JP7523253B2 - Molded body and its manufacturing method - Google Patents

Molded body and its manufacturing method Download PDF

Info

Publication number
JP7523253B2
JP7523253B2 JP2020091567A JP2020091567A JP7523253B2 JP 7523253 B2 JP7523253 B2 JP 7523253B2 JP 2020091567 A JP2020091567 A JP 2020091567A JP 2020091567 A JP2020091567 A JP 2020091567A JP 7523253 B2 JP7523253 B2 JP 7523253B2
Authority
JP
Japan
Prior art keywords
fiber reinforced
mold
reinforced resin
molding
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020091567A
Other languages
Japanese (ja)
Other versions
JP2021186992A (en
Inventor
大賀 齋藤
大地 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2020091567A priority Critical patent/JP7523253B2/en
Publication of JP2021186992A publication Critical patent/JP2021186992A/en
Application granted granted Critical
Publication of JP7523253B2 publication Critical patent/JP7523253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、連続繊維強化樹脂を含む部材と、該部材の表面に接合し、不連続繊維強化樹脂を含む部材とを有する成形体及びその製造方法に関する。 The present invention relates to a molded body having a member containing continuous fiber reinforced resin and a member containing discontinuous fiber reinforced resin bonded to the surface of the member, and a method for manufacturing the same.

強化繊維と熱可塑性樹脂とを含む繊維強化樹脂材は、軽量で強度に優れることから、自動車部品、航空機部品、鉄道部品等、各種産業用途に幅広く使用されている。
上記部品等として、繊維強化樹脂材に更に他の樹脂材又は繊維強化樹脂材を接合させた成形体が製造されており、その製造方法として、加熱した成形型内に繊維強化樹脂材(第1の樹脂材)を載置した後、溶融させた樹脂材又は繊維強化樹脂材(第2の樹脂材)を成形型のキャビティ内に充填し、溶融樹脂の硬化により第1の樹脂材と第2の樹脂材とを接合させて成形体を得る方法が知られている。
更に、上記方法において、上記樹脂材間の接合強度を向上させるため、例えば、特許文献1には、成形型の下型と上型とで温度差を設け、下型の温度を連続繊維補強材(第1の樹脂材)の樹脂の融点未満の温度に調整し、上型の温度を該融点以上の温度に調整した上で別の樹脂材(第2の樹脂材)を充填する方法が記載されている。
また、特許文献2には、繊維強化樹脂材(第1の樹脂材)の表面を、その樹脂の融点以上又はガラス転移点以上に加熱することにより、該表面を凹凸状に加工する又は該表面において強化繊維を露出させる加工を行う表面加工工程を行った後、該加工した表面上に別の樹脂材(第2の樹脂材)を射出成形する方法が記載されている。
2. Description of the Related Art Fiber-reinforced resin materials containing reinforcing fibers and thermoplastic resins are lightweight and have excellent strength, and therefore are widely used in various industrial applications such as automobile parts, aircraft parts, and railway parts.
As the above-mentioned parts, etc., molded bodies are manufactured in which another resin material or fiber reinforced resin material is further joined to a fiber reinforced resin material. A known manufacturing method for such molded bodies is to place a fiber reinforced resin material (first resin material) in a heated molding die, fill the cavity of the molding die with molten resin material or fiber reinforced resin material (second resin material), and bond the first resin material and the second resin material by hardening the molten resin to obtain a molded body.
Furthermore, in the above-mentioned method, in order to improve the bonding strength between the above-mentioned resin materials, for example, Patent Document 1 describes a method in which a temperature difference is provided between the lower and upper dies of a molding die, the temperature of the lower die is adjusted to a temperature below the melting point of the resin of the continuous fiber reinforcement material (first resin material), and the temperature of the upper die is adjusted to a temperature equal to or higher than the melting point, and then another resin material (second resin material) is filled in.
Patent Document 2 describes a method in which a surface processing step is performed in which the surface of a fiber-reinforced resin material (a first resin material) is heated to a temperature above the melting point or glass transition point of the resin to process the surface into an uneven shape or to expose reinforcing fibers on the surface, and then another resin material (a second resin material) is injection molded onto the processed surface.

特許第5712857号公報Patent No. 5712857 特開2016-210080号公報JP 2016-210080 A

しかしながら、上記特許文献1及び2に記載の成形方法では、特に第2の樹脂材を充填するキャビティが断続的である場合には、第1の樹脂材として連続繊維強化樹脂材を用いると、連続繊維強化樹脂材に掛かる圧力により連続強化繊維が上記キャビティ内に食い込み(入り込み)、第1の樹脂材と第2の樹脂材との接合部分において連続強化繊維にヨレが生じるという問題がある。このようなヨレが生じると、接合部分において十分な強度が得られず、接合部分に衝撃が加わった際に該ヨレを起点にして成形体が破壊する場合がある。
また、繊維強化樹脂材は、成形後にその表面を加熱すると、表面の平滑性が失われ、外観が損なわれるという問題がある。
However, in the molding methods described in Patent Documents 1 and 2, particularly when the cavity filled with the second resin material is discontinuous, if a continuous fiber reinforced resin material is used as the first resin material, the pressure applied to the continuous fiber reinforced resin material causes the continuous reinforcing fibers to bite (enter) into the cavity, causing twisting of the continuous reinforcing fibers at the joint between the first resin material and the second resin material. If such twisting occurs, sufficient strength cannot be obtained at the joint, and the molded body may break from the twist when an impact is applied to the joint.
Furthermore, when the surface of a fiber-reinforced resin material is heated after molding, the smoothness of the surface is lost, resulting in a problem of impaired appearance.

そこで、本発明は、連続繊維強化樹脂を含む部材と、該部材の表面に接合し、不連続繊維強化樹脂を含む部材とを有し、強度及び外観に優れた成形体及びその製造方法を提供することを目的とする。 The present invention aims to provide a molded article having excellent strength and appearance, which has a member containing continuous fiber reinforced resin and a member containing discontinuous fiber reinforced resin bonded to the surface of the member, and a method for manufacturing the same.

本発明者は、上記課題を解決するため鋭意検討を重ねた結果、連続繊維強化樹脂を含む第1部材と、第1部材の表面に接合し、不連続繊維強化樹脂を含む第2部材とを有する成形体において、第1部材と第2部材との接合部以外の部分における第1部材の厚みに対する、接合部における第1部材の厚みの割合を特定範囲とすることで、上記課題を解決しうることを見出し、本発明を完成させた。
即ち、本発明は、下記に示すとおりである。
As a result of extensive investigations to solve the above-mentioned problems, the inventors have found that in a molded body having a first member containing continuous fiber reinforced resin and a second member containing discontinuous fiber reinforced resin joined to a surface of the first member, the above-mentioned problems can be solved by setting the ratio of the thickness of the first member at the joint between the first member and the second member to the thickness of the first member at a portion other than the joint between the first member and the second member within a specific range, and have completed the present invention.
That is, the present invention is as follows.

[1]
成形体の製造方法であり、
前記成形体は、
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、
前記製造方法は、
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、型締めして第1部材を成形し、
前記成形体用金型内で、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱した後、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、
前記第2部材の成形が射出成形である
ことを特徴とする、成形体の製造方法。
[2]
成形体の製造方法であり、
前記成形体は、
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、
前記製造方法は、
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に第1部材用金型内に設置し、型締めして第1部材を成形し、
前記第1部材を前記第1部材用金型から取り出し、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱し、
加熱した前記第1部材を成形体用金型に設置し、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、
前記第2部材の成形が射出成形である
ことを特徴とする、成形体の製造方法。
[3]
成形体の製造方法であり、
前記成形体は、
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、
前記製造方法は、
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、前記連続繊維強化樹脂に対して掛かる型締め方向の圧力が10MPa以下となるような型締め力で型締めして第1部材を成形した後、加熱した不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、
前記第2部材の成形が射出成形である
ことを特徴とする、成形体の製造方法。

前記接合部における前記第2部材の幅Wに対する、前記厚みt1から前記厚みtを引いた差t1-tの割合((t1-t)/W)が、-0.50~10.00である、[1]~[3]のいずれかに記載の成形体の製造方法

前記不連続強化繊維の繊維長が3mm未満である、[1]~[4]のいずれかに記載の成形体の製造方法

前記不連続強化繊維の繊維長が3mm以上である、[1]~[4]のいずれかに記載の成形体の製造方法

前記第1部材の表面に沿う方向の前記第1部材の引張強度について、前記接合部以外の部分における前記引張強度σ1に対する、前記接合部における前記引張強度σ1’の割合(σ1’/σ1)が、0.65以上である、[1]~[]のいずれかに記載の成形体の製造方法

前記接合部における前記引張強度σ1’に対する、前記接合部における前記第1部材と前記第2部材との接着強度σの割合(σ/σ1’)が、0.45以下である、[7]に記載の成形体の製造方法

前記第2部材を成形する際に、前記第1部材を、前記第1部材の表面に平行な少なくとも2方向に引張する、[]~[]のいずれかに記載の成形体の製造方法。
[1]
A method for producing a molded body,
The molded body is
A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
The manufacturing method includes:
A continuous fiber reinforced resin containing continuous reinforcing fibers is heated and then placed in a mold for molding, and the mold is clamped to mold a first member;
and heating, in the mold for molding, a joining side surface of the first member at a portion where the second member is to be joined or the entire joining side surface including the joining side surface, and then molding the second member using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.
When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
The molding of the second member is injection molding.
A method for producing a molded body, comprising:
[2]
A method for producing a molded body,
The molded body is
A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
The manufacturing method includes:
A continuous fiber reinforced resin containing continuous reinforcing fibers is heated and then placed in a mold for a first member, and the mold is clamped to mold the first member;
The first member is removed from the first member mold, and a joining side surface of a portion of the first member to which a second member is to be joined or an entire joining side surface including the joining side surface is heated;
The heated first member is placed in a mold for molding, and a second member is molded using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers,
When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
The molding of the second member is injection molding.
A method for producing a molded body, comprising:
[3]
A method for producing a molded body,
The molded body is
A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
The manufacturing method includes:
The method includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing the heated continuous fiber reinforced resin in a mold for molding, clamping the mold with a clamping force such that a pressure in a clamping direction applied to the continuous fiber reinforced resin is 10 MPa or less to mold a first member, and then molding a second member using the heated discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.
When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
The molding of the second member is injection molding.
A method for producing a molded body, comprising:
4
The method for producing a molded body according to any one of [1] to [3], wherein a ratio ((t1-t)/W) of a difference t1-t obtained by subtracting the thickness t from the thickness t1 to a width W of the second member at the joint is -0.50 to 10.00.

The method for producing a molded body according to any one of [1] to [4] , wherein the discontinuous reinforcing fibers have a fiber length of less than 3 mm.

The method for producing a molded body according to any one of [1] to [4] , wherein the discontinuous reinforcing fibers have a fiber length of 3 mm or more.

The method for producing a molded product according to any one of [1] to [6], wherein, regarding a tensile strength of the first member in a direction along a surface of the first member, a ratio (σ B 1'/σ B 1) of the tensile strength σ B 1 at the joint to the tensile strength σ B 1 at a portion other than the joint is 0.65 or more.
8
The method for producing a molded product according to [7], wherein a ratio (σ JB 1 ' ) of an adhesive strength σ J between the first member and the second member at the joint to the tensile strength σ B 1' at the joint is 0.45 or less.

The method for producing a molded product according to any one of [ 1 ] to [ 8 ], wherein, when molding the second member, the first member is pulled in at least two directions parallel to a surface of the first member.

本発明によれば、連続繊維強化樹脂を含む部材と、該部材の表面に接合し、不連続繊維強化樹脂を含む部材とを有し、強度及び外観に優れた成形体及びその製造方法を提供することができる。 The present invention provides a molded article having excellent strength and appearance, and a manufacturing method thereof, which has a member containing continuous fiber reinforced resin and a member containing discontinuous fiber reinforced resin bonded to the surface of the member.

本発明に係る成形体の一実施形態を示す写真である。1 is a photograph showing one embodiment of a molded body according to the present invention. 本発明に係る成形体の一実施形態の接合部を示す断面写真である。1 is a cross-sectional photograph showing a joint of one embodiment of a molded body according to the present invention. 本発明に係る成形体の一実施形態の接合部を示す断面写真である。1 is a cross-sectional photograph showing a joint of one embodiment of a molded body according to the present invention. 実施例及び比較例において、引張強度の測定に用いた試験片を示す斜視図である。FIG. 2 is a perspective view showing a test piece used for measuring tensile strength in the examples and comparative examples.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The following is a detailed description of the embodiment of the present invention (hereinafter, referred to as the "present embodiment"). Note that the present invention is not limited to the following embodiment, and can be modified in various ways within the scope of the gist of the invention.

<成形体>
本実施形態の成形体は、連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であることを特徴とする。
図1は、本実施形態の成形体の一例を示す写真である。第1部材1の表面に、リブとしての第2部材2が接合した成形体である。
<Molded body>
The molded body of the present embodiment has a first member including a continuous fiber reinforced resin containing continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers, and is characterized in that at a joint between the first member and the second member, the first member is embedded in the second member, or the second member is embedded in the first member, and a ratio (t1/t) of a height t1 of the continuous reinforcing fibers at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00.
Fig. 1 is a photograph showing an example of a molded article of the present embodiment, which is a molded article in which a second member 2 serving as a rib is bonded to the surface of a first member 1.

本実施形態の成形体は、第1部材と第2部材との接合部において、第1部材が第2部材に食い込んでいるか、又は第2部材が第1部材に食い込んでいる。接合部とは、第1部材と第2部材が熱融着により接合している部分(界面)を指す。
接合部において第1部材が第2部材に食い込んでいる状態とは、第1部材に含まれる連続繊維強化樹脂が、接合部において第2部材の不連続繊維強化樹脂中に入り込み、連続繊維強化樹脂の樹脂に沿って連続強化繊維も不連続繊維強化樹脂中に入り込んでいる状態のことである。そのため、接合部における連続強化繊維の高さt1は、接合部以外の部分における第1部材の厚みtよりも大きい値(高い状態)となっている。
また、接合部において第2部材が第1部材に食い込んでいる状態とは、第2部材に含まれる不連続繊維強化樹脂が、接合部において第1部材の連続繊維強化樹脂中に入り込んでいる状態のことである。そのため、接合部における連続強化繊維の高さt1は、接合部以外の部分における第1部材の厚みtよりも小さい値(低い状態)となっている。なお、不連続繊維強化樹脂の樹脂と共に不連続強化繊維も連続繊維強化樹脂中に入り込んでいるとしてよい。
図2及び3は、本実施形態の成形体の一例における接合部を示す厚み方向断面写真である。図2の成形体では、第1部材1が第2部材2に食い込んでおり、図3の成形体では、第2部材2が第1部材1に食い込んでいる。接合部3は、第1部材1と第2部材2との境界線として観察される。
なお、接合部における連続強化繊維の高さt1とは、接合部における第1部材中の連続強化繊維の繊維方向に沿った厚み方向断面(例えば、図2及び図3参照)において、第1部材の第2部材が接合する面と反対側の面からの連続強化繊維の厚み方向高さのうち、接合部において第1部材が第2部材に食い込んでいる状態の場合(例えば、図2参照)は最大値(連続強化繊維の高さが最も高い部分の高さ)を、接合部において第2部材が第1部材に食い込んでいる状態の場合(例えば、図3参照)は最小値(連続強化繊維の高さが最も低い部分の高さ)を表す。
In the molded article of the present embodiment, at a joint between a first member and a second member, the first member bites into the second member, or the second member bites into the first member. The joint refers to a portion (interface) where the first member and the second member are joined by thermal fusion.
The state where the first member is embedded in the second member at the joint means that the continuous fiber reinforced resin contained in the first member penetrates into the discontinuous fiber reinforced resin of the second member at the joint, and the continuous reinforcing fibers also penetrate into the discontinuous fiber reinforced resin along the resin of the continuous fiber reinforced resin. Therefore, the height t1 of the continuous reinforcing fibers at the joint is greater (higher) than the thickness t of the first member at the portion other than the joint.
In addition, the state where the second member is embedded in the first member at the joint means that the discontinuous fiber reinforced resin contained in the second member is embedded in the continuous fiber reinforced resin of the first member at the joint. Therefore, the height t1 of the continuous reinforcing fiber at the joint is smaller (lower) than the thickness t of the first member at the portion other than the joint. Note that the discontinuous reinforcing fiber may be embedded in the continuous fiber reinforced resin together with the resin of the discontinuous fiber reinforced resin.
2 and 3 are cross-sectional photographs in the thickness direction showing a joint in an example of the molded body of this embodiment. In the molded body of Fig. 2, the first member 1 is embedded in the second member 2, and in the molded body of Fig. 3, the second member 2 is embedded in the first member 1. The joint 3 is observed as a boundary line between the first member 1 and the second member 2.
The height t1 of the continuous reinforcing fiber at the joint refers to the thickness direction height of the continuous reinforcing fiber from the surface of the first member opposite to the surface where the second member is joined in a thickness direction cross section (e.g., see Figures 2 and 3) along the fiber direction of the continuous reinforcing fiber in the first member at the joint. When the first member is embedded in the second member at the joint (e.g., see Figure 2), the height t1 refers to the maximum value (the height of the part where the continuous reinforcing fiber is the highest) and when the second member is embedded in the first member at the joint (e.g., see Figure 3), the height t1 refers to the minimum value (the height of the part where the continuous reinforcing fiber is the lowest).

