromechanical coupling coefficient (Kp) of the spreading vibration of the disk are
Shown in the table.

(実施例6) 実施例5で調製した強誘電性磁器粉末(0,05Pb(
Mn、/3Nb、/3)03−0.45 PbT iO
,−0、50PbZrOs)と実施例1で調製したガラ
ス化合物(5PbO・3GeO1)の粉末とを用い、実
施例2と同様にして磁器角板を得、その抗折強度を測定
した。その結果を、主成分とガラス化合物との配合比お
よび焼成温度と共に、第6表に示す。
(Example 6) Ferroelectric ceramic powder (0,05Pb(
Mn, /3Nb, /3)03-0.45 PbT iO
. The results are shown in Table 6 along with the blending ratio of the main component and the glass compound and the firing temperature.

(実施例7) 原料としてPb30.、Tie、、Lat、s、および
M n Otを用い、仮焼温度を950℃とした以外は
実施例1と同様にしてPbo、esLao、+aTiO
s−0゜7wt%M n O!の組成を有する強誘電性
磁器粉末を調製した。
(Example 7) Pb30. , Tie, , Lat, s, and M n Ot were used, and Pbo, esLao, +aTiO
s-0゜7wt%MnO! A ferroelectric ceramic powder with the composition was prepared.

この強誘電性磁器粉末に実施例Iで調製したXPbO・
yGeOt(x= 1〜6.y=1〜3)を第7表に示
す割合で配合し、有機バインダを4〜5wt%加えて2
0時間混練した後、押出し成形してグリーンシートを得
、これをパンチングして直径10mm厚さ0.51の円
板を形成し、該円板を第7表に示す温度で2時間焼成し
て磁器円板を得た。各磁器円板の両面に銀電極を焼き付
け、両電極間に80℃で3〜4kv/mmの直流電圧を
印加して30分間分極処理を行い磁器圧電体の試料とし
た。
This ferroelectric ceramic powder was coated with the XPbO prepared in Example I.
yGeOt (x = 1 to 6. y = 1 to 3) was blended in the proportion shown in Table 7, and 4 to 5 wt% of an organic binder was added.
After kneading for 0 hours, extrusion molding was performed to obtain a green sheet, which was punched to form a disk with a diameter of 10 mm and a thickness of 0.51 mm, and the disk was fired at the temperature shown in Table 7 for 2 hours. A porcelain disc was obtained. Silver electrodes were baked on both sides of each porcelain disk, and a DC voltage of 3 to 4 kv/mm was applied between the two electrodes at 80° C. to conduct polarization treatment for 30 minutes to prepare a porcelain piezoelectric sample.

(比較例7.8) 実施例7の組成において、副成分として、xPbC1y
GeO7(x=1〜6.y=1〜3)の代わりに、lψ
t%のpbo・B、03・5iot系ガラス化合物また
は10wt%のNatO・BtOa・5tOt系ガラメ
ガラス化用いた以外は、実施例7と同様にして磁器圧電
体の試料を得た。
(Comparative Example 7.8) In the composition of Example 7, xPbC1y was added as a subcomponent.
Instead of GeO7 (x=1~6.y=1~3), lψ
A sample of a porcelain piezoelectric material was obtained in the same manner as in Example 7, except that t% of pbo.B, 03.5iot glass compound or 10wt% of NatO.BtOa.5tOt glass was used.

各試料について、測定した比誘電率(εr)および円板
の厚み方向の振動の電気機械結合係数(K t)! の結果を第7表に示す。
For each sample, the measured dielectric constant (εr) and electromechanical coupling coefficient (K t) of vibration in the thickness direction of the disk! The results are shown in Table 7.

(実施例8) 実施例7で調製した強誘電性磁器粉末(Pba、ssL
 ao、 +oT io 3−0 、7 wt%Mn0
2)と実施例1で調製したガラス化合物(5Pb0・3
GeO*)の粉末とを用い、実施例2と同様にして磁器
角板を得、その抗折強度を測定した。その結果を、主成
分とガラス化合物との配合比および焼成温度と共に、第
8表に示す。
(Example 8) Ferroelectric ceramic powder (Pba, ssL) prepared in Example 7
ao, +oTio 3-0, 7 wt%Mn0
2) and the glass compound prepared in Example 1 (5Pb0.3
A porcelain square plate was obtained in the same manner as in Example 2 using powder of GeO*), and its bending strength was measured. The results are shown in Table 8 along with the blending ratio of the main component and the glass compound and the firing temperature.

(以 下 余 白) 第1表〜第8表の結果から明らかなように、本発明に係
る強誘電性磁器組成物は、副成分を含まない強誘電性磁
器よりも100〜400℃低い焼結温度を有し、かつ、
それとほぼ同程度のKpおよび比誘電率を示す。また、
本発明に係る強誘電性磁器組成物は、xPbO−yGe
Ot(x=1〜6.y=1〜3)の含有量の増加と共に
電気機械結合係数および比誘電率が徐々に低下するが、
その度合は、P bo −B to s・S iOを系
ガラスやNatO’BtO3’S r Oを系ガラスを
含有させた場合に比べ著しく少ない。
(Left below) As is clear from the results in Tables 1 to 8, the ferroelectric porcelain composition according to the present invention has a sintering temperature of 100 to 400°C lower than that of ferroelectric porcelain that does not contain subcomponents. has a freezing temperature, and
The Kp and dielectric constant are approximately the same. Also,
The ferroelectric ceramic composition according to the present invention includes xPbO-yGe
As the content of Ot (x = 1 to 6. y = 1 to 3) increases, the electromechanical coupling coefficient and dielectric constant gradually decrease,
The degree of this is significantly smaller than when a P bo -B to s·S iO-based glass or a NatO'BtO3'S r O-based glass is contained.

(実施例9) 実施例5と同じ原料および方法により0.lPb(Mn
、/3Nb、/3)0.−0 、52 PbT iO,
−0、38P bZ ro、の組成を有する強誘電性磁
器粉末を調製した。
(Example 9) Using the same raw materials and method as in Example 5, 0. lPb(Mn
, /3Nb, /3)0. -0, 52PbTiO,
A ferroelectric porcelain powder having a composition of -0,38P bZ ro was prepared.

この強誘電性磁器粉末に実施例!で調製したXPb0−
yGeOt(x=5.y=3)を第9表に示す割合で配
合し、有機バインダを2〜3wt%加えて20時間混合
して造粒した後、プレス成形して角板を形成し、これを
第9表に示す温度で2時間焼成して一辺が51+1ff
lで厚さ0 、5 mmの磁器角板を得た。
Examples of this ferroelectric porcelain powder! XPb0− prepared with
yGeOt (x = 5. y = 3) was blended in the proportions shown in Table 9, 2 to 3 wt% of an organic binder was added, mixed for 20 hours and granulated, and then press-molded to form a square plate. This was baked for 2 hours at the temperature shown in Table 9, and the size of each side was 51+1ff.
A square porcelain plate with a thickness of 0.5 mm was obtained.

この磁器角板の両面に銀電極を焼き付け、80℃中で両
電極間に3〜4kv/+n+nの直流電圧を印加して3
0分間分極処理を行い、面内に垂直方向に分極された発
振子(共振子)とした。
Silver electrodes were baked on both sides of this porcelain square plate, and a DC voltage of 3 to 4 kv/+n+n was applied between both electrodes at 80°C.
Polarization treatment was performed for 0 minutes to obtain an oscillator (resonator) polarized in the vertical direction within the plane.