本実施形態の成形体は、オイルパン、シートパン、ポンプ、シリンダーヘッドカバー、ギヤボックス、ケース部品等の自動車部品、航空機部品、鉄道部品、住宅建材部品、ロボット部品等に好適に用いることができる。
本実施形態の成形体の大きさ及び形状は、所望される上記部品等の大きさ及び形状に依存して種々の大きさ及び形状とすることができる。
The molded article of the present embodiment can be suitably used for automobile parts such as oil pans, seat pans, pumps, cylinder head covers, gear boxes, and case parts, aircraft parts, railway parts, housing construction materials, robot parts, and the like.
The size and shape of the molded body of this embodiment can be various depending on the desired size and shape of the above-mentioned parts, etc.

〈第1部材〉
本実施形態の成形体を構成する第1部材は、連続強化繊維を含む連続繊維強化樹脂を含み、その表面上で第2部材と接合している。第1部材は、連続繊維強化樹脂のみからなるものであってもよい。
第1部材の大きさ及び形状は、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の大きさ及び形状とすることができる。
連続強化繊維の形態としては、特に限定されないが、例えば、織物、編物、一方向材、多軸織物等が挙げられる。これらは単層でも積層して用いてもよく、それぞれを組み合わせて使用してもよい。連続強化繊維の配向は、成形体に必要とされる強度に応じて任意に選ぶことができ、例えば、0度のみの一軸配向、0度と90度の二軸配向、0度と±30度の三軸配向、0度と±45度と90度の四軸配向等が挙げられる。面内の物性の均一性の観点から複数軸が好ましく、取り扱い性の観点から二軸又は四軸がより好ましい。複数軸の場合、それぞれの軸に配向している繊維量が同一でもよいし、特定の方向の強度が必要な場合はその方向に配向する連続強化繊維の量を増やしてもよい。
<First member>
The first member constituting the molded body of the present embodiment includes a continuous fiber reinforced resin containing continuous reinforcing fibers, and is bonded to the second member on its surface. The first member may be made of only continuous fiber reinforced resin.
The size and shape of the first member are not particularly limited, and may be of various sizes and shapes depending on the size and shape of the desired molded body.
The form of the continuous reinforcing fiber is not particularly limited, but examples thereof include woven fabrics, knitted fabrics, unidirectional materials, and multiaxial woven fabrics. These may be used in a single layer or in a laminated form, or in combination with each other. The orientation of the continuous reinforcing fiber can be selected arbitrarily according to the strength required for the molded body, and examples thereof include uniaxial orientation at 0 degrees only, biaxial orientation at 0 degrees and 90 degrees, triaxial orientation at 0 degrees and ±30 degrees, and quadriaxial orientation at 0 degrees, ±45 degrees, and 90 degrees. From the viewpoint of uniformity of in-plane physical properties, multiple axes are preferred, and from the viewpoint of handleability, biaxial or quadriaxial orientation is more preferred. In the case of multiple axes, the amount of fibers oriented in each axis may be the same, or if strength in a specific direction is required, the amount of continuous reinforcing fibers oriented in that direction may be increased.

本実施形態の第1部材において、第2部材と接合する表面を有する部分のうち、第2部材との接合部以外の部分における厚みtは、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の厚みとすることができ、一定でなくてもよい。成形性や強度剛性や軽量化の観点からは、好ましくは0.10~10.00mm、より好ましくは1.00~5.00mmである。
また、本実施形態の第1部材は、第2部材と接合する表面を有する部分について、第2部材との接合部以外の部分における厚みtに対する、接合部における連続強化繊維の高さt1の割合(t1/t)が0.50~2.00以下であり、好ましくは0.70~1.50、より好ましくは0.90~1.00である。上記割合(t1/t)が0.50~2.00であると、第1部材中の連続強化繊維の第2部材への食い込み、又は第2部材中の不連続強化繊維樹脂の第1部材への食い込みが小さく、連続強化繊維のヨレが小さいため、成形体を外部からの衝撃を受けやすい車両部品等に用いた場合にも、接合部が衝撃に耐え得る十分な強度を有するものとなる。
割合(t1/t)を上記範囲に制御する方法としては、例えば、第1部材全体ではなく第1部材の被接合面のみを加熱して第2部材を成形(接合)すること、第1部材にかかる圧力を低減すること、加熱状態を調整して流動性を低下させること等により、不連続繊維強化樹脂を充填するキャビティ内に第1部材の連続強化繊維が食い込むのを低減させ、接合部における連続強化繊維の高さt1を小さくする方法が挙げられる。後述する第1部材及び第2部材の接合部における接着強度σとのバランスを高める観点から、第1部材全体ではなく第1部材の被接合面のみを加熱して第2部材を成形(接合)する方法が好ましい。
なお、第1部材の接合部以外の部分における厚みtは、マイクロメーターを用いて測定される値であり、少なくとも5箇所の厚みを測定して得られた値の平均値とする。第1部材の接合部以外の部分における厚みが一定ではない場合は、接合部付近の少なくとも5箇所で測定した値の平均値を厚みtとする。
また、接合部における第1部材中の連続強化繊維の高さt1は、接合部の連続強化繊維の繊維方向に沿った厚み方向断面写真より、画像解析を用いて測定される値である。なお、断面は、第1部材表面に対する第2部材の高さが最大になるように作製する。繊維が複数の方向に配向している場合は、それぞれの繊維方向に沿って5箇所の断面を作製し、画像測定を行って平均値を算出する。接合部において第1部材が第2部材に食い込んでいる状態の場合は、上記平均値が一番大きい値となる繊維方向における高さの最大値をt1とし、第2部材が第1部材に食い込んでいる状態の場合は、上記平均値が一番小さい値となる繊維方向における高さの最小値をt1とする。
In the first member of this embodiment, the thickness t of the portion having the surface to be joined to the second member other than the joint with the second member is not particularly limited, and may be various thicknesses depending on the size and shape of the desired molded body, and does not have to be constant. From the viewpoints of moldability, strength and rigidity, and weight reduction, it is preferably 0.10 to 10.00 mm, more preferably 1.00 to 5.00 mm.
In addition, in the first member of this embodiment, the ratio (t1/t) of the height t1 of the continuous reinforcing fiber at the joint to the thickness t of the portion other than the joint with the second member in the portion having the surface to be joined with the second member is 0.50 to 2.00 or less, preferably 0.70 to 1.50, more preferably 0.90 to 1.00. When the ratio (t1/t) is 0.50 to 2.00, the penetration of the continuous reinforcing fiber in the first member into the second member, or the penetration of the discontinuous reinforcing fiber resin in the second member into the first member is small, and the twisting of the continuous reinforcing fiber is small, so that even when the molded body is used for a vehicle part or the like that is susceptible to external impact, the joint has sufficient strength to withstand the impact.
Examples of methods for controlling the ratio (t1/t) within the above range include a method of molding (joining) the second member by heating only the joining surface of the first member instead of the entire first member, reducing the pressure applied to the first member, adjusting the heating state to reduce fluidity, etc., thereby reducing the intrusion of the continuous reinforcing fibers of the first member into the cavity filled with the discontinuous fiber reinforced resin, thereby reducing the height t1 of the continuous reinforcing fibers at the joint. From the viewpoint of improving the balance with the adhesive strength σ J at the joint between the first member and the second member described later, a method of molding (joining) the second member by heating only the joining surface of the first member instead of the entire first member is preferable.
The thickness t of the first member at the portion other than the joint is a value measured using a micrometer, and is the average value of the values obtained by measuring the thickness at at least five points. If the thickness of the first member at the portion other than the joint is not constant, the thickness t is the average value of the values measured at least at five points near the joint.
The height t1 of the continuous reinforcing fibers in the first member at the joint is a value measured by image analysis from a thickness direction cross-sectional photograph along the fiber direction of the continuous reinforcing fibers at the joint. The cross section is prepared so that the height of the second member relative to the surface of the first member is maximum. When the fibers are oriented in multiple directions, five cross sections are prepared along each fiber direction, and the average value is calculated by performing image measurement. When the first member is embedded in the second member at the joint, the maximum height in the fiber direction at which the average value is the largest is set to t1, and when the second member is embedded in the first member, the minimum height in the fiber direction at which the average value is the smallest is set to t1.

本実施形態の第1部材は、第1部材の表面に沿う方向の引張強度について、接合部以外の部分における該引張強度σ1が、強度剛性の観点から200~700MPaであることが好ましく、300~600MPaであることがより好ましい。
また、本実施形態の第1部材は、第1部材の表面に沿う方向の引張強度について、接合部における該引張強度σ1’が、強度剛性の観点から150MPa超650MPa以下であることが好ましく、200~600MPaであることがより好ましい。引張強度σ1’は、第2部材への第1部材の食い込みが小さいほど高くなる。
また、本実施形態の第1部材は、上記引張強度σ1に対する上記引張強度σ1’の割合(σ1’/σ1)が、0.65以上であることが好ましく、より好ましくは0.75~1.50、更に好ましくは0.80~1.20、最も好ましくは0.90~1.10である。上記割合(σ1’/σ1)が0.65以上であると、接合による第1部材の強度の低下が少なく、成形体が、外部からの衝撃を受けやすい車両部品等に用いた場合にも衝撃に耐え得る十分な強度を有するものとなる。
なお、本開示で、上記「第1部材の表面に沿う方向」とは、第1部材中の連続強化繊維の繊維配向方向を意味する。第1部材中の連続強化繊維が複数の方向に配向している場合は、それぞれの方向で引張強度を測定し、引張強度が最大値となる繊維配向方向を意味するものとする。
引張強度σ1及びσ1’は、JIS K7165に準拠して、試験速度5mm/minで測定される値であり、具体的には、後述の実施例に記載の方法により測定することができる。
In the first member of this embodiment, the tensile strength in a direction along the surface of the first member, σ B 1 in a portion other than the joint, is preferably 200 to 700 MPa, and more preferably 300 to 600 MPa, from the viewpoint of strength and rigidity.
In addition, in the first member of this embodiment, the tensile strength in the direction along the surface of the first member at the joint is preferably more than 150 MPa and not more than 650 MPa, and more preferably 200 to 600 MPa, from the viewpoint of strength and rigidity. The tensile strength σ B1 ′ becomes higher as the bite of the first member into the second member becomes smaller.
Furthermore, in the first member of this embodiment, the ratio of the tensile strength σ B 1' to the tensile strength σ B 1 (σ B 1'/σ B 1) is preferably 0.65 or more, more preferably 0.75 to 1.50, even more preferably 0.80 to 1.20, and most preferably 0.90 to 1.10. When the ratio (σ B 1'/σ B 1) is 0.65 or more, the strength of the first member is not significantly reduced by joining, and the molded body has sufficient strength to withstand impact even when used in vehicle parts that are susceptible to external impacts.
In this disclosure, the "direction along the surface of the first member" refers to the fiber orientation direction of the continuous reinforcing fibers in the first member. When the continuous reinforcing fibers in the first member are oriented in multiple directions, the tensile strength is measured in each direction, and the fiber orientation direction in which the tensile strength is maximum is referred to.
The tensile strengths σ B 1 and σ B 1′ are values measured in accordance with JIS K7165 at a test speed of 5 mm/min, and specifically, can be measured by the method described in the examples below.

《連続繊維強化樹脂》
本実施形態の成形体に含まれる連続繊維強化樹脂は、連続強化繊維を含有させることにより強度を高めた樹脂である。
使用する連続強化繊維の種類、配合量、太さ、及び方向性等、並びに樹脂の種類及び配合量等を目的に応じて選択することにより、連続繊維強化樹脂の強度及び耐衝撃性等を調整することができる。
Continuous fiber reinforced plastic
The continuous fiber reinforced resin contained in the molded article of this embodiment is a resin whose strength is increased by including continuous reinforcing fibers.
By selecting the type, amount, thickness, direction, etc. of the continuous reinforcing fibers used, as well as the type and amount of resin, etc. according to the purpose, the strength, impact resistance, etc. of the continuous fiber reinforced resin can be adjusted.

[連続強化繊維]
本実施形態の連続繊維強化樹脂に含まれる連続強化繊維は、通常の繊維強化複合材料として使用されるものを用いることができ、例えば、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、セラミックス繊維等が挙げられる。機械的特性、熱的特性、汎用性の観点から、ガラス繊維、炭素繊維、アラミド繊維が好ましく、経済性の面からは、ガラス繊維が好ましい。
上記連続強化繊維は、一種を単独で又は複数を組み合わせて用いることができる。
[Continuous reinforcing fiber]
The continuous reinforcing fibers contained in the continuous fiber reinforced resin of this embodiment may be those used as ordinary fiber reinforced composite materials, such as glass fibers, carbon fibers, aramid fibers, ultra-high strength polyethylene fibers, polybenzazole fibers, liquid crystal polyester fibers, polyketone fibers, metal fibers, ceramic fibers, etc. From the viewpoints of mechanical properties, thermal properties, and versatility, glass fibers, carbon fibers, and aramid fibers are preferred, and from the viewpoint of economy, glass fibers are preferred.
The continuous reinforcing fibers may be used alone or in combination of two or more.

連続強化繊維としてガラス繊維を選択した場合、集束剤を用いてもよく、集束剤としては、シランカップリング剤、潤滑剤、及び結束剤を含むことが好ましい。
ガラス繊維及びガラス繊維に用いる集束剤の種類については、特に制限はなく公知のものを使用することができる。具体的には、例えば、特開2015-101794号公報に記載のものを用いることができる。
When glass fibers are selected as the continuous reinforcing fibers, a sizing agent may be used, and the sizing agent preferably contains a silane coupling agent, a lubricant, and a binder.
The types of glass fibers and sizing agents used for glass fibers are not particularly limited, and known ones can be used. Specifically, for example, those described in JP 2015-101794 A can be used.

また、連続強化繊維として炭素繊維を選択した場合も同様に、集束剤を用いてもよく、集東剤としては、潤滑剤及び結束剤を含むことが好ましい。
炭素繊維に用いる集束剤の種類については、特に制限はなく公知のものを使用することができる。具体的には、例えば、特開2015-101794号公報に記載のものを用いることができる。
Similarly, when carbon fibers are selected as the continuous reinforcing fibers, a sizing agent may be used, and the sizing agent preferably contains a lubricant and a binder.
The type of sizing agent used for the carbon fibers is not particularly limited, and any known sizing agent can be used. Specifically, for example, the one described in JP 2015-101794 A can be used.

その他の連続強化繊維を用いる場合においても、連続強化繊維の特性に応じて、ガラス繊維、炭素繊維に用いることが可能な集束剤の種類、付与量を適宜選択して用いることができ、炭素繊維に用いる集束剤に準じた集束剤の種類、付与量とすることが好ましい。 When using other continuous reinforcing fibers, the type and amount of sizing agent that can be used with glass fibers and carbon fibers can be appropriately selected and used depending on the characteristics of the continuous reinforcing fibers, and it is preferable to use a type and amount of sizing agent similar to that used with carbon fibers.

上記連続強化繊維は、単糸又は撚糸であってもよいし、2種以上の強化繊維からなる複合糸であってもよい。
また、上記強化繊維は、糸のままであってもよいし、紐状、組紐状、シート状(織物、編物、一方向配列シート、多軸織物等)等にしたものであってもよい。
The continuous reinforcing fibers may be single or twisted yarns, or may be composite yarns made of two or more types of reinforcing fibers.
The reinforcing fibers may be in the form of threads, strings, braids, sheets (woven fabrics, knitted fabrics, unidirectionally aligned sheets, multiaxial woven fabrics, etc.), or the like.

上記強化繊維の平均繊維長は、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の長さとすることができるが、成形体の最長辺の長さよりも長いことが好ましい。
上記強化繊維の単糸数は、取扱い性の観点から、30~15,000本であることが好ましい。
また、上記強化繊維の繊度は、取扱い性の観点から、100~50,000dtexであることが好ましい。
The average fiber length of the reinforcing fibers is not particularly limited and can be various lengths depending on the size and shape of the desired molded article, but it is preferably longer than the length of the longest side of the molded article.
From the viewpoint of ease of handling, the number of single filaments of the reinforcing fiber is preferably 30 to 15,000.
From the viewpoint of ease of handling, the fineness of the reinforcing fibers is preferably 100 to 50,000 dtex.