前記発振子を第1図の発振回路にそれぞれ接続し、発振
周波数455KHzで発振させた。図中、1は発振子、
IC+は反転増幅器、R1は抵抗、CL、、CL tは
コンデンサである。前記発振回路で100回動作させた
とき、発振周波数455KHzから4.5MHzへの異
常発振が発生したときの回数を第9表に示す。
The oscillators were each connected to the oscillation circuit shown in FIG. 1, and oscillated at an oscillation frequency of 455 KHz. In the figure, 1 is an oscillator,
IC+ is an inverting amplifier, R1 is a resistor, CL, CLt are capacitors. When the oscillation circuit was operated 100 times, Table 9 shows the number of times abnormal oscillation occurred from the oscillation frequency of 455 KHz to 4.5 MHz.

(以 下 余 白) 第9表 番号   組成(wt%)  焼成温度 異常発振主成
分 ガラス  (’C)   回数(回)57*  1
00  0  1200  7059*  100  
0  1100  8061*  100  0  1
000  9063*  100  0   900 
100第9表の結果から明らかなように、本発明に係る
強誘電性磁器組成物を用い、た発振子では異常発振は全
く認められなかったが、ガラス化合物(5PbO・3G
eO,)を含まない比較例のものでは、第2図に示され
るように、厚み縦振動のスプリアスが生じ4.5MHz
付近での異常発振が認められた。
(Left below) Table 9 No. Composition (wt%) Firing temperature Abnormal oscillation main component Glass ('C) Number of times (times) 57*1
00 0 1200 7059* 100
0 1100 8061* 100 0 1
000 9063* 100 0 900
100 As is clear from the results in Table 9, no abnormal oscillation was observed in the oscillator using the ferroelectric ceramic composition of the present invention;
In the comparative example that does not contain eO,), as shown in Figure 2, spurious thickness longitudinal vibration occurs and the frequency is 4.5 MHz.
Abnormal oscillation was observed in the vicinity.

これは、強誘電性磁器に添加したガラス化合物XPb0
−yGeo2が結晶粒界の強度を高めるだけでなく、発
振子として利用した場合、主振動に悪影響を与えること
なく、厚み縦振動のスプリアスを低下させるためである
と考えられる。従って、本発明に係る強誘電性磁器組成
物は、基本発振周波数より高い振動の減衰に有利である
。なお、このような効果は、拡がり振動を利用した発振
子だけでなく、辺振動を利用する発振子等の材料として
の強誘電性磁器組成物についても認められた。
This is a glass compound XPb0 added to ferroelectric porcelain.
This is considered to be because -yGeo2 not only increases the strength of grain boundaries, but also reduces spurious vibrations of thickness longitudinal vibrations without adversely affecting main vibrations when used as an oscillator. Therefore, the ferroelectric ceramic composition according to the present invention is advantageous in damping vibrations higher than the fundamental oscillation frequency. Incidentally, such an effect was observed not only in oscillators that utilize spread vibration, but also in ferroelectric ceramic compositions used as materials for oscillators and the like that utilize edge vibration.

(実施例10) 実施例3と同様にして0 、70 P b(F e+/
*NbI/z)03−0.30 Pb(Fet/*W+
/3)C)+の組成を有する強誘電性磁器粉末を調製し
た。
(Example 10) In the same manner as in Example 3, 0,70 P b(F e+/
*NbI/z)03-0.30 Pb(Fet/*W+
/3) A ferroelectric ceramic powder having a composition of C)+ was prepared.

この強誘電性磁器粉末に実施例1で調製したXPb0−
yGeO!(x=5.y=3)を第1O表に示す割合で
配合し、有機バインダを2〜3wt%加えて20時間混
合して造粒した後、プレス成形して円板を形成し、これ
を第10表に示す温度で2時間焼成して直径10am、
厚さ1 、 Ommの磁器円板を得た。
The XPb0- prepared in Example 1 was added to this ferroelectric ceramic powder.
yGeO! (x = 5. y = 3) in the proportions shown in Table 1O, 2 to 3 wt% of an organic binder was added, mixed for 20 hours, granulated, and then press-molded to form a disk. was baked for 2 hours at the temperature shown in Table 10 to obtain a diameter of 10 am.
A porcelain disk with a thickness of 1.0 mm was obtained.

この磁器円板の両面に銀電極を焼き付けてコンデンサを
得、その比誘電率を測定した。その結果を第10表に示
す。なお、これらの試料の抗折強度についての測定結果
も同表に示す。
A capacitor was obtained by baking silver electrodes on both sides of this porcelain disk, and its dielectric constant was measured. The results are shown in Table 10. Note that the measurement results for the bending strength of these samples are also shown in the same table.

第1θ表 番号  組成(wt%)  焼成温度 比誘電率 抗折
強度主成分 ガラス  (’C)        (k
g/amす65*  100  0  1000 27
500 160067*  100  0   950
 22500 110069*  100  0   
800 10000  500(実施例11) 実施例3と同様にして0.16 Pb(Zn、/3Nb
、ム)o3−048Pb(Pe、八Nb+/1)03−
0.36 Pb(Pet/’+W+/3)0、の組成を
有する強誘電性磁器粉末を調製した。
Table 1 Theta No. Composition (wt%) Firing temperature Relative permittivity Main component of bending strength Glass ('C) (k
g/amsu65* 100 0 1000 27
500 160067* 100 0 950
22500 110069* 100 0
800 10000 500 (Example 11) 0.16 Pb(Zn, /3Nb
, Mu) o3-048Pb(Pe, 8Nb+/1)03-
A ferroelectric ceramic powder having a composition of 0.36 Pb(Pet/'+W+/3)0 was prepared.

この強誘電性磁器粉末に実施例1で調製したXPb0−
yGeo 、(z= 5 、y= 3 )を第11表に
示す割合で配合し、実施例10と同様にして直径10m
m1厚さ1.0曲の磁器円板を得た。この磁器円板の両
面に銀電極を焼き付けてコンデンサを得、その比誘電率
を測定した。その結果を第11表にそれらの試料の抗折
強度についての測定結果と共に示す。
The XPb0- prepared in Example 1 was added to this ferroelectric ceramic powder.
yGeo, (z = 5, y = 3) in the proportions shown in Table 11, and a diameter of 10 m was prepared in the same manner as in Example 10.
A porcelain disk with a m1 thickness of 1.0 curves was obtained. A capacitor was obtained by baking silver electrodes on both sides of this porcelain disk, and its dielectric constant was measured. The results are shown in Table 11 together with the measurement results for the bending strength of those samples.

11表 番号 −11fj2(wt%σ−焼成温度 比誘電率 
抗折強度主成分 ガラス  ℃)        (k
g/cmす71*  100  0   850 14
000 150073*  100  0   700
  7000  700第1θ表および第11表の結果
から明らかなように、酸化鉛を含む複合ペロブスカイト
系のコンデンサ材料についてもxPbO・yGeotを
含有さ仕ることにより、誘電率および抗折強度を向上さ
仕ることができる。
11 Table number -11fj2 (wt%σ - Firing temperature Relative dielectric constant
Main component of bending strength Glass ℃) (k
g/cm 71* 100 0 850 14
000 150073* 100 0 700
7000 700 As is clear from the results in Tables 1θ and 11, the dielectric constant and bending strength of composite perovskite capacitor materials containing lead oxide can be improved by adding xPbO・yGeot. can be done.