上記強化繊維の断面形状は、特に限定されず、円形、楕円形、異形(例えば、Y字状、X字状、I字状、R字状等)、及び中空状等のいずれであってもよい。
上記強化繊維の平均断面径は、長期特性の観点から、3~25μmであることが好ましい。
なお、強化繊維の平均断面径は、光学顕微鏡、デジタルマイクロスコープや走査型電子顕微鏡(SEM)等により測定することができる。
The cross-sectional shape of the reinforcing fibers is not particularly limited, and may be any of a circular shape, an elliptical shape, an irregular shape (for example, a Y-shape, an X-shape, an I-shape, an R-shape, etc.), a hollow shape, and the like.
From the viewpoint of long-term properties, the average cross-sectional diameter of the reinforcing fibers is preferably 3 to 25 μm.
The average cross-sectional diameter of the reinforcing fibers can be measured using an optical microscope, a digital microscope, a scanning electron microscope (SEM), or the like.

連続繊維強化樹脂における連続強化繊維の含有量は、30~80量%であることが好ましく、35~75質量%であることがより好ましい。 The content of continuous reinforcing fibers in the continuous fiber reinforced resin is preferably 30 to 80% by mass, and more preferably 35 to 75% by mass.

[樹脂]
本実施形態の連続繊維強化樹脂に含まれる樹脂は、本発明の効果を損なわない限り特に制限はなく、熱可塑性樹脂であっても熱硬化性樹脂であってもよいが、熱可塑性樹脂であることがより好ましい。
[resin]
The resin contained in the continuous fiber reinforced resin of the present embodiment is not particularly limited as long as it does not impair the effects of the present invention, and may be a thermoplastic resin or a thermosetting resin, but is more preferably a thermoplastic resin.

-熱可塑性樹脂-
連続繊維強化樹脂に含まれる熱可塑性樹脂としては、特に制限はなく、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリアミド6、ポリアミド66、ポリアミド46等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂;ポリオキシメチレン等のポリアセタール系樹脂;ポリカーボネート系樹脂;ポリエーテルケトン;ポリエーテルエーテルケトン;ポリエーテルスルフォン;ポリフェニレンサルファイド;熱可塑性ポリエーテルイミド;テトラフルオロエチレン-エチレン共重合体等の熱可塑性フッ素系樹脂、及びこれらを変性させた変性熱可塑性樹脂等が挙げられる。これらの熱可塑性樹脂の中でも、結晶性樹脂が好ましく、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、及び熱可塑性フッ素系樹脂が好ましく、機械的物性、汎用性の観点から、ポリオレフィン系樹脂、変性ポリオレフィン系樹脂、ポリアミド系樹脂、及びポリエステル系樹脂がより好ましく、熱的物性の観点を加えると、ポリアミド系樹脂及びポリエステル系樹脂が更に好ましい。また、繰り返し荷重負荷に対する耐久性の観点から、ポリアミド系樹脂がより更に好ましく、ポリアミド66を好適に用いることができる。
上記熱可塑性樹脂は、一種を単独で又は複数を組み合わせて用いることができる。
-Thermoplastic resin-
The thermoplastic resin contained in the continuous fiber reinforced resin is not particularly limited, and examples thereof include polyolefin resins such as polyethylene and polypropylene; polyamide resins such as polyamide 6, polyamide 66, and polyamide 46; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate; polyacetal resins such as polyoxymethylene; polycarbonate resins; polyether ketone; polyether ether ketone; polyether sulfone; polyphenylene sulfide; thermoplastic polyetherimide; thermoplastic fluorine-based resins such as tetrafluoroethylene-ethylene copolymers, and modified thermoplastic resins obtained by modifying these. Among these thermoplastic resins, crystalline resins are preferred, such as polyolefin resins, polyamide resins, polyester resins, polyether ketones, polyether ether ketones, polyether sulfones, polyphenylene sulfide, thermoplastic polyetherimides, and thermoplastic fluorine resins, and from the viewpoints of mechanical properties and versatility, polyolefin resins, modified polyolefin resins, polyamide resins, and polyester resins are more preferred, and from the viewpoint of thermal properties, polyamide resins and polyester resins are even more preferred. Also, from the viewpoint of durability against repeated loads, polyamide resins are even more preferred, and polyamide 66 can be suitably used.
The above thermoplastic resins may be used alone or in combination of two or more.

--ポリアミド系樹脂--
ポリアミド系樹脂とは、主鎖に-CO-NH-(アミド)結合を有する高分子化合物を意味する。例えば、ラクタムの開環重合で得られるポリアミド、ω-アミノカルボン酸の自己縮合で得られるポリアミド、ジアミン及びジカルボン酸を縮合することで得られるポリアミド、並びにこれらの共重合物が挙げられるが、これらに限定されるものではない。
ポリアミドとしては、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。
その他の上記のラクタム、ジアミン(単量体)、ジカルボン酸(単量体)の詳細に関しては、適宜特開2015-101794号公報に記載のものを用いることができる。
--Polyamide resin--
The polyamide resin refers to a polymer compound having an -CO-NH- (amide) bond in the main chain. Examples of the polyamide resin include, but are not limited to, polyamides obtained by ring-opening polymerization of lactams, polyamides obtained by self-condensation of ω-aminocarboxylic acids, polyamides obtained by condensing diamines and dicarboxylic acids, and copolymers thereof.
The polyamide may be used alone or in combination of two or more kinds.
Regarding details of the other lactams, diamines (monomers), and dicarboxylic acids (monomers) described above, those described in JP-A-2015-101794 can be used as appropriate.

ポリアミドの具体例としては、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610、ポリアミド612、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナンメチレンテレフタルアミド)、及びポリアミド6I(ポリヘキサメチレンイソフタルアミド)、並びにこれらを構成成分として含む共重合ポリアミド等が挙げられる。 Specific examples of polyamides include polyamide 4 (poly-α-pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecane amide), polyamide 12 (polydodecanamide), polyamide 46 (polytetramethylene adipamide), polyamide 66 (polyhexamethylene adipamide), polyamide 610, polyamide 612, polyamide 6T (polyhexamethylene terephthalamide), polyamide 9T (polynonamethylene terephthalamide), and polyamide 6I (polyhexamethylene isophthalamide), as well as copolymer polyamides containing these as constituent components.

共重合ポリアミドとしては、例えば、ヘキサメチレンアジパミド及びヘキサメチレンテレフタルアミドの共重合物、ヘキサメチレンアジパミド及びヘキサメチレンイソフタルアミドの共重合物、並びにヘキサメチレンテレフタルアミド及び2-メチルペンタンジアミンテレフタルアミドの共重合物等が挙げられる。 Examples of copolymer polyamides include copolymers of hexamethylene adipamide and hexamethylene terephthalamide, copolymers of hexamethylene adipamide and hexamethylene isophthalamide, and copolymers of hexamethylene terephthalamide and 2-methylpentanediamine terephthalamide.

-ポリエステル系樹脂-
ポリエステル系樹脂とは、主鎖に-CO-O-(エステル)結合を有する高分子化合物を意味する。例えば、ポリエチレンテレフタレート、ポリプチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート等が挙げられるが、これらに限定されるものではない。
その他のポリエステル系樹脂の詳細に関しては、適宜特開2015-101794号公報に記載のものを用いることができる。
- Polyester resin -
The polyester resin refers to a polymer compound having a -CO-O- (ester) bond in the main chain. Examples of the polyester resin include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, and polyethylene-2,6-naphthalenedicarboxylate.
Regarding details of other polyester-based resins, those described in JP-A-2015-101794 can be used as appropriate.

本実施形態の連続繊維強化樹脂に含まれる連続強化繊維及び熱可塑性樹脂は、連続強化繊維と熱可塑性樹脂繊維とを含む混繊糸、連続強化繊維に熱可塑性樹脂をコーティングしたコーティング糸、又は連続強化繊維に熱可塑性樹脂を含浸させた含浸糸等の複合糸の形態を採ることができる。
熱可塑性樹脂繊維の単糸数は、取扱い性の観点から、30~20,000本であることが好ましい。
また、熱可塑性樹脂繊維の繊度は、取扱い性の観点から、100~50,000dtexであることが好ましい。
The continuous reinforcing fibers and thermoplastic resin contained in the continuous fiber reinforced resin of this embodiment can take the form of composite yarns such as mixed yarns containing continuous reinforcing fibers and thermoplastic resin fibers, coated yarns in which continuous reinforcing fibers are coated with thermoplastic resin, or impregnated yarns in which continuous reinforcing fibers are impregnated with thermoplastic resin.
From the viewpoint of ease of handling, the number of single filaments of the thermoplastic resin fiber is preferably 30 to 20,000.
From the viewpoint of ease of handling, the fineness of the thermoplastic resin fiber is preferably 100 to 50,000 dtex.

-熱硬化性樹脂-
熱硬化性樹脂としては、特に制限はなく、例えば、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ユリア樹脂、アリル樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、メラミン樹脂、ポリウレタン樹脂、アニリン樹脂、その他工業的に供されている樹脂、及びこれらの樹脂の2種以上を混合して得られる樹脂等が挙げられる。
- Thermosetting resin -
The thermosetting resin is not particularly limited, and examples thereof include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicon resins, benzoxazine resins, phenolic resins, unsaturated polyester resins, bismaleimide triazine resins, alkyd resins, furan resins, melamine resins, polyurethane resins, aniline resins, other industrially available resins, and resins obtained by mixing two or more of these resins.

成形体における連続繊維強化樹脂の含有量は、20~90質量%であることが好ましく、30~80質量%であることがより好ましく、40~70質量%であることが更に好ましい。 The content of continuous fiber reinforced resin in the molded body is preferably 20 to 90 mass%, more preferably 30 to 80 mass%, and even more preferably 40 to 70 mass%.

《連続繊維強化樹脂の製造方法》
連続繊維強化樹脂は、例えば、フィルム状の樹脂とシート状(織物、編物、一方向配列シート、多軸織物等)の強化繊維との積層体を加熱・加圧処理する方法、繊維状の樹脂(樹脂繊維)と強化繊維とからなるシート(織物、編物、一方向配列シート、多軸織物等)を加熱・加圧処理する方法等により、製造することができる。樹脂繊維と強化繊維とからなるシートは、樹脂繊維と強化繊維との混繊糸、コーティング糸、又は含浸糸等を用いて作製してもよい。
上記の加熱・加圧処理としては、例えば、材料を金型に設置し、金型を加熱して金型温度を樹脂の融点以上又はガラス転移温度以上としたのち、型締め力1~100MPaで型締めして圧縮成形を行う。成形時間は、樹脂の融点又はガラス転移温度に達してから1~30分とし、金型を樹脂の融点又はガラス転移温度マイナス200℃~樹脂の融点又はガラス転移温度マイナス10℃まで冷却したのち開放して、連続繊維強化樹脂を得る。
<<Method for producing continuous fiber reinforced resin>>
The continuous fiber reinforced resin can be produced, for example, by a method of heating and pressurizing a laminate of a film-like resin and a sheet-like (woven fabric, knitted fabric, unidirectionally aligned sheet, multiaxially woven fabric, etc.) reinforcing fiber, or a method of heating and pressurizing a sheet (woven fabric, knitted fabric, unidirectionally aligned sheet, multiaxially woven fabric, etc.) made of a fibrous resin (resin fiber) and reinforcing fiber. The sheet made of resin fiber and reinforcing fiber may be produced using a mixed fiber yarn of the resin fiber and the reinforcing fiber, a coated yarn, an impregnated yarn, or the like.
The above-mentioned heating and pressurizing treatment includes, for example, placing the material in a mold, heating the mold to a temperature equal to or higher than the melting point or glass transition temperature of the resin, and then clamping the mold with a clamping force of 1 to 100 MPa to perform compression molding. The molding time is 1 to 30 minutes after the melting point or glass transition temperature of the resin is reached, and the mold is cooled to a temperature between the melting point or glass transition temperature of the resin minus 200°C and the melting point or glass transition temperature of the resin minus 10°C, and then opened to obtain a continuous fiber reinforced resin.

〈第2部材〉
本実施形態の成形体を構成する第2部材は、不連続強化繊維を含む不連続繊維強化樹脂を含み、第1部材の表面上で第1部材と接合している。第2部材は、不連続繊維強化樹脂のみからなるものであってもよい。
第2部材は、第1部材の任意の表面の全体と接合しているのではなく、第1部材の任意の表面上に断続的に配置されて接合しているものとする。
第2部材の大きさ及び形状は、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の大きさ及び形状とすることができる。例えば、リブ(格子状、放射状、円状、波状等)又はボス(筒状、柱状、錐状等)等の形状であってもよい。
<Second member>
The second member constituting the molded body of the present embodiment includes a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers, and is bonded to the first member on the surface of the first member. The second member may be made of only discontinuous fiber reinforced resin.
The second member is not joined to the entirety of any surface of the first member, but is intermittently disposed on and joined to any surface of the first member.
The size and shape of the second member are not particularly limited, and may be various sizes and shapes depending on the size and shape of the desired molded body, etc. For example, the second member may have a shape such as a rib (lattice-shaped, radial, circular, wavy, etc.) or a boss (cylindrical, columnar, conical, etc.).

本実施形態の第2部材において、第1部材との接合部における高さHは、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の高さとすることができ、一定でなくてもよい。成形品の補強効果の観点からは、好ましくは5~300mm、より好ましくは10~200mmである。
なお、第2部材の高さHは、マイクロメーターを用いて測定される値である。
In the second member of this embodiment, the height H of the joint with the first member is not particularly limited and may be various heights depending on the size and shape of the desired molded product, and does not have to be constant. From the viewpoint of the reinforcing effect of the molded product, it is preferably 5 to 300 mm, more preferably 10 to 200 mm.
The height H of the second member is a value measured using a micrometer.

本実施形態の第2部材において、第1部材との接合部における幅Wは、特に限定されず、所望される成形体の大きさ及び形状等に依存して種々の幅とすることができ、一定でなくてもよい。接合強度の観点からは、好ましくは3~50mm、より好ましくは5~40mmである。
また、本実施形態の第2部材は、接合部における第2部材の幅Wに対する、接合部における第1部材中の連続強化繊維の高さt1から、接合部以外の部分における第1部材の厚みtを引いた差t1-tの割合((t1-t)/W)が-0.50~10.00であることが好ましく、幅Wが一定でない場合は、幅Wが最小の部分と最大の部分との両方において算出した割合((t1-t)/W)が、いずれも-0.50~10.00であることが好ましい。上記割合は、より好ましくは1.00~9.00、更に好ましくは2.00~8.00である。上記割合((t1-t)/W)が、-0.50~10.00であると、第1部材中の連続強化繊維の第2部材への食い込み、又は第2部材中の不連続強化繊維樹脂の第1部材への食い込みが小さく、連続強化繊維のヨレが小さいため、成形体を外部からの衝撃を受けやすい車両部品等に用いた場合にも、接合部が衝撃に耐え得る十分な強度を有するものとなる。
割合((t1-t)/W)を上記範囲に制御する方法としては、例えば、第1部材全体ではなく第1部材の被接合面のみを加熱して第2部材を成形(接合)すること、第1部材にかかる圧力を低減すること等により、不連続繊維強化樹脂を充填するキャビティ内に第1部材の連続強化繊維が食い込むのを低減させ、接合部における第1部材中の連続強化繊維の高さt1を小さくする(即ち、t1-tを小さくする)方法が挙げられる。
なお、第2部材の幅Wは、マイクロメーターを用いて測定される値である。
In the second member of this embodiment, the width W of the joint with the first member is not particularly limited and may be various depending on the size and shape of the desired molded body, and does not have to be constant. From the viewpoint of joint strength, it is preferably 3 to 50 mm, more preferably 5 to 40 mm.
In addition, in the second member of this embodiment, the ratio ((t1-t)/W) of the difference t1-t obtained by subtracting the thickness t of the first member in the portion other than the joint from the height t1 of the continuous reinforcing fibers in the first member in the joint to the width W of the second member in the joint is preferably -0.50 to 10.00, and when the width W is not constant, the ratios ((t1-t)/W) calculated in both the portion with the smallest width W and the portion with the largest width W are preferably both -0.50 to 10.00. The above ratio is more preferably 1.00 to 9.00, and even more preferably 2.00 to 8.00. When the ratio ((t1-t)/W) is -0.50 to 10.00, the penetration of the continuous reinforcing fibers in the first member into the second member, or the penetration of the discontinuous reinforcing fiber resin in the second member into the first member is small, and twisting of the continuous reinforcing fibers is small. Therefore, even when the molded body is used in a vehicle part or the like that is susceptible to external impacts, the joint has sufficient strength to withstand the impact.
Methods for controlling the ratio ((t1-t)/W) within the above range include, for example, heating only the joining surface of the first member rather than the entire first member to mold (join) the second member, reducing the pressure applied to the first member, etc., thereby reducing the penetration of the continuous reinforcing fibers of the first member into the cavity filled with the discontinuous fiber reinforced resin, thereby reducing the height t1 of the continuous reinforcing fibers in the first member at the joint (i.e., reducing t1-t).
The width W of the second member is a value measured using a micrometer.

本実施形態の第2部材は、第2部材の表面に沿う方向の接合部以外の部分における引張強度σ2が、強度剛性の観点から50~300MPaであることが好ましく、80~280MPaであることがより好ましい。
なお、本開示で、「第2部材の表面に沿う方向」とは、第2部材の側面上の点を通る方向(該側面が曲面である場合は、該側面上の点の接線方向)のうち、第2部材の長手方向に垂直な方向(複数ある場合はいずれか1つを選択する)を意味する。第2部材の長手方向は、第2部材が第1部材の第2部材と接合している表面上の少なくとも1方向に沿って延伸している形状である場合は、延伸の一端の幅中心と他端の幅中心とを結ぶ方向とする。第2部材の該延伸方向を定めるのが困難な場合(第2部材が柱状、錐状である場合等)は、第1部材と第2部材との交線(即ち、接合部の輪郭線)上の任意の2点のうち、距離が最大となるような2点を結ぶ方向(複数ある場合はいずれか1つを選択すればよいが、第1部材中の連続強化繊維の方向に垂直な方向がある場合は、該方向を選択することが好ましい)を第2部材の長手方向とする。
引張強度σ2は、JIS K7165に準拠して、試験速度5mm/minで測定される値であり、具体的には、後述の実施例に記載の方法により測定することができる。
In the second member of this embodiment, the tensile strength σ B 2 in the portion other than the joint in the direction along the surface of the second member is preferably 50 to 300 MPa, and more preferably 80 to 280 MPa, from the viewpoint of strength and rigidity.
In this disclosure, the term "direction along the surface of the second member" means a direction passing through a point on the side surface of the second member (if the side surface is a curved surface, the tangent direction of the point on the side surface) perpendicular to the longitudinal direction of the second member (if there are multiple directions, select any one of them). When the second member is in a shape extending along at least one direction on the surface of the first member where the second member is joined to the second member, the longitudinal direction of the second member is the direction connecting the width center of one end of the extension and the width center of the other end. When it is difficult to determine the extension direction of the second member (when the second member is columnar or pyramidal, etc.), the direction connecting two points that are the greatest distance between any two points on the intersection line between the first member and the second member (i.e., the contour line of the joint) (if there are multiple directions, any one of them may be selected, but if there is a direction perpendicular to the direction of the continuous reinforcing fibers in the first member, it is preferable to select that direction) is the longitudinal direction of the second member.
The tensile strength σ B 2 is a value measured in accordance with JIS K7165 at a test speed of 5 mm/min, and specifically, can be measured by the method described in the examples below.

また、本実施形態の第1部材及び第2部材は、接合部における接着強度σが、強度剛性の観点から5~200MPaであることが好ましく、10~150MPaであることがより好ましい。
また、本実施形態の成形体は、上記接合部における引張強度σ1’に対する上記接着強度σの割合(σ/σ1’)が、0.45以下であることが好ましく、より好ましくは0.01~0.40、更に好ましくは0.02~0.35、より更に好ましくは、0.02~0.20である。上記割合(σ/σ1’)が0.45以下であると、成形体を外部からの衝撃を受けやすい車両部品等に用いた場合にも、接合部が衝撃に耐え得る十分な強度を有するものとなる。
なお、接着強度σは、試験速度5mm/minで測定される値であり、具体的には、後述の実施例に記載の方法により測定することができる。
In addition, the first member and the second member of this embodiment preferably have an adhesive strength σ J at the joint of 5 to 200 MPa, and more preferably 10 to 150 MPa, from the viewpoint of strength and rigidity.
Furthermore, in the molded article of this embodiment, the ratio of the adhesive strength σ J to the tensile strength σ B 1' at the joint (σ JB 1') is preferably 0.45 or less, more preferably 0.01 to 0.40, even more preferably 0.02 to 0.35, and still more preferably 0.02 to 0.20. When the ratio (σ JB 1') is 0.45 or less, the joint has sufficient strength to withstand impact even when the molded article is used in a vehicle part or the like that is susceptible to external impact.
The adhesive strength σJ is a value measured at a test speed of 5 mm/min, and specifically, can be measured by the method described in the examples below.

《不連続繊維強化樹脂》
本実施形態の成形体に含まれる不連続繊維強化樹脂は、不連続強化繊維を含有させることにより強度を高めた樹脂である。
使用する不連続強化繊維の種類、配合量、太さ、及び方向性等、並びに樹脂の種類及び配合量等を目的に応じて選択することにより、不連続繊維強化樹脂の強度及び耐衝撃性等を調整することができる。
<Discontinuous fiber reinforced plastic>
The discontinuous fiber reinforced resin contained in the molded article of this embodiment is a resin whose strength is increased by including discontinuous reinforcing fibers.
By selecting the type, amount, thickness, direction, etc. of the discontinuous reinforcing fibers used, as well as the type and amount of the resin, according to the purpose, the strength and impact resistance of the discontinuous fiber reinforced resin can be adjusted.

不連続繊維強化樹脂は、連続繊維強化樹脂とは異なり、溶融時に樹脂中の強化繊維も流動するため、成形体の成形時に金型の複雑な形状の細部まで流れ込むことができ、成形体の複雑な形状の部分を構成することができる。
また、本実施形態の成形体において、不連続繊維強化樹脂が、金属の少なくとも一部及び連続繊維強化樹脂の少なくとも一部の両方に接合した構成であると、金属と連続繊維強化樹脂との接合性が強化された、強度の高い成形体となる。
Discontinuous fiber reinforced resin differs from continuous fiber reinforced resin in that the reinforcing fibers in the resin also flow when melted, allowing the resin to flow into the fine details of the complex shape of the mold when molding a molded article, making it possible to form parts of the complex shape of the molded article.
Furthermore, in the molded body of this embodiment, when the discontinuous fiber reinforced resin is bonded to both at least a portion of the metal and at least a portion of the continuous fiber reinforced resin, the bonding between the metal and the continuous fiber reinforced resin is strengthened, resulting in a molded body with high strength.

[不連続強化繊維]
本実施形態の不連続繊維強化樹脂に含まれる不連続強化繊維は、樹脂中にランダムに分散されていてもよいし、ランダムに配向された不連続繊維を有するランダム配向材(不織布等)として構成されていてもよい。
[Discontinuous reinforcing fibers]
The discontinuous reinforcing fibers contained in the discontinuous fiber reinforced resin of this embodiment may be randomly dispersed in the resin, or may be configured as a randomly oriented material (such as a nonwoven fabric) having randomly oriented discontinuous fibers.

不連続強化繊維は、短繊維、長繊維、ランダム繊維のいずれであってもよい。
不連続強化繊維の平均繊維長は、0.05~20mmであることが好ましく、より好ましくは0.10~15mm、更に好ましくは0.15~10mmである。
特に、不連続繊維強化樹脂を射出成形することにより第2部材を成形する場合は、不連続強化繊維の平均繊維長は、3mm未満であることが好ましく、より好ましくは0.01~2.5mm、更に好ましくは0.05~2.0mm、更により好ましくは0.10~1.5mmである。不連続強化繊維の平均繊維長が3mm未満であると、射出成形時に不連続繊維強化樹脂の流動性が良好となり、金型の複雑な形状の細部へと樹脂だけでなく不連続強化繊維も流動するため、複雑な形状でありながら強度の高い成形体を製造することができる。
また、特に、不連続繊維強化樹脂をプレス成形することにより第2部材を成形する場合は、不連続強化繊維の平均繊維長は、3mm以上であることが好ましく、より好ましくは5~60mm、更に好ましくは10~45mm、更により好ましくは15~40mmである。不連続強化繊維の平均繊維長が3mm以上であると、強度の高い成形体を製造することができる。
なお、不連続強化繊維の平均繊維長は、成形体を焼却したのちに残存する不連続強化繊維の長さの平均値である。
The discontinuous reinforcing fibers may be short fibers, long fibers, or random fibers.
The average fiber length of the discontinuous reinforcing fibers is preferably 0.05 to 20 mm, more preferably 0.10 to 15 mm, and even more preferably 0.15 to 10 mm.
In particular, when the second member is molded by injection molding a discontinuous fiber reinforced resin, the average fiber length of the discontinuous reinforcing fibers is preferably less than 3 mm, more preferably 0.01 to 2.5 mm, even more preferably 0.05 to 2.0 mm, and even more preferably 0.10 to 1.5 mm. If the average fiber length of the discontinuous reinforcing fibers is less than 3 mm, the fluidity of the discontinuous fiber reinforced resin is good during injection molding, and not only the resin but also the discontinuous reinforcing fibers flow into the details of the complex shape of the mold, so that a molded body having a complex shape but high strength can be produced.
In particular, when the second member is molded by press molding a discontinuous fiber reinforced resin, the average fiber length of the discontinuous reinforcing fibers is preferably 3 mm or more, more preferably 5 to 60 mm, even more preferably 10 to 45 mm, and even more preferably 15 to 40 mm. When the average fiber length of the discontinuous reinforcing fibers is 3 mm or more, a molded body with high strength can be produced.
The average fiber length of the discontinuous reinforcing fibers is the average value of the lengths of the discontinuous reinforcing fibers remaining after the molded body is incinerated.

上記不連続強化繊維の種類としては、上述の連続強化繊維と同様のものが挙げられ、連続強化繊維と同じであっても異なっていてもよい。
上記不連続強化繊維は、一種を単独で又は複数を組み合わせて用いることができる。
The types of the discontinuous reinforcing fibers include the same as those of the continuous reinforcing fibers described above, and may be the same as or different from the continuous reinforcing fibers.
The discontinuous reinforcing fibers may be used alone or in combination of two or more.

不連続繊維強化樹脂における不連続強化繊維の含有量は、30~80量%であることが好ましく、35~75質量%であることがより好ましい。 The content of discontinuous reinforcing fibers in the discontinuous fiber reinforced resin is preferably 30 to 80% by mass, and more preferably 35 to 75% by mass.

[樹脂]
本実施形態の不連続繊維強化樹脂に含まれる樹脂は、本発明の効果を損なわない限り特に制限はなく、熱可塑性樹脂であっても熱硬化性樹脂であってもよいが、熱可塑性樹脂であることがより好ましい。
[resin]
The resin contained in the discontinuous fiber reinforced resin of this embodiment is not particularly limited as long as it does not impair the effects of the present invention, and may be a thermoplastic resin or a thermosetting resin, but is more preferably a thermoplastic resin.

-熱可塑性樹脂-
不連続繊維強化樹脂に含まれる熱可塑性樹脂の種類としては、上述の連続繊維強化樹脂に含まれる熱可塑性樹脂と同様のものが挙げられ、連続繊維強化樹脂に含まれる熱可塑性樹脂と同じであっても異なっていてもよい。
上記熱可塑性樹脂は、一種を単独で又は複数を組み合わせて用いることができる。
-Thermoplastic resin-
The type of thermoplastic resin contained in the discontinuous fiber reinforced resin includes the same as the thermoplastic resin contained in the continuous fiber reinforced resin described above, and may be the same as or different from the thermoplastic resin contained in the continuous fiber reinforced resin.
The above thermoplastic resins may be used alone or in combination of two or more.

-熱硬化性樹脂-
不連続繊維強化樹脂に含まれる熱硬化性樹脂の種類としては、上述の連続繊維強化樹脂に含まれる熱硬化性樹脂と同様のものが挙げられ、連続繊維強化樹脂に含まれる熱硬化性樹脂と同じであっても異なっていてもよい。
上記熱硬化性樹脂は、一種を単独で又は複数を組み合わせて用いることができる。
- Thermosetting resin -
The type of thermosetting resin contained in the discontinuous fiber reinforced resin includes the same as the thermosetting resin contained in the continuous fiber reinforced resin described above, and may be the same as or different from the thermosetting resin contained in the continuous fiber reinforced resin.
The above thermosetting resins may be used alone or in combination of two or more.

成形体における不連続繊維強化樹脂の含有量は、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることが更に好ましい。 The content of discontinuous fiber reinforced resin in the molded body is preferably 10 to 90 mass%, more preferably 20 to 80 mass%, and even more preferably 30 to 70 mass%.

《不連続繊維強化樹脂の製造方法》
不連続繊維強化樹脂は、例えば、樹脂に強化繊維を混錬して分散させる方法、フィルム状の樹脂とシート状(不織布等)の強化繊維との積層体を加熱・加圧処理する方法等により、製造することができる。
上記の加熱・加圧処理としては、例えば、材料を金型に設置し、金型を加熱して金型温度を樹脂の融点以上又はガラス転移温度以上としたのち、型締め力1~100MPaで型締めして圧縮成形を行う。成形時間は、樹脂の融点又はガラス転移温度に達してから1~30分とし、金型を樹脂の融点又はガラス転移温度マイナス200℃~樹脂の融点又はガラス転移温度マイナス10℃まで冷却したのち開放して、不連続繊維強化樹脂を得る。
<<Method for producing discontinuous fiber reinforced resin>>
Discontinuous fiber reinforced resin can be produced, for example, by a method of kneading and dispersing reinforcing fibers in a resin, or by a method of heating and pressurizing a laminate of a film-like resin and a sheet-like (nonwoven fabric, etc.) reinforcing fiber.
The above-mentioned heating and pressurizing treatment includes, for example, placing the material in a mold, heating the mold to a temperature equal to or higher than the melting point or glass transition temperature of the resin, and then clamping the mold with a clamping force of 1 to 100 MPa to perform compression molding. The molding time is 1 to 30 minutes after the melting point or glass transition temperature of the resin is reached, and the mold is cooled to a temperature between the melting point or glass transition temperature of the resin minus 200°C and the melting point or glass transition temperature of the resin minus 10°C, and then opened to obtain a discontinuous fiber reinforced resin.

[添加剤]
本実施形態の成形体には、必要に応じて添加剤を含有させてもよい。本実施形態の成形体は、例えば、老化防止剤、酸化防止剤、耐候剤、金属不活性剤、光安定剤、熱安定剤、紫外線吸収剤、防菌・防黴剤、防臭剤、導電性付与剤、分散剤、軟化剤、可塑剤、架橋剤、共架橋剤、加硫剤、加硫助剤、発泡剤、発泡助剤、着色剤、難燃剤、制振剤、造核剤、中和剤、滑剤、ブロッキング防止剤、分散剤、流動性改良剤、離型剤等の添加剤を含有してもよい。
添加剤の含有量は、成形体100質量%に対して、10質量%以下としてよい。
[Additive]
The molded article of the present embodiment may contain additives as necessary. The molded article of the present embodiment may contain additives such as, for example, an antiaging agent, an antioxidant, a weathering agent, a metal deactivator, a light stabilizer, a heat stabilizer, an ultraviolet absorber, an antibacterial/antifungal agent, an odor control agent, an electrical conductivity imparting agent, a dispersant, a softener, a plasticizer, a crosslinking agent, a co-crosslinking agent, a vulcanizing agent, a vulcanizing assistant, a foaming agent, a foaming assistant, a colorant, a flame retardant, a vibration damping agent, a nucleating agent, a neutralizing agent, a lubricant, an antiblocking agent, a dispersing agent, a flowability improving agent, and a mold release agent.
The content of the additive may be 10% by mass or less based on 100% by mass of the molded body.

<成形体の製造方法>
本実施形態の成形体の製造方法の一態様は、連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、型締めして第1部材を成形し、前記成形体用金型内で、加熱した不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含むことを特徴とする。
<Method of manufacturing molded body>
One aspect of the method for producing a molded body of the present embodiment is characterized in that it includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing it in a mold for a molded body, clamping the mold to mold a first member, and molding a second member in the mold for a molded body using a discontinuous fiber reinforced resin containing heated discontinuous reinforcing fibers.

上記製造方法では、連続繊維強化樹脂を加熱した後に成形体用金型内に設置し、型締めして第1部材を成形する。
連続繊維強化樹脂を成形体用金型設置前に加熱する方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上に設定し、常に一定温度に温調しておくことが好ましい。第1部材成形時の型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
In the above-described manufacturing method, the continuous fiber reinforced resin is heated and then placed in a mold for molding, and the mold is clamped to mold the first member.
The method of heating the continuous fiber reinforced resin before placing it in the mold for molding is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method of heating in a mold separate from the mold for molding, etc. The heating temperature of the continuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
The temperature of the mold for molding is preferably set to a temperature equal to or higher than the glass transition temperature of the fiber-reinforced resin and is preferably controlled to a constant temperature. The mold clamping force during molding of the first member is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

上記製造方法では、第1部材を成形した後に第2部材を成形するため、第1部材の成形時に十分な圧力を掛けることができ、第1部材の形状が複雑な場合にも細部まで良好に成形することができる。また、成形した第1部材を、成形体用金型から取り出さないことにより、成形時のサイクル短縮を図ることができる。 In the above manufacturing method, the second component is molded after the first component, so sufficient pressure can be applied when molding the first component, and even if the shape of the first component is complex, it can be molded well down to the finest details. In addition, by not removing the molded first component from the mold for molding, the molding cycle can be shortened.