(効果) 以上の説明から明らかなように、本発明によれば、85
0〜1000℃の低い温度で焼結し、しかも、電気機械
結合係数が大きく、比誘電率が大きい強誘電性磁器が得
られるので、エネルギー変換効率が高い圧電素子を製造
できる。また、焼結温度が低いため、金属板との一体焼
結が可能となり、一体焼結型のブザーやバイモルフなど
の電歪素子を製造できるだけでなく、焼成時、PbO雰
囲気調節が不要となり、さやや焼成炉の延命化、および
省エネルギ化を図ることができるなど、優れた効果が得
られる。さらに、抗折強度を低下させることがなく、シ
かも、発振子に利用した場合に、スプリアスの発生を防
止することができる。
(Effect) As is clear from the above explanation, according to the present invention, 85
Ferroelectric ceramics can be sintered at a low temperature of 0 to 1000° C. and have a large electromechanical coupling coefficient and a large dielectric constant, so piezoelectric elements with high energy conversion efficiency can be manufactured. In addition, since the sintering temperature is low, it is possible to integrally sinter the metal plate, which not only makes it possible to manufacture electrostrictive elements such as integrally sintered buzzers and bimorphs, but also eliminates the need to adjust the PbO atmosphere during firing. Excellent effects such as slightly extending the life of the kiln and saving energy can be obtained. Furthermore, the flexural strength does not decrease, and when used in an oscillator, it is possible to prevent the generation of spurious waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミック発振子を含む発振回路を示す回路図
、第2図は第1図の発振回路での主振動である拡がり振
動とスプリアス振動の厚み縦振動を示す図である。 1〜セラミック発振子、IC,〜反転増幅器、R1〜抵
抗、CL + 、 CL *〜コンデンサ。
FIG. 1 is a circuit diagram showing an oscillation circuit including a ceramic oscillator, and FIG. 2 is a diagram showing the spread vibration, which is the main vibration, and the thickness longitudinal vibration, which is the spurious vibration, in the oscillation circuit of FIG. 1. 1 ~ ceramic oscillator, IC, ~ inverting amplifier, R1 ~ resistor, CL + , CL * ~ capacitor.

Claims (4)

【特許請求の範囲】[Claims] (1)鉛酸化物含有強誘電性磁器組成物を主成分とし、
副成分として一般式:xPbO・yGeO_2(x=1
〜6,y=1〜3)で示されるガラス化合物を0.01
〜30重量%含有してなる強誘電性磁器組成物。
(1) The main component is a ferroelectric ceramic composition containing lead oxide,
General formula: xPbO・yGeO_2 (x=1
~6, y=1~3) at 0.01
A ferroelectric ceramic composition containing up to 30% by weight.
(2)前記主成分である鉛酸化物含有強誘電性磁器組成
物が、チタン酸鉛系磁器組成物、チタン酸ジルコン酸鉛
系磁器組成物、メタニオブ酸鉛系磁器組成物および鉛含
有複合ペロブスカイト系磁器組成物からなる群から選ば
れた少なくとも一種である請求項1〜5のいづれか一項
記載の強誘電性磁器組成物。
(2) The lead oxide-containing ferroelectric ceramic composition as the main component is a lead titanate-based ceramic composition, a lead zirconate titanate-based ceramic composition, a lead metaniobate-based ceramic composition, and a lead-containing composite perovskite. The ferroelectric ceramic composition according to any one of claims 1 to 5, which is at least one selected from the group consisting of ferroelectric ceramic compositions.
(3)強誘電性磁器板と、その表面に形成された少なく
とも一つの電極からなり、前記強誘電性磁器板が、鉛酸
化物含有強誘電性磁器組成物を主成分とし、副成分とし
て一般式:xPbO・yGeO_2(x=1〜6,y=
1〜3)で示されるガラス化合物を0.01〜30重量
%含有してなる強誘電性磁器組成物からなることを特徴
とする圧電素子。
(3) Consisting of a ferroelectric ceramic plate and at least one electrode formed on its surface, the ferroelectric ceramic plate has a lead oxide-containing ferroelectric ceramic composition as a main component, and a ferroelectric ceramic composition containing lead oxide as a subcomponent. Formula: xPbO・yGeO_2 (x=1~6, y=
A piezoelectric element comprising a ferroelectric ceramic composition containing 0.01 to 30% by weight of a glass compound represented by 1 to 3).
(4)金属製基板と、該基板上に一体的に積層、焼結さ
れた強誘電性磁器層からなり、該強誘電性磁器層が、鉛
酸化物含有強誘電性磁器組成物を主成分とし、副成分と
して一般式:xPbO・yGeO_2(x=1〜6,y
=1〜3)で示されるガラス化合物を0.01〜30重
量%含有してなる強誘電性磁器組成物であることを特徴
とする圧電素子。
(4) Consisting of a metal substrate and a ferroelectric ceramic layer integrally laminated and sintered on the substrate, the ferroelectric ceramic layer mainly containing a ferroelectric ceramic composition containing lead oxide. and the general formula: xPbO・yGeO_2 (x=1 to 6, y
A piezoelectric element characterized in that it is a ferroelectric ceramic composition containing 0.01 to 30% by weight of a glass compound represented by 1 to 3).
JP63165274A 1987-07-02 1988-07-01 Ferroelectric porcelain composition and piezoelectric element using the same Expired - Fee Related JP2682022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165274A JP2682022B2 (en) 1987-07-02 1988-07-01 Ferroelectric porcelain composition and piezoelectric element using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-167584 1987-07-02
JP16758487 1987-07-02
JP63165274A JP2682022B2 (en) 1987-07-02 1988-07-01 Ferroelectric porcelain composition and piezoelectric element using the same