上記製造方法において、不連続繊維強化樹脂を用いて第2部材を成形する方法は、射出成形が好ましい。射出成形によれば、第2部材の形状が複雑な場合であっても、金型の複雑な形状の細部まで不連続繊維強化樹脂をより良好に流れ込ませることができる。 In the above manufacturing method, the method for molding the second component using discontinuous fiber reinforced resin is preferably injection molding. Injection molding allows the discontinuous fiber reinforced resin to flow more effectively into the fine details of the complex shape of the mold, even when the shape of the second component is complex.

第2部材を射出成形する場合の、不連続繊維強化樹脂の射出充填のタイミングは、連続繊維強化樹脂の型締めから30秒以内であることが好ましい。
射出条件としては、射出ユニットのシリンダー温度を270~320℃、充填圧力を1~150MPa、射出速度を5~150mm/秒、保持圧力を3~200MPaに設定することが好ましい。
不連続繊維強化樹脂の射出充填後、1~180分間保持することにより、第1部材と第2部材とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上、融点以下に設定し、常に一定温度に温調しておくことが好ましい。特に、繊維強化樹脂の樹脂がポリアミド66である場合は、ガラス転移温度+10~80℃とすることが好ましい。また、このときの型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
When the second member is injection molded, the timing of injection and filling of the discontinuous fiber reinforced resin is preferably within 30 seconds from the clamping of the continuous fiber reinforced resin.
As injection conditions, it is preferable to set the cylinder temperature of the injection unit to 270 to 320° C., the filling pressure to 1 to 150 MPa, the injection speed to 5 to 150 mm/sec, and the holding pressure to 3 to 200 MPa.
After the discontinuous fiber reinforced resin is injected and filled, the first member and the second member are joined by holding for 1 to 180 minutes. The temperature of the mold for molding at this time is preferably set to a temperature equal to or higher than the glass transition temperature and lower than the melting point of the fiber reinforced resin, and is always controlled at a constant temperature. In particular, when the fiber reinforced resin is polyamide 66, the temperature is preferably set to the glass transition temperature + 10 to 80°C. The mold clamping force at this time is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

本実施形態の成形体の製造方法の別の態様は、連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、型締めして第1部材を成形し、前記成形体用金型内で、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱した後、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含むことを特徴とする。 Another aspect of the method for producing a molded body of this embodiment is characterized in that it includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing it in a mold for a molded body, clamping the mold to mold a first member, heating the joining side surface of the portion of the first member to which the second member is to be joined or the entire joining side surface including the joining side surface in the mold for a molded body, and then molding the second member using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.

上記製造方法では、連続繊維強化樹脂を加熱した後に成形体用金型内に設置し、型締めして第1部材を成形する。
連続繊維強化樹脂を成形体用金型設置前に加熱する方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上に設定し、常に一定温度に温調しておくことが好ましい。第1部材成形時の型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
型締め後、成形体用金型の温度を連続繊維強化樹脂のガラス転移温度以下に降下させて第1部材を冷却固化させた後、成形体用金型を開放する。
In the above-described manufacturing method, the continuous fiber reinforced resin is heated and then placed in a mold for molding, and the mold is clamped to mold the first member.
The method of heating the continuous fiber reinforced resin before placing it in the mold for molding is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method of heating in a mold separate from the mold for molding, etc. The heating temperature of the continuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
The temperature of the mold for molding is preferably set to a temperature equal to or higher than the glass transition temperature of the fiber-reinforced resin and is preferably controlled to a constant temperature. The mold clamping force during molding of the first member is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.
After clamping, the temperature of the mold for molding is lowered to a temperature equal to or lower than the glass transition temperature of the continuous fiber reinforced resin to cool and solidify the first member, and then the mold for molding is opened.

上記製造方法では、第1部材を成形した後に第2部材を成形するため、第1部材の成形時に十分な圧力を掛けることができ、第1部材の形状が複雑な場合にも細部まで良好に成形することができる。また、成形した第1部材を、成形体用金型から取り出さずにそのまま成形体用金型内で加熱することにより、成形時のサイクル短縮を図ることができる。
また、上記製造方法では、第1部材の、第2部材を接合させる部分の接合側表面(接合部となる部分)又は当該接合側表面(接合部となる部分)を含む第1部材の接合側表面全体を加熱することにより、第2部材(不連続繊維強化樹脂)が接合する第1部材の表面が溶融した状態となり、第1部材と第2部材との接着性を高めることができる。このとき、第1部材全体ではなく表面のみを加熱することにより、第1部材に対して型締め方向に高い圧力を掛けても、不連続繊維強化樹脂を充填するキャビティ内(特に、断続的に設けられたキャビティ内)に第1部材の連続強化繊維が入り込むのを低減することができるため、上述の割合(t1/t)及び((t1-t)/W)をそれぞれ上記特定範囲に制御することができる。また、第1部材の被接合面以外は加熱しないため、外観に優れた成形体となる。
成形体用金型内で第1部材を加熱する方法は、特に限定されず、IRヒーター、レーザ、温風(加熱蒸気)、バーナー等を用いる方法が挙げられる。
In the above manufacturing method, since the second member is molded after the first member is molded, sufficient pressure can be applied when the first member is molded, and even if the first member has a complex shape, it can be molded well down to the fine details. In addition, the molded first member can be heated in the mold for molding without being removed from the mold for molding, thereby shortening the molding cycle.
In addition, in the above manufacturing method, the joining side surface (part to be a joint) of the part of the first member to which the second member is joined or the entire joining side surface of the first member including the joining side surface (part to be a joint) is heated, so that the surface of the first member to which the second member (discontinuous fiber reinforced resin) is joined is in a molten state, and the adhesion between the first member and the second member can be increased. At this time, by heating only the surface of the first member rather than the entire first member, even if a high pressure is applied to the first member in the mold clamping direction, it is possible to reduce the intrusion of the continuous reinforcing fibers of the first member into the cavity filled with the discontinuous fiber reinforced resin (particularly into the cavity provided intermittently), so that the above-mentioned ratios (t1/t) and ((t1-t)/W) can be controlled within the above-mentioned specific ranges. In addition, since the surface of the first member other than the surface to be joined is not heated, a molded body with excellent appearance is obtained.
The method for heating the first member in the mold for forming a compact is not particularly limited, and examples of the method include a method using an IR heater, a laser, hot air (heated steam), a burner, or the like.

上記製造方法において、不連続繊維強化樹脂を用いて第2部材を成形する方法は、射出成形が好ましい。射出成形によれば、第2部材の形状が複雑な場合であっても、金型の複雑な形状の細部まで不連続繊維強化樹脂をより良好に流れ込ませることができる。 In the above manufacturing method, the method for molding the second component using discontinuous fiber reinforced resin is preferably injection molding. Injection molding allows the discontinuous fiber reinforced resin to flow more effectively into the fine details of the complex shape of the mold, even when the shape of the second component is complex.

第2部材を射出成形する場合の、不連続繊維強化樹脂の射出充填のタイミングは、第1部材の表面を加熱して成形体用金型を閉じてから30秒以内であることが好ましい。
射出条件としては、射出ユニットのシリンダー温度を270~320℃、充填圧力を1~150MPa、射出速度を5~150mm/秒、保持圧力を3~200MPaに設定することが好ましい。
不連続繊維強化樹脂の射出充填後、1~180分間保持することにより、第1部材と第2部材とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上、融点以下に設定し、常に一定温度に温調しておくことが好ましい。特に、繊維強化樹脂の樹脂がポリアミド66である場合は、ガラス転移温度+10~80℃とすることが好ましい。また、このときの型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
When the second member is injection molded, the timing for injecting and filling the discontinuous fiber reinforced resin is preferably within 30 seconds after the surface of the first member is heated and the mold for molding is closed.
As injection conditions, it is preferable to set the cylinder temperature of the injection unit to 270 to 320° C., the filling pressure to 1 to 150 MPa, the injection speed to 5 to 150 mm/sec, and the holding pressure to 3 to 200 MPa.
After the discontinuous fiber reinforced resin is injected and filled, the first member and the second member are joined by holding for 1 to 180 minutes. The temperature of the mold for molding at this time is preferably set to a temperature equal to or higher than the glass transition temperature and lower than the melting point of the fiber reinforced resin, and is always controlled at a constant temperature. In particular, when the fiber reinforced resin is polyamide 66, the temperature is preferably set to the glass transition temperature + 10 to 80°C. The mold clamping force at this time is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

本実施形態の成形体の製造方法の別の態様は、連続強化繊維を含む連続繊維強化樹脂を、加熱した後に第1部材用金型内に設置し、型締めして第1部材を成形し、前記第1部材を前記第1部材用金型から取り出し、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱し、加熱した前記第1部材を成形体用金型に設置し、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含むことを特徴とする。 Another aspect of the manufacturing method of the molded body of this embodiment is characterized in that it includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing it in a mold for a first member, clamping the mold to mold the first member, removing the first member from the mold for the first member, heating the joining side surface of the portion of the first member to which the second member is to be joined or the entire joining side surface including the joining side surface, placing the heated first member in a mold for a molded body, and molding the second member using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.

上記製造方法では、連続繊維強化樹脂を加熱した後に第1部材用金型内に設置し、型締めして第1部材を成形する。
連続繊維強化樹脂を第1部材用金型設置前に加熱する方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、第1部材用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
第1部材用金型の温度は、繊維強化樹脂のガラス転移温度以上に設定し、常に一定温度に温調しておくことが好ましい。第1部材成形時の型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
型締め後、第1部材用金型の温度を連続繊維強化樹脂のガラス転移温度以下に降下させて第1部材を冷却固化させた後、第1部材用金型を開放し、第1部材を離型する。
In the above-described manufacturing method, the continuous fiber reinforced resin is heated and then placed in a mold for the first member, and the mold is clamped to mold the first member.
The method of heating the continuous fiber reinforced resin before placing the first member mold is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method of heating in a mold separate from the first member mold, etc. The heating temperature of the continuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
The temperature of the mold for the first member is preferably set to a glass transition temperature of the fiber-reinforced resin or higher and is preferably always kept constant. The mold clamping force during molding of the first member is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.
After clamping, the temperature of the mold for the first member is lowered to below the glass transition temperature of the continuous fiber reinforced resin to cool and solidify the first member, and then the mold for the first member is opened and the first member is demolded.

上記製造方法においても、第1部材を成形した後に第2部材を成形するため、第1部材の成形時に十分な圧力を掛けることができ、第1部材の形状が複雑な場合にも細部まで良好に成形することができる。特に、不連続繊維強化樹脂を充填するキャビティが存在しない第1部材用金型で成形することにより、第1部材の各表面の平滑性、厚みの正確性がより高いものとなる。また、第1部材を冷却固化させて離型することにより、第1部材の形状が固定されるため、第1部材の成形体用金型への搬送や成形体用金型内に設置する際の位置決めが容易になる。
また、上記製造方法においても、第1部材の、第2部材を接合させる部分の接合側表面(接合部となる部分)又は当該接合側表面(接合部となる部分)を含む第1部材の接合側表面全体を加熱することにより、第2部材(不連続繊維強化樹脂)が接合する第1部材の表面が溶融した状態となり、第1部材と第2部材との接着性を高めることができる。このとき、第1部材全体ではなく表面のみを加熱することにより、第1部材に対して型締め方向に高い圧力を掛けても、不連続繊維強化樹脂を充填するキャビティ内(特に、断続的に設けられたキャビティ内)に第1部材の連続強化繊維が入り込むのを低減することができるため、上述の割合(t1/t)及び((t1-t)/W)をそれぞれ上記特定範囲に制御することができる。また、第1部材の被接合面以外は加熱しないため、外観に優れた成形体となる。
成形体用金型内で第1部材を加熱する方法は、特に限定されず、IRヒーター、レーザ、温風(加熱蒸気)、バーナー等を用いる方法が挙げられる。
In the above manufacturing method, since the second member is molded after the first member is molded, sufficient pressure can be applied during molding of the first member, and even if the shape of the first member is complex, it can be molded well down to the smallest details. In particular, by molding in a mold for the first member that does not have a cavity for filling discontinuous fiber reinforced resin, the smoothness of each surface of the first member and the accuracy of the thickness are higher. In addition, by cooling and solidifying the first member and releasing it from the mold, the shape of the first member is fixed, making it easier to transport the first member to the mold for the molded body and to position it when installing it in the mold for the molded body.
Also, in the above manufacturing method, by heating the joining side surface (part to be the joining part) of the first member to which the second member is joined or the entire joining side surface of the first member including the joining side surface (part to be the joining part), the surface of the first member to which the second member (discontinuous fiber reinforced resin) is joined is in a molten state, and the adhesion between the first member and the second member can be increased. At this time, by heating only the surface of the first member rather than the entire first member, even if a high pressure is applied to the first member in the mold clamping direction, it is possible to reduce the intrusion of the continuous reinforcing fibers of the first member into the cavity filled with the discontinuous fiber reinforced resin (particularly into the cavity provided intermittently), so that the above-mentioned ratios (t1/t) and ((t1-t)/W) can be controlled within the above-mentioned specific ranges. In addition, since the surface of the first member other than the surface to be joined is not heated, a molded body with excellent appearance is obtained.
The method for heating the first member in the mold for forming a compact is not particularly limited, and examples of the method include a method using an IR heater, a laser, hot air (heated steam), a burner, or the like.

上記製造方法において、不連続繊維強化樹脂を用いて第2部材を成形する方法は、射出成形又はプレス成形のいずれであってもよい。第2部材の形状が複雑な場合は、金型の複雑な形状の細部まで不連続繊維強化樹脂をより良好に流れ込ませることができることから、射出成形が好ましい。また、第2部材の強度を高める観点からは、より繊維長の長い不連続強化繊維を含む不連続繊維強化樹脂を用いることができることから、プレス成形が好ましい。 In the above manufacturing method, the method of molding the second member using discontinuous fiber reinforced resin may be either injection molding or press molding. When the shape of the second member is complex, injection molding is preferred because it allows the discontinuous fiber reinforced resin to flow more effectively into the fine details of the complex shape of the mold. Furthermore, from the viewpoint of increasing the strength of the second member, press molding is preferred because it allows the use of discontinuous fiber reinforced resin containing discontinuous reinforcing fibers with longer fiber lengths.

第2部材を射出成形する際の方法及び条件は、上述の方法及び条件と同様としてよい。 The method and conditions for injection molding the second component may be the same as those described above.

第2部材をプレス成形する場合は、第1部材の表面を加熱してから30秒以内に加熱した不連続繊維強化樹脂を設置することが好ましい。
不連続繊維強化樹脂の加熱方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。不連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
不連続繊維強化樹脂の設置後、0.1~3分間保持することにより、第1部材と第2部材とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上、融点以下に設定し、常に一定温度に温調しておくことが好ましい。特に、繊維強化樹脂の樹脂がポリアミド66である場合は、ガラス転移温度+10~80℃とすることが好ましい。また、型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
When the second member is press molded, it is preferable to place the heated discontinuous fiber reinforced resin within 30 seconds after the surface of the first member is heated.
The method for heating the discontinuous fiber reinforced resin is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method for heating in a mold separate from the mold for the molded body, etc. The heating temperature of the discontinuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
After the discontinuous fiber reinforced resin is placed, the first member and the second member are joined by holding the discontinuous fiber reinforced resin for 0.1 to 3 minutes. The temperature of the mold for molding is preferably set to a temperature equal to or higher than the glass transition temperature and lower than the melting point of the fiber reinforced resin, and is always controlled at a constant temperature. In particular, when the fiber reinforced resin is polyamide 66, the temperature is preferably set to the glass transition temperature + 10 to 80°C. The mold clamping force is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

本実施形態の成形体の製造方法の別の態様は、加熱した連続強化繊維を含む連続繊維強化樹脂と、加熱した不連続繊維強化樹脂を、成形体用金型内に設置し、型締めして第1部材と第2部材を成形することを含むことを特徴とする。
上記製造方法では、加熱した不連続繊維強化樹脂と加熱した連続繊維強化樹脂とを同時に金型に設置してプレス成形するため、繊維長の長い不連続強化繊維を含む不連続繊維強化樹脂を用いて形状が複雑な第2部材を形成する場合であっても、細部まで良好に成形することができる。また、加熱した不連続繊維強化樹脂と加熱した連続繊維強化樹脂とを同時にプレス成形することにより、第1部材と第2部材との接着性を高めることができるとともに、成形時のサイクル短縮を図ることができる。
連続繊維強化樹脂及び不連続繊維強化樹脂の加熱方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂及び不連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
連続繊維強化樹脂及び不連続繊維強化樹脂の設置後、0.1~3分間保持することにより、連続繊維強化樹脂(第1部材)と不連続繊維強化樹脂(第2部材)とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上、融点以下に設定し、常に一定温度に温調しておくことが好ましい。特に、繊維強化樹脂の樹脂がポリアミド66である場合は、ガラス転移温度+10~80℃とすることが好ましい。また、型締め力は、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
Another aspect of the manufacturing method of the molded body of the present embodiment is characterized in that it includes placing a continuous fiber reinforced resin containing heated continuous reinforcing fibers and a heated discontinuous fiber reinforced resin in a mold for a molded body, and clamping the mold to mold a first member and a second member.
In the above manufacturing method, the heated discontinuous fiber reinforced resin and the heated continuous fiber reinforced resin are simultaneously placed in a mold and press molded, so that even when a second member having a complex shape is formed using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers with long fiber length, it is possible to mold the second member well down to the fine details. In addition, by simultaneously press molding the heated discontinuous fiber reinforced resin and the heated continuous fiber reinforced resin, it is possible to increase the adhesion between the first member and the second member and shorten the molding cycle.
The method for heating the continuous fiber reinforced resin and the discontinuous fiber reinforced resin is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method of heating in a mold separate from the mold for the molded body, etc. The heating temperature of the continuous fiber reinforced resin and the discontinuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
After the continuous fiber reinforced resin and the discontinuous fiber reinforced resin are placed, they are held for 0.1 to 3 minutes to bond the continuous fiber reinforced resin (first member) and the discontinuous fiber reinforced resin (second member). The temperature of the mold for molding is preferably set to a temperature equal to or higher than the glass transition temperature and lower than the melting point of the fiber reinforced resin, and is always controlled at a constant temperature. In particular, when the fiber reinforced resin is polyamide 66, the temperature is preferably set to a glass transition temperature + 10 to 80°C. The mold clamping force is preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

本実施形態の成形体の製造方法の更に別の態様は、連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、前記連続繊維強化樹脂に対して掛かる型締め方向の圧力が10MPa以下となるような型締め力で型締めして第1部材を成形した後、加熱した不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含むことを特徴とする。 Another aspect of the method for producing a molded body according to this embodiment is characterized in that it includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing the resin in a mold for a molded body, clamping the mold with a clamping force such that the pressure applied to the continuous fiber reinforced resin in the clamping direction is 10 MPa or less to mold a first member, and then molding a second member using the heated discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.

上記製造方法では、連続繊維強化樹脂を加熱した後に成形体用金型内に設置し、型締めして第1部材を成形する。
連続繊維強化樹脂を成形体用金型設置前に加熱する方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
In the above-described manufacturing method, the continuous fiber reinforced resin is heated and then placed in a mold for molding, and the mold is clamped to mold the first member.
The method of heating the continuous fiber reinforced resin before placing it in the mold for molding is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method of heating in a mold separate from the mold for molding, etc. The heating temperature of the continuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.

成形体用金型の型締め力は、連続繊維強化樹脂に掛かる型締め方向の圧力が10MPa以下となるように設定する。連続繊維強化樹脂に掛かる型締め方向の圧力が高いと、第2部材(不連続繊維強化樹脂)との接合の際に連続強化繊維が不連続繊維強化樹脂を充填するキャビティ内に入り込みやすくなるが、上記圧力が10MPa以下であると、上記連続強化繊維の入り込みを低減することができる。そのため、上述の割合(t1/t)及び((t1-t)/W)をそれぞれ上記特定範囲に制御することができる。 The clamping force of the mold for the molded body is set so that the pressure applied to the continuous fiber reinforced resin in the clamping direction is 10 MPa or less. If the pressure applied to the continuous fiber reinforced resin in the clamping direction is high, the continuous reinforcing fibers will tend to penetrate into the cavity filled with the discontinuous fiber reinforced resin when it is joined to the second member (discontinuous fiber reinforced resin), but if the pressure is 10 MPa or less, the penetration of the continuous reinforcing fibers can be reduced. Therefore, the above-mentioned ratios (t1/t) and ((t1-t)/W) can be controlled to be within the above-mentioned specific ranges.

上記製造方法において、不連続繊維強化樹脂を用いて第2部材を成形する方法は、射出成形又はプレス成形のいずれであってもよい。第2部材の形状が複雑な場合は、金型の複雑な形状の細部まで不連続繊維強化樹脂をより良好に流れ込ませることができることから、射出成形が好ましい。また、第2部材の強度を高める観点からは、より繊維長の長い不連続強化繊維を含む不連続繊維強化樹脂を用いることができることから、プレス成形が好ましい。 In the above manufacturing method, the method of molding the second member using discontinuous fiber reinforced resin may be either injection molding or press molding. When the shape of the second member is complex, injection molding is preferred because it allows the discontinuous fiber reinforced resin to flow more effectively into the fine details of the complex shape of the mold. Furthermore, from the viewpoint of increasing the strength of the second member, press molding is preferred because it allows the use of discontinuous fiber reinforced resin containing discontinuous reinforcing fibers with longer fiber lengths.

第2部材を射出成形する場合の、不連続繊維強化樹脂の射出充填のタイミングは、連続繊維強化樹脂の型締めから30秒以内であることが好ましい。
射出条件としては、射出ユニットのシリンダー温度を270~320℃、充填圧力を1~150MPa、射出速度を5~150mm/秒、保持圧力を5~200MPaに設定することが好ましい。
不連続繊維強化樹脂の射出充填後、0.1~3分間保持することにより、第1部材と第2部材とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以下に設定し、常に一定温度に温調しておくことが好ましい。また、このときの型締め力は、第1部材に掛かる型締め方向の圧力が10MPa以下となるように設定し、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
When the second member is injection molded, the timing of injection and filling of the discontinuous fiber reinforced resin is preferably within 30 seconds from the clamping of the continuous fiber reinforced resin.
As injection conditions, it is preferable to set the cylinder temperature of the injection unit to 270 to 320° C., the filling pressure to 1 to 150 MPa, the injection speed to 5 to 150 mm/sec, and the holding pressure to 5 to 200 MPa.
After the discontinuous fiber reinforced resin is injected and filled, the first member and the second member are joined by holding for 0.1 to 3 minutes. The temperature of the mold for the molded body at this time is set to a temperature equal to or lower than the glass transition temperature of the fiber reinforced resin, and is preferably controlled to a constant temperature at all times. The mold clamping force at this time is set so that the pressure applied to the first member in the mold clamping direction is 10 MPa or less, preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

第2部材をプレス成形する場合は、連続繊維強化樹脂の型締めから30秒以内に加熱した不連続繊維強化樹脂を設置することが好ましい。
不連続繊維強化樹脂の加熱方法は、特に限定されず、IRヒーター、加熱炉、予熱ロール等を用いる方法、成形体用金型とは別の金型内で加熱する方法等が挙げられる。連続繊維強化樹脂の加熱温度は、樹脂の分解温度以下とすることが好ましい。
不連続繊維強化樹脂の設置後、0.1~3分間保持することにより、第1部材と第2部材とを接合する。その際の成形体用金型の温度は、繊維強化樹脂のガラス転移温度以上に設定し、常に一定温度に温調しておくことが好ましい。また、このときの型締め力は、第1部材に掛かる型締め方向の圧力が10MPa以下となるように設定し、好ましくは0.01~20MPa、より好ましくは0.1~15MPaである。
When the second member is press molded, it is preferable to place the heated discontinuous fiber reinforced resin within 30 seconds after the continuous fiber reinforced resin is clamped in the mold.
The method for heating the discontinuous fiber reinforced resin is not particularly limited, and examples thereof include a method using an IR heater, a heating furnace, a preheating roll, etc., a method for heating in a mold separate from the mold for the molded body, etc. The heating temperature of the continuous fiber reinforced resin is preferably equal to or lower than the decomposition temperature of the resin.
After the discontinuous fiber reinforced resin is placed, the first member and the second member are joined by holding the resin for 0.1 to 3 minutes. The temperature of the mold for the molded body is preferably set to a temperature equal to or higher than the glass transition temperature of the fiber reinforced resin and is always kept constant. The clamping force is set so that the pressure applied to the first member in the clamping direction is 10 MPa or less, preferably 0.01 to 20 MPa, more preferably 0.1 to 15 MPa.

本実施形態の成形体の製造方法は、上記いずれの態様においても、第1部材の厚みと、成形体用金型における第1部材の形状に相当するキャビティの高さとを略等しくしてもよい。このように、成形体用金型における第1部材の形状に相当するキャビティの高さ(キャビティの隙間(クリアランス))を、第2部材を成形(接合)する前の第1部材の厚みと略等しくすることにより、第1部材にかかる圧力を低減し、不連続繊維強化樹脂を充填するキャビティ内に第1部材の連続強化繊維が食い込むのを低減させ、第1部材の接合部における連続強化繊維の高さt1を小さくすることができる。
なお、「第1部材の厚みと、成形体用金型における第1部材の形状に相当するキャビティの高さとが略等しい」とは、成形体用金型における第1部材の形状に相当するキャビティの高さが、第2部材を成形(接合)する前の第1部材の厚み±25%である状態としてよい。
In any of the above aspects of the manufacturing method of the molded body of this embodiment, the thickness of the first member may be approximately equal to the height of the cavity corresponding to the shape of the first member in the molded body die. In this way, by making the height of the cavity corresponding to the shape of the first member in the molded body die (the gap (clearance) of the cavity) approximately equal to the thickness of the first member before molding (joining) the second member, the pressure applied to the first member can be reduced, the continuous reinforcing fibers of the first member can be reduced from being cut into the cavity filled with the discontinuous fiber reinforced resin, and the height t1 of the continuous reinforcing fibers at the joint of the first member can be reduced.
In addition, "the thickness of the first member and the height of the cavity in the mold for the molded body corresponding to the shape of the first member are approximately equal" may mean that the height of the cavity in the mold for the molded body corresponding to the shape of the first member is ±25% of the thickness of the first member before the second member is molded (joined).

また、本実施形態の成形体の製造方法は、上記いずれの態様においても、第1部材を成形する際及び/又は第2部材を成形する際に、第1部材を第1部材の接合側表面に平行な少なくとも2方向に引張してもよい。このように引張することにより、第1部材の接合側表面に皺ができるのを防ぐと共に、不連続繊維強化樹脂を充填するキャビティ内(特に、断続的に設けられたキャビティ内)に第1部材の連続強化繊維が入り込むのを更に低減することができる。
上記引張の際に付加する引張力は、好ましくは0.1~10MPaである。
また、上記第1部材の接合側表面に平行な少なくとも2方向には、第1部材中の連続強化繊維の方向に平行な方向及び垂直な方向が含まれることが好ましい。
In addition, in any of the above aspects of the manufacturing method of the molded body of the present embodiment, when molding the first member and/or the second member, the first member may be pulled in at least two directions parallel to the joining surface of the first member. By pulling in this manner, it is possible to prevent wrinkles from being formed on the joining surface of the first member and to further reduce the intrusion of the continuous reinforcing fibers of the first member into the cavity filled with the discontinuous fiber reinforced resin (particularly into the cavity provided intermittently).
The tensile force applied during the above tensioning is preferably 0.1 to 10 MPa.
The at least two directions parallel to the joining side surface of the first member preferably include a direction parallel to and a direction perpendicular to the direction of the continuous reinforcing fibers in the first member.

本実施形態の成形体の製造方法に用いる金型は、上記いずれの態様においても、凹部のテーパー角度が0.5~15°であることが好ましい。 In any of the above aspects of the mold used in the manufacturing method of the molded body of this embodiment, it is preferable that the taper angle of the recess is 0.5 to 15°.

また、成形体の設計の観点から、上記いずれの態様の製造方法においても、第1部材の成形前と後とでの厚みの差(原料である連続繊維強化樹脂の厚みと成形後の第1部材の厚みとの差)が小さい、即ち、厚みの変化が小さいことが好ましい。より具体的には、成形前の第1部材の厚み(連続繊維強化樹脂の厚み)を100%として、成形後の第1部材の厚みが、80~120%であることが好ましく、95~105%であることがより好ましく、99~101%であることが更に好ましい。
第1部材の成形前後での厚みの差を小さくする(厚みの変化を小さくする)方法としては、例えば、成形時のIR加熱炉での加熱で材料を片面のみ加熱する方法や、加熱温度を低くして材料全体を加熱溶融させない方法や、加熱温度を高くして材料全体を加熱溶融させてプレス圧力により材料を成形前の厚さまで戻す方法や、プレスの圧力を高くする方法等が挙げられる。
In addition, from the viewpoint of designing the molded body, in any of the above manufacturing methods, it is preferable that the difference in thickness between before and after molding of the first member (the difference between the thickness of the raw material continuous fiber reinforced resin and the thickness of the first member after molding) is small, that is, the change in thickness is small. More specifically, the thickness of the first member after molding is preferably 80 to 120%, more preferably 95 to 105%, and even more preferably 99 to 101%, with the thickness of the first member before molding (the thickness of the continuous fiber reinforced resin) being 100%.
Methods for reducing the difference in thickness before and after molding of the first member (reducing the change in thickness) include, for example, a method of heating only one side of the material in an IR heating furnace during molding, a method of lowering the heating temperature so that the entire material is not heated and melted, a method of increasing the heating temperature to heat and melt the entire material and then using press pressure to return the material to the thickness before molding, and a method of increasing the press pressure.

以下、実施例、参考例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples , reference examples and comparative examples, although the present invention is not limited to these examples.

<測定方法>
施例、参考例及び比較例において使用した測定方法は、以下のとおりである。
<Measurement method>
The measurement methods used in the examples , reference examples and comparative examples are as follows.

(1)第1部材の厚み、第2部材の幅及び高さ
実施例、参考例及び比較例で得られた成形体の第1部材について、マイクロメーター(ミツトヨ社製MDC-25SX)を用いて接合部以外の部分における厚みt(mm)を測定した。また、接合部の連続強化繊維の繊維方向に沿った厚み方向断面写真(キーエンス社製VHX-5000を使用して撮影)を画像解析することにより、接合部における第1部材中の連続強化繊維の高さt1(mm)を求めた。
tは、5箇所で測定して得られた値の平均値とした。接合部以外の部分における厚みが一定ではない場合は、接合部付近の少なくとも5箇所で測定した値の平均値を厚みtとした。
また、t1は、接合部において連続強化繊維の繊維方向に沿った厚み方向の断面を作製して、断面写真より画像解析を用いて測定した。なお、断面は第1部材表面に対する第2部材の高さが最大になるように作製した。繊維が複数の方向に配向している場合は、それぞれの繊維に沿って5箇所の断面を作製し、断面写真より画像解析を用いて測定した平均値を算出した。接合部において第1部材が第2部材に食い込んでいる状態の場合は、上記平均値が一番大きい値となる繊維方向における高さの最大値をt1とし、第2部材が第1部材に食い込んでいる状態の場合は、上記平均値が一番小さい値となる繊維方向における高さの最小値をt1とした。
また、実施例、参考例及び比較例で得られた成形体の第2部材について、マイクロメーター(ミツトヨ社製MDC-25SX)を用いて接合部における幅W(mm)及び高さH(mm)を求めた。
(1) Thickness of the first member, width and height of the second member The thickness t (mm) of the first member of the molded body obtained in the examples , reference examples and comparative examples was measured at the portion other than the joint using a micrometer (Mitutoyo MDC-25SX). In addition, the height t1 (mm) of the continuous reinforcing fiber in the first member at the joint was obtained by image analysis of a thickness direction cross-sectional photograph (taken using Keyence VHX-5000) along the fiber direction of the continuous reinforcing fiber at the joint.
The thickness t was the average value of the values measured at five points. When the thickness was not uniform in the portion other than the joint, the thickness t was the average value of the values measured at at least five points near the joint.
In addition, t1 was measured by preparing a cross section in the thickness direction along the fiber direction of the continuous reinforcing fiber at the joint and using image analysis from a cross section photograph. The cross section was prepared so that the height of the second member relative to the surface of the first member was maximized. When the fibers were oriented in multiple directions, five cross sections were prepared along each fiber, and the average value measured using image analysis from the cross section photograph was calculated. When the first member was biting into the second member at the joint, the maximum height in the fiber direction at which the average value was the largest was taken as t1, and when the second member was biting into the first member, the minimum height in the fiber direction at which the average value was the smallest was taken as t1.
For the second members of the molded articles obtained in the Examples , Reference Examples, and Comparative Examples, the width W (mm) and height H (mm) at the joint were measured using a micrometer (MDC-25SX, manufactured by Mitutoyo Corporation).

(2)第1部材及び第2部材の引張強度
実施例、参考例及び比較例で得られた成形体の第1部材について、第1部材の表面に沿う方向(図4の黒矢印方向)の、接合部以外の部分における引張強度σ1(MPa)と、接合部における引張強度σ1’(MPa)とを測定した。成形体の第1部材から、引張強度σ1及びσ1’の測定用に、第2部材(接合部)を含まない縦100mm×横10mmの試験片、及び第2部材(接合部)を横方向中心に有する縦100mm×横100mmの試験片(図4)をそれぞれ切り出して用いた。
また、実施例、参考例及び比較例で得られた成形体の第2部材について、第2部材の表面に沿う方向(図4の白抜き矢印方向)の、接合部以外の部分における引張強度σ2(MPa)を測定した。成形体の第2部材から、引張強度σ2の測定用に、接合部を含まない高さ20mm×長さ20mmの試験片を切り出して用いた。
各引張強度の測定は、インストロン社製万能試験機を用いて、JIS K7165に準拠し、試験速度5mm/minで行った。
(2) Tensile strength of first member and second member For the first member of the molded body obtained in the Examples , Reference Examples , and Comparative Examples, the tensile strength σ B 1 (MPa) in the portion other than the joint in the direction along the surface of the first member (the direction of the black arrow in FIG. 4) and the tensile strength σ B 1' (MPa) in the joint were measured. A test piece of 100 mm length x 10 mm width not including the second member (joint) and a test piece of 100 mm length x 100 mm width having the second member (joint) at the horizontal center (FIG . 4) were cut out from the first member of the molded body and used for measuring the tensile strength σ B 1 and σ B 1'.
For the second members of the molded bodies obtained in the Examples , Reference Examples, and Comparative Examples, the tensile strength σB2 (MPa) was measured in the direction along the surface of the second member (the direction of the white arrow in Figure 4) at the portion other than the joint. A test piece having a height of 20 mm and a length of 20 mm, not including the joint , was cut out from the second member of the molded body and used for measuring the tensile strength σB2 .
The tensile strength was measured using a universal testing machine manufactured by Instron Corporation in accordance with JIS K7165 at a test speed of 5 mm/min.

(3)接合部の接着強度
実施例、参考例及び比較例で得られた成形体について、第2部材の表面に沿う方向(図4の白抜き矢印方向)の接合部の接着強度σ(MPa)を、インストロン社製万能試験機を用いて、試験速度5mm/minで測定した。測定には、成形体の第1部材から、第2部材(接合部)を横方向中心に有する縦100mm×横100mmの試験片を切り出して用いた。
(3) Adhesive strength of joint For the molded articles obtained in the Examples , Reference Examples , and Comparative Examples, the adhesive strength σ J (MPa) of the joint in the direction along the surface of the second member (the direction of the white arrow in FIG. 4 ) was measured at a test speed of 5 mm/min using a universal testing machine manufactured by Instron Corp. For the measurement, a test piece measuring 100 mm long x 100 mm wide and having the second member (joint) at the horizontal center was cut out from the first member of the molded article.

<材料>
実施例、参考例及び比較例において使用した材料は以下のとおりである。
<Ingredients>
The materials used in the examples , reference examples and comparative examples are as follows.

[連続繊維強化樹脂]
・連続繊維強化樹脂X:以下のようにして、連続繊維強化樹脂Xを製造した。
(連続強化繊維)
ガラス繊維(「ER1200T-423」日本電気硝子株式会社製)
(熱可塑性樹脂)
ポリアミド樹脂A:ポリアミド66(「レオナ1502S」旭化成株式会社製)とカーボンブラックマスターバッチ(「LC050M-33943-M」旭化成株式会社製)とを4:1の質量比でドライブレンドしたもの
〈ガラスクロスの製造〉
レピア織機(織幅2m)を用い、上記ガラス繊維を経糸及び緯糸として用いて製織することにより、ガラスクロスを製造した。得られたガラスクロスの織形態は綾織、織密度は6.5本/25mm、目付は600g/mであった。
〈ポリアミド樹脂フィルムの製造〉
上記ポリアミド樹脂AをTダイ押出成形機(株式会社創研製)を用いて成形することにより、厚さ200μmのフィルムを得た。
〈連続繊維強化樹脂Xの製造〉
成形機(最大型締め力50トンの油圧成形機、株式会社ショージ製)及びインロー構造の平板(縦250mm×横390mm×厚み2mm)用金型を準備した。
上記で得られたガラスクロス6枚とポリアミド樹脂Aのフィルム7枚とを金型形状に合わせて切断し、ポリアミド樹脂Aのフィルムが表面となるようにガラスクロスとポリアミド樹脂Aのフィルムとを交互に重ね(A/G/A/G/A/G/A/G/A/G/A/G/Aの順、Aはポリアミド樹脂Aのフィルム、Gはガラスクロス)、金型内に設置した。なお、ガラスクロスは、全ての繊維配向(タテ糸方向及びヨコ糸方向)が金型の縦方向及び横方向と一致するようにした。
成形機内熱板温度が330℃となるように加熱し、次いで型締め力5MPaで型締めして、圧縮成形を行った。成形時間は、ポリアミド66の融点である265℃に達してから1分とし、金型を100℃まで急却したのちに開放して、連続繊維強化樹脂X(縦250mm×横390mm×厚み約2mm)を得た。
[Continuous fiber reinforced plastic]
Continuous fiber reinforced resin X: Continuous fiber reinforced resin X was produced as follows.
(Continuous reinforcing fiber)
Glass fiber (ER1200T-423, manufactured by Nippon Electric Glass Co., Ltd.)
(Thermoplastic resin)
Polyamide resin A: Polyamide 66 ("Leona 1502S" manufactured by Asahi Kasei Corporation) and carbon black master batch ("LC050M-33943-M" manufactured by Asahi Kasei Corporation) dry blended in a mass ratio of 4:1 (production of glass cloth)
The glass fibers were used as warp and weft yarns in a rapier loom (weaving width: 2 m) to produce a glass cloth. The weaving form of the obtained glass cloth was a twill weave, the weaving density was 6.5 threads/25 mm, and the basis weight was 600 g/ m2 .
<Production of polyamide resin film>
The polyamide resin A was molded using a T-die extrusion molding machine (manufactured by Soken Co., Ltd.) to obtain a film having a thickness of 200 μm.
<Production of Continuous Fiber Reinforced Resin X>
A molding machine (a hydraulic molding machine with a maximum clamping force of 50 tons, manufactured by Shoji Co., Ltd.) and a mold for a flat plate (length 250 mm x width 390 mm x thickness 2 mm) with a spigot structure were prepared.
Six pieces of glass cloth and seven pieces of polyamide resin A film obtained above were cut to fit the shape of a mold, and the glass cloth and the film of polyamide resin A were alternately stacked (in the order A/G/A/G/A/G/A/G/A/G/A/G/A, A is the film of polyamide resin A and G is the glass cloth) so that the film of polyamide resin A was on the surface, and placed in the mold. The glass cloth was arranged so that all fiber orientations (warp and weft directions) were aligned with the vertical and horizontal directions of the mold.
The molding machine was heated so that the hot plate temperature reached 330° C., and then the mold was clamped at a clamping force of 5 MPa to perform compression molding. The molding time was set to 1 minute after the temperature reached 265° C., which is the melting point of polyamide 66, and the mold was rapidly cooled to 100° C. and then opened to obtain a continuous fiber reinforced resin X (length 250 mm × width 390 mm × thickness about 2 mm).

[不連続繊維強化樹脂]
・不連続繊維強化樹脂Y:ガラス短繊維強化ポリアミド66(「レオナ14G50」旭化成株式会社製、ガラス繊維:50質量%、平均繊維長0.5mm)
・不連続繊維強化樹脂Z:ガラス長維強化ポリアミド6(「TEPEX flowcore102」LANXESS社製、ガラス繊維:55質量%、平均繊維長40mm)
[Discontinuous fiber reinforced plastic]
Discontinuous fiber reinforced resin Y: short glass fiber reinforced polyamide 66 ("Leona 14G50" manufactured by Asahi Kasei Corporation, glass fiber: 50 mass%, average fiber length 0.5 mm)
Discontinuous fiber reinforced resin Z: Glass fiber reinforced polyamide 6 ("TEPEX flowcore 102" manufactured by LANXESS, glass fiber: 55 mass%, average fiber length 40 mm)

[実施例1]
両面IR加熱炉で両面を300℃に加熱した連続繊維強化樹脂Xを、第1部材の形状に相当するキャビティの高さが2mmで120℃の成形体用プレス金型の所定の位置に配置し、5MPaの型締め力でプレスすることにより、第1部材(厚み2.35mm)を成形した。その後、すぐに前記成形体用プレス金型の第2部材の形状に相当するキャビティ内に射出ユニットから不連続繊維強化樹脂Yをシリンダー設定温度290℃、射出圧力150MPa、射出速度100mm/sec、保持圧力100MPaで射出充填して、第2部材を成形した。
1分間保持することにより、第1部材と第2部材とを冷却固化させ、金型を開放して離型し、図1に示す形状の成形体(第1部材:縦250mm×横390mm×厚みt2.35mm、第2部材:幅W3.5mm×高さH17mm)を得た。成形体用プレス金型の凹部側面のテーパー角度は3°とした。第1部材の繊維配向(タテ糸方向及びヨコ糸方向)は、第2部材の各長手方向と一致するようにした。
得られた成形体の各物性を表1に示す。
[Example 1]
Continuous fiber reinforced resin X, both sides of which had been heated to 300°C in a double-sided IR heating furnace, was placed at a predetermined position in a molded body press die at 120°C with a cavity height of 2 mm corresponding to the shape of the first member, and pressed with a clamping force of 5 MPa to mold a first member (thickness 2.35 mm). Immediately after that, discontinuous fiber reinforced resin Y was injected from the injection unit into the cavity of the molded body press die corresponding to the shape of the second member at a cylinder set temperature of 290°C, injection pressure of 150 MPa, injection speed of 100 mm/sec, and holding pressure of 100 MPa to mold the second member.
By holding for 1 minute, the first member and the second member were cooled and solidified, and the mold was opened and demolded to obtain a molded body having the shape shown in FIG. 1 (first member: length 250 mm x width 390 mm x thickness t 2.35 mm, second member: width W 3.5 mm x height H 17 mm). The taper angle of the recessed side of the press mold for the molded body was 3°. The fiber orientation (warp and weft directions) of the first member was made to coincide with the longitudinal direction of the second member.
The physical properties of the obtained molded product are shown in Table 1.

[実施例2]
片面(第2部材を接合させる接合側表面)のみをIR加熱炉で300℃に加熱した連続繊維強化樹脂X1枚を用い、10MPaの型締め力でプレスすることにより、第1部材を成形した以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 2]
A molded body was obtained in the same manner as in Example 1, except that the first member was molded using one sheet of continuous fiber reinforced resin X, the one side of which (the joining surface to which the second member was joined) of which had been heated to 300° C. in an IR heating furnace, and pressed with a clamping force of 10 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[実施例3]
片面(第2部材を接合させる接合側表面)のみをIR加熱炉で300℃に加熱した連続繊維強化樹脂Xを、第1部材の形状に相当するキャビティの高さが2mmで120℃の成形体用プレス金型の所定の位置に配置し、10MPaの型締め力でプレスすることにより、第1部材(厚み2.10mm)を成形した。成形時間は3分とし、120℃の金型内で連続繊維強化樹脂Xを150℃まで冷却した。次に、上記成形体用プレス金型内に第1部材を設置したまま、第1部材の、第2部材(不連続繊維強化樹脂Y)を接合させる片面(第2部材を接合させる接合側表面)部分の接合側表面全体をIRヒーターにより加熱し、表面の樹脂を溶融させた。続いて、上記成形体用プレス金型を10MPaで型締めし、成形体用プレス金型の第2部材の形状に相当するキャビティ内に射出ユニットから不連続繊維強化樹脂Yをシリンダー設定温度290℃、射出圧力150MPa、射出速度100mm/sec、保持圧力100MPaで射出充填して、第2部材を成形した。
3分間保持することにより、第1部材と第2部材とを接合させた。成形体用プレス金型を100℃まで冷却して冷却固化を行い、金型を開放して離型し、図1に示す形状の成形体(第1部材:縦250mm×横390mm×厚みt2.08mm、第2部材:幅W3.5mm×高さH17mm)を得た。成形体用プレス金型の凹部側面のテーパー角度は3°とした。第1部材の繊維配向(タテ糸方向及びヨコ糸方向)は、第2部材の各長手方向と一致するようにした。
得られた成形体の各物性を表1に示す。
[Example 3]
Continuous fiber reinforced resin X, only one side of which (the joining side surface to which the second member is joined) was heated to 300 ° C. in an IR heating furnace, was placed at a predetermined position in a molded body press mold at 120 ° C. with a cavity height of 2 mm corresponding to the shape of the first member, and pressed with a clamping force of 10 MPa to mold the first member (thickness 2.10 mm). The molding time was 3 minutes, and the continuous fiber reinforced resin X was cooled to 150 ° C. in the mold at 120 ° C. Next, while the first member was placed in the press mold for the molded body, the entire joining side surface of the one side (the joining side surface to which the second member is joined) of the first member to which the second member (discontinuous fiber reinforced resin Y) is joined was heated by an IR heater, and the resin on the surface was melted. Next, the press mold for the molded body was clamped at 10 MPa, and discontinuous fiber reinforced resin Y was injected and filled from the injection unit into the cavity of the press mold for the molded body corresponding to the shape of the second part at a cylinder setting temperature of 290°C, an injection pressure of 150 MPa, an injection speed of 100 mm/sec, and a holding pressure of 100 MPa to mold the second part.
The first member and the second member were joined by holding for 3 minutes. The press mold for the molded body was cooled to 100 ° C. to perform cooling and solidification, and the mold was opened and demolded to obtain a molded body having the shape shown in FIG. 1 (first member: length 250 mm × width 390 mm × thickness t 2.08 mm, second member: width W 3.5 mm × height H 17 mm). The taper angle of the recessed side of the press mold for the molded body was 3 °. The fiber orientation (warp and weft directions) of the first member was made to coincide with each longitudinal direction of the second member.
The physical properties of the obtained molded product are shown in Table 1.

[実施例4]
第1部材成形時及び第2部材成形時の型締め力をいずれも15MPaとした以外は、実施例3と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 4]
A molded body was obtained in the same manner as in Example 3, except that the mold clamping force during molding of the first member and the second member was both 15 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[実施例5]
両面をIR加熱炉で300℃に加熱した連続繊維強化樹脂X1枚を第1部材用プレス金型(第1部材の形状に相当するキャビティの高さを2mm)の所定の位置に配置し、5Paの型締め力でプレスすることにより、第1部材(厚み2.10mm)を成形した。成形時間は3分とし、金型を150℃まで急却後、開放して第1部材を離型した。次に、第1部材の、第2部材(不連続繊維強化樹脂Y)を接合させる片面(第2部材を接合させる接合側表面)部分の接合側表面全体をIRヒーターにより加熱し、表面の樹脂を溶融させた。続いて、加熱した第1部材を成形体用プレス金型に設置し、成形体用プレス金型の第1部材の形状に相当するキャビティの高さを2mmとして15MPaで型締めし、成形体用プレス金型のキャビティ内に射出ユニットから不連続繊維強化樹脂Yをシリンダー設定温度290℃、射出圧力150MPa、射出速度100mm/sec、保持圧力100MPaで射出充填して、第2部材を成形した。
3分間保持することにより、第1部材と第2部材とを接合させた。成形体用プレス金型で120℃まで冷却して冷却固化を行い、金型を開放して離型し、図1に示す形状の成形体(第1部材:縦250mm×横390mm×厚みt2.06mm、第2部材:幅W3.5mm×高さH17mm)を得た。成形体用プレス金型の凹部側面のテーパー角度は3°とした。第1部材の繊維配向(タテ糸方向及びヨコ糸方向)は、第2部材の各長手方向と一致するようにした。
得られた成形体の各物性を表1に示す。
[Example 5]
One sheet of continuous fiber reinforced resin X, both sides of which were heated to 300 ° C. in an IR heating furnace, was placed at a predetermined position in a press mold for the first member (cavity height corresponding to the shape of the first member was 2 mm), and pressed with a clamping force of 5 Pa to mold the first member (thickness 2.10 mm). The molding time was 3 minutes, and the mold was rapidly cooled to 150 ° C., and then opened to release the first member. Next, the entire joining side surface of one side (joining side surface to join the second member) of the first member to which the second member (discontinuous fiber reinforced resin Y) was joined was heated by an IR heater, and the resin on the surface was melted. Next, the heated first member was placed in a press mold for a molded body, and the cavity height of the press mold for a molded body, which corresponds to the shape of the first member, was set to 2 mm, and the mold was clamped at 15 MPa. Discontinuous fiber reinforced resin Y was injected and filled into the cavity of the press mold for a molded body from the injection unit at a cylinder setting temperature of 290°C, an injection pressure of 150 MPa, an injection speed of 100 mm/sec, and a holding pressure of 100 MPa, to mold the second member.
The first member and the second member were joined by holding for 3 minutes. The molded body was cooled to 120 ° C. in a press mold for cooling and solidifying, and the mold was opened and demolded to obtain a molded body having the shape shown in FIG. 1 (first member: length 250 mm × width 390 mm × thickness t 2.06 mm, second member: width W 3.5 mm × height H 17 mm). The taper angle of the recessed side of the press mold for molding was 3 °. The fiber orientation (warp and weft directions) of the first member was made to coincide with the longitudinal direction of the second member.
The physical properties of the obtained molded product are shown in Table 1.

[実施例6]
第1部材成形時及び第2部材成形時の型締め力をいずれも10MPaとし、第2部材の接合部の幅Wを20.5mmとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 6]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both 10 MPa, and the width W of the joint of the second member was 20.5 mm.
The physical properties of the obtained molded product are shown in Table 1.

[実施例7]
第1部材成形時及び第2部材成形時の型締め力をいずれも10MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 7]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both 10 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[実施例8]
第1部材成形時及び第2部材成形時の型締め力をいずれも10MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 8]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both 10 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[実施例9]
第1部材成形時及び第2部材成形時の型締め力をいずれも10MPaとし、両面IR加熱炉による加熱温度を340℃とした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 9]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both 10 MPa, and the heating temperature in the double-sided IR heating furnace was 340°C.
The physical properties of the obtained molded product are shown in Table 1.

[実施例10]
第1部材成形時及び第2部材成形時の型締め力をいずれも2MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 10]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both set to 2 MPa.
The physical properties of the obtained molded product are shown in Table 1.

参考例11]
片面(第2部材を接合させる接合側表面)のみをIR加熱炉で300℃に加熱した連続繊維強化樹脂Xと、両面をIR加熱炉で300℃に加熱した不連続繊維強化樹脂Zを第1部材の形状に相当するキャビティの高さが2mmで120℃の成形体用プレス金型の所定の位置に配置し、10MPaの型締め力でプレスすることにより、第1部材(厚み2.10mm)と第2部材を成形した。成形時間は3分とし、120℃の金型内で連続繊維強化樹脂Xと不連続繊維強化樹脂Zを150℃まで冷却して冷却固化を行い、金型を開放して離型し、成形体(第1部材:縦250mm×横390mm×厚みt2.02mm、第2部材:幅W3.5mm×高さH17mm)を得た。成形体用プレス金型の凹部側面のテーパー角度は3°とした。第1部材の繊維配向(タテ糸方向及びヨコ糸方向)は、第2部材の各長手方向と一致するようにした。
得られた成形体の各物性を表1に示す。
[ Reference Example 11]
Continuous fiber reinforced resin X, in which only one side (the joining side surface to which the second member is joined) is heated to 300 ° C. in an IR heating furnace, and discontinuous fiber reinforced resin Z, in which both sides are heated to 300 ° C. in an IR heating furnace, are placed at a predetermined position in a press mold for a molded body at 120 ° C. with a cavity height of 2 mm corresponding to the shape of the first member, and pressed with a clamping force of 10 MPa to mold the first member (thickness 2.10 mm) and the second member. The molding time was 3 minutes, and the continuous fiber reinforced resin X and the discontinuous fiber reinforced resin Z were cooled to 150 ° C. in a mold at 120 ° C. to perform cooling and solidification, and the mold was opened and released to obtain a molded body (first member: length 250 mm x width 390 mm x thickness t 2.02 mm, second member: width W 3.5 mm x height H 17 mm). The taper angle of the recess side of the press mold for the molded body was 3 °. The fiber orientation (warp and weft directions) of the first member was set to coincide with the longitudinal directions of the second member.
The physical properties of the obtained molded product are shown in Table 1.

[実施例12]
第1部材成形時及び第2部材成形時の型締め力をいずれも10MPaとし、両面IR加熱炉による加熱温度を260℃とした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Example 12]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both 10 MPa, and the heating temperature in the double-sided IR heating furnace was 260°C.
The physical properties of the obtained molded product are shown in Table 1.

[比較例1]
第1部材成形時及び第2部材成形時の型締め力をいずれも30MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Comparative Example 1]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both set to 30 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[比較例2]
第1部材成形時及び第2部材成形時の型締め力をいずれも20MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Comparative Example 2]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both set to 20 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[比較例3]
第1部材成形時及び第2部材成形時の型締め力をいずれも0.2MPaとした以外は、実施例1と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Comparative Example 3]
A molded body was obtained in the same manner as in Example 1, except that the mold clamping force during molding of the first member and the second member was both set to 0.2 MPa.
The physical properties of the obtained molded product are shown in Table 1.

[比較例4]
両面IR加熱炉による加熱温度を350℃、第1部材成形前の連続繊維強化樹脂Xの厚みを4.00mmとした以外は、実施例7と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Comparative Example 4]
A molded body was obtained in the same manner as in Example 7, except that the heating temperature in the double-sided IR heating furnace was 350° C. and the thickness of the continuous fiber reinforced resin X before molding the first member was 4.00 mm.
The physical properties of the obtained molded product are shown in Table 1.

[比較例5]
連続繊維強化樹脂Xを両面加熱とした以外は、実施例4と同様にして成形体を得た。
得られた成形体の各物性を表1に示す。
[Comparative Example 5]
A molded article was obtained in the same manner as in Example 4, except that the continuous fiber reinforced resin X was heated on both sides.
The physical properties of the obtained molded product are shown in Table 1.

Figure 0007523253000001
Figure 0007523253000001

本発明の成形体は、強度及び外観に優れるため、特に、オイルパン、シートパン、ポンプ、シリンダーヘッドカバー、ギヤボックス、ケース部品等の自動車部品、航空機部品、鉄道部品、住宅建材部品、ロボット部品等への適用に好適である。 The molded article of the present invention has excellent strength and appearance, and is therefore particularly suitable for use in automobile parts such as oil pans, seat pans, pumps, cylinder head covers, gear boxes, and case parts, aircraft parts, railway parts, housing construction materials, robot parts, etc.

1:第1部材
2:第2部材
3:接合部
t1:接合部における第1部材中の連続強化繊維の高さ
1: First member 2: Second member 3: Joint t1: Height of continuous reinforcing fiber in the first member at the joint

Claims (9)

成形体の製造方法であり、A method for producing a molded body,
前記成形体は、The molded body is
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
前記製造方法は、The manufacturing method includes:
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、型締めして第1部材を成形し、A continuous fiber reinforced resin containing continuous reinforcing fibers is heated and then placed in a mold for molding, and the mold is clamped to mold a first member;
前記成形体用金型内で、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱した後、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、and heating, in the mold for molding, a joining side surface of the first member at a portion where the second member is to be joined or the entire joining side surface including the joining side surface, and then molding the second member using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
前記第2部材の成形が射出成形であるThe molding of the second member is injection molding.
ことを特徴とする、成形体の製造方法。A method for producing a molded body, comprising:
成形体の製造方法であり、A method for producing a molded body,
前記成形体は、The molded body is
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
前記製造方法は、The manufacturing method includes:
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に第1部材用金型内に設置し、型締めして第1部材を成形し、A continuous fiber reinforced resin containing continuous reinforcing fibers is heated and then placed in a mold for a first member, and the mold is clamped to mold the first member;
前記第1部材を前記第1部材用金型から取り出し、前記第1部材の、第2部材を接合させる部分の接合側表面又は当該接合側表面を含む接合側表面全体を加熱し、The first member is removed from the first member mold, and a joining side surface of a portion of the first member to which a second member is to be joined or an entire joining side surface including the joining side surface is heated;
加熱した前記第1部材を成形体用金型に設置し、不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、The heated first member is placed in a mold for molding, and a second member is molded using a discontinuous fiber reinforced resin containing discontinuous reinforcing fibers,
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
前記第2部材の成形が射出成形であるThe molding of the second member is injection molding.
ことを特徴とする、成形体の製造方法。A method for producing a molded body, comprising:
成形体の製造方法であり、A method for producing a molded body,
前記成形体は、The molded body is
連続強化繊維を含む連続繊維強化樹脂を含む第1部材と、前記第1部材の表面に接合し、不連続強化繊維を含む不連続繊維強化樹脂を含む第2部材とを有し、A first member including a continuous fiber reinforced resin including continuous reinforcing fibers, and a second member joined to a surface of the first member and including a discontinuous fiber reinforced resin including discontinuous reinforcing fibers,
前記第1部材と前記第2部材との接合部において、前記第1部材が前記第2部材に食い込んでいるか、又は前記第2部材が前記第1部材に食い込んでおり、At a joint between the first member and the second member, the first member bites into the second member, or the second member bites into the first member,
前記接合部以外の部分における前記第1部材の厚みtに対する、前記接合部における前記連続強化繊維の高さt1の割合(t1/t)が、0.50~2.00であり、A ratio (t1/t) of a height t1 of the continuous reinforcing fiber at the joint to a thickness t of the first member at a portion other than the joint is 0.50 to 2.00,
前記製造方法は、The manufacturing method includes:
連続強化繊維を含む連続繊維強化樹脂を、加熱した後に成形体用金型内に設置し、前記連続繊維強化樹脂に対して掛かる型締め方向の圧力が10MPa以下となるような型締め力で型締めして第1部材を成形した後、加熱した不連続強化繊維を含む不連続繊維強化樹脂を用いて第2部材を成形することを含み、The method includes heating a continuous fiber reinforced resin containing continuous reinforcing fibers, placing the heated continuous fiber reinforced resin in a mold for molding, clamping the mold with a clamping force such that a pressure in a clamping direction applied to the continuous fiber reinforced resin is 10 MPa or less to mold a first member, and then molding a second member using the heated discontinuous fiber reinforced resin containing discontinuous reinforcing fibers.
前記第2部材を成形する際に、前記成形体用金型における前記第1部材の形状に相当するキャビティの高さを、前記第2部材を成形(接合)する前の前記第1部材の厚み±25%の範囲とし、When molding the second member, the height of a cavity in the mold for molding, which corresponds to the shape of the first member, is set to a range of ±25% of the thickness of the first member before molding (joining) the second member;
前記第2部材の成形が射出成形であるThe molding of the second member is injection molding.
ことを特徴とする、成形体の製造方法。A method for producing a molded body, comprising:
前記接合部における前記第2部材の幅Wに対する、前記厚みt1から前記厚みtを引いた差t1-tの割合((t1-t)/W)が、-0.50~10.00である、請求項1~3のいずれか一項に記載の成形体の製造方法 The method for producing a molded body according to any one of claims 1 to 3, wherein a ratio ((t1-t)/W) of a difference t1-t obtained by subtracting the thickness t from the thickness t1 to a width W of the second member at the joint is -0.50 to 10.00. 前記不連続強化繊維の繊維長が3mm未満である、請求項1~4のいずれか一項に記載の成形体の製造方法 The method for producing a molded body according to any one of claims 1 to 4 , wherein the discontinuous reinforcing fibers have a fiber length of less than 3 mm. 前記不連続強化繊維の繊維長が3mm以上である、請求項1~4のいずれか一項に記載の成形体の製造方法 The method for producing a molded article according to any one of claims 1 to 4 , wherein the discontinuous reinforcing fibers have a fiber length of 3 mm or more. 前記第1部材の表面に沿う方向の前記第1部材の引張強度について、前記接合部以外の部分における前記引張強度σ1に対する、前記接合部における前記引張強度σ1’の割合(σ1’/σ1)が、0.65以上である、請求項1~のいずれか一項に記載の成形体の製造方法 7. The method for producing a molded body according to claim 1, wherein a ratio (σ B 1'/σ B 1) of the tensile strength of the first member in a direction along a surface of the first member, of the tensile strength σ B 1' at the joint to the tensile strength σ B 1 at a portion other than the joint, is 0.65 or more. 前記接合部における前記引張強度σ1’に対する、前記接合部における前記第1部材と前記第2部材との接着強度σの割合(σ/σ1’)が、0.45以下である、請求項に記載の成形体の製造方法 8. The method for producing a molded product according to claim 7, wherein a ratio (σ JB 1') of an adhesive strength σ J between the first member and the second member at the joint to the tensile strength σ B 1' at the joint is 0.45 or less. 前記第2部材を成形する際に、前記第1部材を、前記第1部材の表面に平行な少なくとも2方向に引張する、請求項のいずれか一項に記載の成形体の製造方法。 The method for producing a molded product according to claim 1 , wherein the first member is pulled in at least two directions parallel to a surface of the first member when the second member is molded.
JP2020091567A 2020-05-26 2020-05-26 Molded body and its manufacturing method Active JP7523253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091567A JP7523253B2 (en) 2020-05-26 2020-05-26 Molded body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091567A JP7523253B2 (en) 2020-05-26 2020-05-26 Molded body and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021186992A JP2021186992A (en) 2021-12-13
JP7523253B2 true JP7523253B2 (en) 2024-07-26

Family

ID=78850583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091567A Active JP7523253B2 (en) 2020-05-26 2020-05-26 Molded body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7523253B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177117A (en) 2013-02-14 2014-09-25 Toray Ind Inc Fiber-reinforced thermoplastic resin molding, and production method thereof
JP2015226986A (en) 2014-05-30 2015-12-17 東洋紡株式会社 Fiber-reinforced thermoplastic resin molding body
WO2017073696A1 (en) 2015-10-29 2017-05-04 旭化成株式会社 Composite molding and method for producing same
JP2017080930A (en) 2015-10-23 2017-05-18 三菱レイヨン株式会社 Fiber-reinforced resin molded article and method for producing the same
JP2019094441A (en) 2017-11-24 2019-06-20 東洋紡株式会社 Polybutylene terephthalate resin composition for molded body welding polyester elastomer, and composite molding
JP2019209572A (en) 2018-06-04 2019-12-12 トヨタ自動車株式会社 Molding apparatus and manufacturing method of molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177117A (en) 2013-02-14 2014-09-25 Toray Ind Inc Fiber-reinforced thermoplastic resin molding, and production method thereof
JP2015226986A (en) 2014-05-30 2015-12-17 東洋紡株式会社 Fiber-reinforced thermoplastic resin molding body
JP2017080930A (en) 2015-10-23 2017-05-18 三菱レイヨン株式会社 Fiber-reinforced resin molded article and method for producing the same
WO2017073696A1 (en) 2015-10-29 2017-05-04 旭化成株式会社 Composite molding and method for producing same
JP2019094441A (en) 2017-11-24 2019-06-20 東洋紡株式会社 Polybutylene terephthalate resin composition for molded body welding polyester elastomer, and composite molding
JP2019209572A (en) 2018-06-04 2019-12-12 トヨタ自動車株式会社 Molding apparatus and manufacturing method of molded product

Also Published As

Publication number Publication date
JP2021186992A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
TWI661922B (en) Molding mold and compression molding method
CN103201087B (en) Carbon fibre reinforced plastic products formed
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
KR101784543B1 (en) Resin-soluble veils for composite article fabrication and methods of manufacturing the same
KR20180008603A (en) Composite formed body and manufacturing method thereof
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP2012529394A (en) Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure
KR20190113777A (en) Integrated molded body and method for producing the same
JP2008307692A (en) Fiber-reinforced plastic and its manufacturing method
CN110614744B (en) Method for producing molded article, and mold for resin molding
TW201718963A (en) Textile substrate made from reinforcing fibers
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP7523253B2 (en) Molded body and its manufacturing method
Valverde et al. Effect of processing parameters on quality and strength in thermoplastic composite injection overmoulded components
TWI633227B (en) Manufacturing method of molded article
TWI751321B (en) Method for manufacturing textile unidirectional fabric and fiber parison for manufacturing composite material component
JP5547412B2 (en) Planar composite
JP7469147B2 (en) Composite and manufacturing method thereof
JP6598532B2 (en) Cloth
JP2024056588A (en) Molded article and method for manufacturing the same
TW202231739A (en) Fiber-reinforced resin substrate, preform, integrated molded article, and method for producing fiber-reinforced resin substrate
TW202124135A (en) Carbon fiber tape material, and reinforced fiber laminate and molded article using same
JP2023111522A (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same
JP6746973B2 (en) Base material for preform, reinforced fiber preform, fiber reinforced resin molding and method for manufacturing fiber reinforced resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240716

R150 Certificate of patent or registration of utility model

Ref document number: 7523253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150