Publications (2)

Publication Number Publication Date
JPH01100052A true JPH01100052A (en) 1989-04-18
JP2682022B2 JP2682022B2 (en) 1997-11-26

Family

ID=26490073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165274A Expired - Fee Related JP2682022B2 (en) 1987-07-02 1988-07-01 Ferroelectric porcelain composition and piezoelectric element using the same

Country Status (1)

Country Link
JP (1) JP2682022B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
US7309949B2 (en) 2004-03-03 2007-12-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive ceramic and piezoelectric/electrostrictive film type device
US7425790B2 (en) 2005-01-11 2008-09-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of piezoelectric/electrostrictive device
JP2011195383A (en) * 2010-03-19 2011-10-06 Kyocera Corp Piezoelectric substance and piezoelectric element using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309949B2 (en) 2004-03-03 2007-12-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive ceramic and piezoelectric/electrostrictive film type device
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
US7425790B2 (en) 2005-01-11 2008-09-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of piezoelectric/electrostrictive device
US7901729B2 (en) 2005-01-11 2011-03-08 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric/electrostrictive device
JP2011195383A (en) * 2010-03-19 2011-10-06 Kyocera Corp Piezoelectric substance and piezoelectric element using the same

Also Published As

Publication number Publication date
JP2682022B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JP3259677B2 (en) Piezoelectric ceramic composition
KR100282599B1 (en) Piezoelectric Ceramic Composition
JP2009227535A (en) Piezoelectric ceramic composition
JPH1129356A (en) Piezoelectric ceramic composition
JP2004075449A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic component
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP4020454B2 (en) Method for manufacturing piezoelectric ceramics
JPH01100052A (en) Dielectric porcelain composition and piezoelectric element using said composition
JP7021897B2 (en) Dielectric compositions and dielectric ceramics
JP2002255641A (en) Piezoelectric ceramic and piezoelectric element
JP2000272962A (en) Piezoelectric ceramic composition
JP4686883B2 (en) Piezoelectric ceramic and piezoelectric element
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2504176B2 (en) Ferroelectric composition containing lead oxide and piezoelectric element using the same
JP2002338355A (en) Piezoelectric ceramic
JP2570662B2 (en) Ferroelectric porcelain
JP3114886B2 (en) Piezoelectric ceramics
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JPH0745882A (en) Piezoelectric element
JPH09221359A (en) Piezoelectric ceramic composition
JP2002047064A (en) Piezoelectric porcelain and piezoelectric element
JPH04188882A (en) Piezoelectric porcelain composition
JP3266483B2 (en) Piezoelectric ceramic composition
GB2350359A (en) Piezoelectric ceramic composition and element
JPH02197182A (en) Ferroelectric porcelain body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees