JP2008307692A - Fiber-reinforced plastic and its manufacturing method - Google Patents

Fiber-reinforced plastic and its manufacturing method Download PDF

Info

Publication number
JP2008307692A
JP2008307692A JP2007154803A JP2007154803A JP2008307692A JP 2008307692 A JP2008307692 A JP 2008307692A JP 2007154803 A JP2007154803 A JP 2007154803A JP 2007154803 A JP2007154803 A JP 2007154803A JP 2008307692 A JP2008307692 A JP 2008307692A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced plastic
reinforcing fiber
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154803A
Other languages
Japanese (ja)
Inventor
Masahiro Yamauchi
雅浩 山内
Yuji Kojima
雄司 児嶋
Hiroki Kihara
弘樹 木原
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007154803A priority Critical patent/JP2008307692A/en
Publication of JP2008307692A publication Critical patent/JP2008307692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic having excellent handleability, resin impregnation properties and shapability even in a complicated shape having a three-dimensional shape and the like and having excellent mechanical characteristics and quality, and to provide a manufacturing method capable of efficiently producing the fiber-reinforced plastic. <P>SOLUTION: At least two sheets, in which many continuous reinforcing fiber yarns are arrayed in parallel, are arranged so that the reinforcing fiber yarns may cross and a cloth consisting of a thermoplastic resin (A) may be interposed between the sheets, to form a laminate. A fiber-reinforced plastic formed by molding a multiaxial molding material in which the laminates are integrated by a stitching thread consisting of a thermoplastic resin (B) or by the thermoplastic resin (A) and a fiber-reinforced plastic prepared by molding a fiber-reinforced thermoplastic resin base material which has monofilament-like discontinuous reinforcing fibers dispersed at random in a thermoplastic resin (C) are integrated in the form of continuity of the thermoplastic resin (A) and the thermoplastic resin (C). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、力学特性および品位に優れた繊維強化プラスチックを、3次元形状等を有する複雑形状であっても、容易かつ効率よく得ることができる繊維強化プラスチックおよびその製造方法に関する。さらに詳しくは、連続の強化繊維からなる多軸成形材料と、不連続の強化繊維からなる繊維強化熱可塑性樹脂基材とを圧縮成形してなる繊維強化プラスチックおよびその製造方法に関する。   The present invention relates to a fiber reinforced plastic capable of easily and efficiently obtaining a fiber reinforced plastic having excellent mechanical properties and quality even in a complicated shape having a three-dimensional shape and the like, and a method for producing the same. More specifically, the present invention relates to a fiber reinforced plastic obtained by compression molding a multiaxial molding material composed of continuous reinforcing fibers and a fiber reinforced thermoplastic resin base material composed of discontinuous reinforcing fibers, and a method for producing the same.

従来より炭素繊維やガラス繊維を強化繊維とした繊維強化プラスチック(以下、FRPと略す)は、比強度、比弾性率に優れることから、様々な用途に使われている。   Conventionally, fiber reinforced plastics (hereinafter abbreviated as FRP) using carbon fibers or glass fibers as reinforced fibers are excellent in specific strength and specific elastic modulus, and thus have been used in various applications.

かかるFRPの成形方法としては、強化繊維基材に予めマトリックス樹脂を含浸させたプリプレグを用い、これを型にセットしてバッグフィルムで覆い、オートクレーブ内で加熱・加圧し、熱硬化性樹脂を硬化させるオートクレーブ成形法や、ドライな状態の強化繊維基材を型内にセットし、型内を減圧した状態(真空状態)で液状の熱硬化性樹脂を注入する真空注入成形法が一般的に広く知られている。   As a method of molding such FRP, a prepreg in which a reinforcing fiber base material is impregnated with a matrix resin in advance is used, this is set in a mold, covered with a bag film, heated and pressurized in an autoclave, and the thermosetting resin is cured. In general, there are widely used autoclave molding methods and vacuum injection molding methods in which a reinforced fiber base material in a dry state is set in a mold, and a liquid thermosetting resin is injected under a reduced pressure (vacuum state) in the mold Are known.

しかしながら、オートクレーブ成形法や真空注入成形法では、基材を積層する必要や、バッグフィルムで覆い真空に減圧する必要があり、特に真空注入成形においては熱硬化性樹脂を注入する必要もあった。また、これらの方法では前述した工程を含めて一回あたりの成形時間(サイクルタイム)が長くなりすぎ、例えば生産台数の多い自動車部材などへの適応が困難であった。さらに、これらの方法はいずれも平面や二次曲面等といった割と単純形状に適した成形法であるが、リブやボスといった複雑形状を形成するためには、その形状に基材を賦形するのに非常に手間がかかり、その成形時間はさらに長くなってしまうという問題がある。   However, in the autoclave molding method and the vacuum injection molding method, it is necessary to laminate the base materials, and it is necessary to cover with a bag film and reduce the pressure to a vacuum. In particular, in the vacuum injection molding, it is necessary to inject a thermosetting resin. Further, in these methods, the molding time (cycle time) per process including the above-described steps becomes too long, and it is difficult to adapt to, for example, automobile members having a large number of production. Furthermore, these methods are all suitable for simple shapes such as flat surfaces and quadratic surfaces, but in order to form complex shapes such as ribs and bosses, the base material is shaped into those shapes. However, it takes time and labor, and the molding time becomes longer.

成形時間の問題に対して、例えば、強化繊維基材を予め積層してステッチ糸により縫製、一体化した多軸ステッチ基材を用いることにより、FRPに成形する時の積層工程を省略する手法が提案されている(例えば、特許文献1など)。しかしながら、かかる技術では別に用意したマトリックス樹脂(熱硬化性樹脂)を注入し、さらに硬化させる工程が必要なため、その効果が十分とは言い難い。   For the problem of molding time, for example, there is a method of omitting the lamination process when forming into FRP by using a multi-axis stitch base material that is laminated in advance and sewed with stitch yarn and integrated. It has been proposed (for example, Patent Document 1). However, such a technique requires a step of injecting a matrix resin (thermosetting resin) prepared separately and further curing it, so that the effect is not sufficient.

一方、樹脂の注入・硬化の工程を省略する手段として、強化繊維にマトリックスとなる合成樹脂繊維を予め一体化して前記多軸ステッチ基材とした成形材料(例えば、特許文献2など)や、前記多軸ステッチ基材の層間にマトリックスとなるフィルムを挿入した成形材料(例えば、特許文献3など)が提案されている。   On the other hand, as a means for omitting the resin injection / curing step, a molding material (for example, Patent Document 2) in which synthetic resin fibers serving as a matrix and reinforcing fibers are integrated in advance and used as the multiaxial stitch base, A molding material (for example, Patent Document 3) in which a film serving as a matrix is inserted between layers of a multiaxial stitch base has been proposed.

しかしながら、かかる特許文献2に記載の方法では、多軸ステッチ基材における強化繊維の層の中にマトリックスとなる合成樹脂繊維を配置している成形材料であるため樹脂含浸性に劣り、樹脂の含浸には高い圧力が必要であるという問題があり、また、特許文献3に記載の方法では、縫い糸がフィルムを貫通することが困難であったり、積層シートを特に二次曲面のような複雑形状に賦形するときに樹脂フィルムが形状に追従できずにシワが発生したりするという問題があった。さらに、これらはともに強化繊維の形態が連続繊維であるため、リブやボスといった複雑形状を形成することは非常に困難である。   However, the method described in Patent Document 2 is inferior in resin impregnation property because it is a molding material in which synthetic resin fibers serving as a matrix are arranged in a reinforcing fiber layer in a multiaxial stitch base, and impregnation with resin Has a problem that a high pressure is required, and in the method described in Patent Document 3, it is difficult for the sewing thread to penetrate the film, or the laminated sheet is formed into a complicated shape such as a quadratic curved surface. There has been a problem that the resin film cannot follow the shape when it is shaped and wrinkles are generated. Furthermore, since both of these are continuous fibers in the form of reinforcing fibers, it is very difficult to form complex shapes such as ribs and bosses.

すなわち、特許文献1〜3をはじめとした従来の技術では、優れた取扱性・樹脂含浸性・賦形性を有し、力学特性および品位の優れたFRPを生産性よく得ることができる成形材料およびそれから得られるFRPは見出されておらず、かかる技術が渇望されている。
米国特許出願公開第2005/0059309号明細書 特開2001−073241号公報 特開2004−346175号公報
That is, in the conventional techniques including Patent Documents 1 to 3, a molding material that has excellent handling properties, resin impregnation properties, and shapeability, and can obtain FRP with excellent mechanical properties and quality with high productivity. And no FRP derived from it has been found and such techniques are craved.
US Patent Application Publication No. 2005/0059309 Japanese Patent Application Laid-Open No. 2001-073241 JP 2004-346175 A

本発明の課題は、上記従来技術の問題点を解消することにあり、3次元形状等を有する複雑形状であっても、優れた取扱性、樹脂含浸性、および賦形性を有し、力学特性および品位の優れた繊維強化プラスチックおよび該繊維強化プラスチックを効率よく得ることができる製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and even if it is a complicated shape having a three-dimensional shape, etc., it has excellent handling properties, resin impregnation properties, and shaping properties, An object of the present invention is to provide a fiber reinforced plastic having excellent characteristics and quality and a production method capable of efficiently obtaining the fiber reinforced plastic.

上記目的を達成するために、本発明は次の構成を採用するものである。すなわち、
(1)多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料を成形してなる繊維強化プラスチックと、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材を成形してなる繊維強化プラスチックとが、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化してなることを特徴とする繊維強化プラスチック。
In order to achieve the above object, the present invention employs the following configuration. That is,
(1) At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel so that the reinforcing fiber yarns intersect and at least a fabric-like body made of the thermoplastic resin (A) Fiber reinforcement formed by molding a multiaxial molding material that is arranged between the sheets to constitute a laminate, and the laminate is integrated with a stitch yarn made of a thermoplastic resin (B) or a thermoplastic resin (A). A plastic resin and a fiber reinforced plastic formed by molding a fiber reinforced thermoplastic resin base material in which monofilamentous and discontinuous reinforcing fibers are randomly dispersed in the thermoplastic resin (C) are thermoplastic resin (A ) And the thermoplastic resin (C) are integrated in a continuous form.

(2)多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料と、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材とを同時に圧縮成形することを特徴とする繊維強化プラスチックの製造方法。   (2) At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel so that the reinforcing fiber yarns intersect and at least a fabric-like body made of the thermoplastic resin (A) A multi-axial molding material which is disposed between the sheets to form a laminate, and the laminate is integrated with a stitch yarn made of the thermoplastic resin (B) or the thermoplastic resin (A); A method for producing a fiber-reinforced plastic, comprising simultaneously compressing and molding a fiber-reinforced thermoplastic resin base material in which discontinuous reinforcing fibers are randomly dispersed in a thermoplastic resin (C).

(3)多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料を圧縮成形した後、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材を、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化するように成形することを特徴とする繊維強化プラスチックの製造方法。   (3) At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel, and at least a fabric-like body made of the thermoplastic resin (A) so that the reinforcing fiber yarns intersect each other A multi-axis molding material in which a laminated body is disposed between the sheets to constitute a laminated body, and the laminated body is integrated with a stitch yarn made of a thermoplastic resin (B) or a thermoplastic resin (A), is compression-molded. A fiber-reinforced thermoplastic resin base material in which fibrous and discontinuous reinforcing fibers are randomly dispersed in the thermoplastic resin (C) is a continuous form of the thermoplastic resin (A) and the thermoplastic resin (C). A method for producing a fiber-reinforced plastic, characterized by molding so as to be integrated.

(4)前記熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと前記熱可塑性樹脂(C)の溶解度パラメータ(SP値)δCとの差の絶対値が3以下であることを特徴とする前記(2)または(3)に記載の繊維強化プラスチックの製造方法。   (4) The absolute value of the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δC of the thermoplastic resin (C) is 3 or less. The manufacturing method of the fiber reinforced plastic as described in said (2) or (3).

(5)前記各シートにおける強化繊維糸条の目付が50〜350g/mの範囲内であり、前記熱可塑性樹脂(A)からなる布帛状体の目付が15〜250g/mの範囲内であり、かつ、前記繊維強化熱可塑性樹脂基材の強化繊維の重量含有率が25〜80wt%であることを特徴とする前記(2)〜(4)のいずれかに記載の繊維強化プラスチックの製造方法。 (5) The basis weight of the reinforcing fiber yarn in each sheet is in the range of 50 to 350 g / m 2 , and the basis weight of the fabric-like body made of the thermoplastic resin (A) is in the range of 15 to 250 g / m 2 . The fiber-reinforced plastic according to any one of (2) to (4), wherein the fiber-reinforced thermoplastic resin base material has a reinforcing fiber weight content of 25 to 80 wt%. Production method.

(6)熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと熱可塑性樹脂(B)の溶解度パラメータ(SP値)δBとの差の絶対値が3以下であることを特徴とする前記(2)〜(5)のいずれかに記載の繊維強化プラスチックの製造方法。   (6) The absolute value of the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δB of the thermoplastic resin (B) is 3 or less ( The manufacturing method of the fiber reinforced plastic in any one of 2)-(5).

(7)熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(B)の融点をTmBとしたとき、TmAとTmBとが、式(TmB−150)≦TmA≦(TmB−20)の関係を満足することを特徴とする前記(2)〜(6)のいずれかに記載の繊維強化プラスチックの製造方法。   (7) When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (B) is TmB, TmA and TmB are expressed by the formula (TmB-150) ≦ TmA ≦ (TmB-20). The method for producing a fiber-reinforced plastic according to any one of (2) to (6), wherein the relationship is satisfied.

(8)熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(B)の融点をTmBとしたとき、TmAとTmBとが、式(TmB−20)<TmA<(TmB+20)の関係を満足することを特徴とする前記(2)〜(6)のいずれかに記載の繊維強化プラスチックの製造方法。   (8) When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (B) is TmB, TmA and TmB have the relationship of the formula (TmB-20) <TmA <(TmB + 20). The method for producing a fiber-reinforced plastic according to any one of (2) to (6), wherein the method is satisfied.

(9)熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(C)の融点をTmCとしたとき、TmAとTmCとが、次式(TmC−20)<TmA<(TmC+20)の関係を満足することを特徴とする前記(2)〜(8)のいずれかに記載の繊維強化プラスチックの製造方法。   (9) When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (C) is TmC, the relationship of TmA and TmC is expressed by the following formula (TmC-20) <TmA <(TmC + 20). The method for producing a fiber-reinforced plastic according to any one of (2) to (8), wherein:

本発明によれば、成形時において3次元形状等を有する複雑形状であっても、優れた取扱性、樹脂含浸性、および賦形性を有し、力学特性および品位の優れた繊維強化プラスチックを効率よく得ることができる。   According to the present invention, a fiber reinforced plastic having excellent handling properties, resin impregnation properties, and formability, and excellent mechanical properties and quality even in a complicated shape having a three-dimensional shape or the like at the time of molding. It can be obtained efficiently.

本発明は、3次元形状等を有する複雑形状であっても、優れた取扱性、樹脂含浸性、および賦形性を有し、力学特性および品位の優れた繊維強化プラスチック(FRP)を効率よく得るための製造方法について鋭意検討した結果、連続の強化繊維と布帛状体がステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料と、不連続の強化繊維からなる繊維強化熱可塑性樹脂基材を連続した形態で一体化したところ、かかる課題を一挙に解決することを究明したものである。   The present invention can efficiently produce a fiber reinforced plastic (FRP) having excellent handling characteristics, resin impregnation properties, and formability, and having excellent mechanical properties and quality even in a complicated shape having a three-dimensional shape or the like. As a result of earnest study on the production method for obtaining, a fiber reinforced heat composed of a multiaxial molding material in which continuous reinforcing fibers and a cloth-like body are integrated by stitch yarn or thermoplastic resin (A), and discontinuous reinforcing fibers. When the plastic resin base material is integrated in a continuous form, it has been found that such problems can be solved all at once.

次に、実施例を用いて図面を参照しながら本発明をさらに説明する。   Next, the present invention will be further described with reference to the drawings using examples.

図1は、本発明における多軸成形材料の一実施態様を示す概略斜視図である。また、図2は、本発明における繊維強化熱可塑性樹脂基材の一実施態様を示す概略斜視図である。図3は、本発明における多軸成形材料と繊維強化熱可塑性樹脂基材とを圧縮成形する前の概略断面図である。図4は、本発明のFRPの一実施態様を示す概略断面図である。   FIG. 1 is a schematic perspective view showing one embodiment of the multiaxial molding material in the present invention. FIG. 2 is a schematic perspective view showing one embodiment of the fiber-reinforced thermoplastic resin base material in the present invention. FIG. 3 is a schematic cross-sectional view of the multiaxial molding material and the fiber-reinforced thermoplastic resin base material in the present invention before compression molding. FIG. 4 is a schematic cross-sectional view showing one embodiment of the FRP of the present invention.

本発明のFRPは、図4に示すように、多数本の連続の強化繊維糸条Yが並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸6(または熱可塑性樹脂(A)、図示せず)により一体化された多軸成形材料8を成形してなる繊維強化プラスチックと、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材12を成形してなる繊維強化プラスチックとが、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化してなる。   As shown in FIG. 4, the FRP of the present invention comprises at least two sheets in which a large number of continuous reinforcing fiber yarns Y are arranged in parallel, such that the reinforcing fiber yarns intersect and is thermoplastic. A fabric-like body made of a resin (A) is disposed at least between the sheets to constitute a laminate, and the laminate is a stitch yarn 6 (or thermoplastic resin (A), made of a thermoplastic resin (B), not shown. A fiber reinforced plastic formed by molding the multiaxial molding material 8 integrated with the fiber, and a fiber reinforced thermoplastic in which monofilamentous and discontinuous reinforcing fibers are randomly dispersed in the thermoplastic resin (C). The fiber reinforced plastic formed by molding the resin base 12 is integrated in a continuous form of the thermoplastic resin (A) and the thermoplastic resin (C).

ここで、本発明において強化繊維の連続とは、強化繊維が繊維方向全長にわたって連続している態様を表し、不連続とは、連続との対比において用いられる概念であり、その繊維長に制限はないが、成形性の観点などから1〜15mm程度が好ましく用いられる。次に、強化繊維糸条とは、多数本の強化繊維が束状になっている態様を表し、1つの糸条あたりの強化繊維の本数としては、1000〜50000本の範囲内であることが取扱性の観点などから好ましい。一方、単繊維状の強化繊維とは、強化繊維が束状ではなく1本ずつ独立している態様であるが、集束剤や絡み合いにより強化繊維同士が固着する場合があるため、本発明では1つの単繊維状の強化繊維あたり強化繊維の本数が100本より少ない態様を表す。本発明における強化繊維糸条の交差とは、該強化繊維糸条が異なる方向に配向している態様を表し、その方向のなす角度の絶対値が10〜170°であることを表す。また、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化とは、樹脂界面において、双方の樹脂が互いに物理的、あるいは化学的に吸着していることを表す。なお、物理的な吸着とは、樹脂同士が相溶し分子レベルで絡み合った状態や、分子間力により吸着した状態、アンカー効果により吸着した状態を表し、化学的な吸着とは、樹脂同士が共有結合していることを表す。さらに、本発明におけるランダムな分散とは、強化繊維の配向に偏りがない態様を表し、繊維強化熱可塑性樹脂基材の配向パラメータ(fp)が−0.25〜0.25の範囲内であることを表す。   Here, the continuation of the reinforcing fiber in the present invention represents an aspect in which the reinforcing fiber is continuous over the entire length in the fiber direction, and the discontinuity is a concept used in contrast to the continuity, and the fiber length is limited. However, about 1 to 15 mm is preferably used from the viewpoint of moldability. Next, the reinforcing fiber yarn represents a mode in which a large number of reinforcing fibers are bundled, and the number of reinforcing fibers per yarn may be in the range of 1000 to 50000. It is preferable from the viewpoint of handleability. On the other hand, the monofilament-like reinforcing fiber is an embodiment in which the reinforcing fibers are not bundled but one by one, but the reinforcing fibers may be fixed together by a sizing agent or entanglement. This represents an embodiment in which the number of reinforcing fibers per single fibrous reinforcing fiber is less than 100. The intersection of reinforcing fiber yarns in the present invention represents an aspect in which the reinforcing fiber yarns are oriented in different directions, and represents that the absolute value of the angle formed by these directions is 10 to 170 °. Also, the integration of the thermoplastic resin (A) and the thermoplastic resin (C) in a continuous form means that both resins are physically or chemically adsorbed at the resin interface. Physical adsorption refers to a state in which resins are mixed and entangled at the molecular level, a state in which they are adsorbed by intermolecular force, and a state in which they are adsorbed by an anchor effect. Indicates a covalent bond. Furthermore, the random dispersion in the present invention represents an embodiment in which the orientation of the reinforcing fiber is not biased, and the orientation parameter (fp) of the fiber-reinforced thermoplastic resin substrate is within the range of −0.25 to 0.25. Represents that.

繊維強化熱可塑性樹脂基材の配向パラメータ(fp)は、次の手法により測定する。繊維強化熱可塑性樹脂基材の一部を切り出し、厚みに対して垂直な断面を研磨し観察用試験片を作成する。繊維強化熱可塑性樹脂基材の表面から100μm以下の深さ部分を研磨して得た該試験片を光学顕微鏡にて観察し、無作為に400本の強化繊維を選び出す。研磨面において強化繊維は一般的に楕円形となっており、この楕円の長軸方向を繊維の配向方向とする。次に、角度の基準とする基準直線を任意に設定し、基準線に対する選び出した強化繊維の配向方向のなす角度(以下、配向角度αと略すことがある。)を全て測定する。配向角度αは、基準線に対して反時計回りの方向の角度を測定することとする。この配向角度αを用いて、次式により配向パラメータ(fp)を算出する。
・fp=2×Σ(cosαi×Ni/Ntotal)−1
・αi:測定した配向角度(単位:°)(i=1、2、3、・・・、n)
・Ni:配向角度αiの繊維の頻度(単位:本)(i=1、2、3、・・・、n)
・Ntotal:配向角度を測定した繊維本数(400本)
本発明のFRPの製造方法は、図1に示すような多数本の連続の強化繊維糸条Yが並行に配列されたシートを少なくとも2枚、該強化繊維糸条Yが交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体5が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸6(または熱可塑性樹脂(A)、図示せず)により一体化された多軸成形材料8と、図2に示すような単繊維状かつ不連続の強化繊維10が熱可塑性樹脂(C)11中にランダムに分散された繊維強化熱可塑性樹脂基材12とを同時に圧縮成形するものである。
The orientation parameter (fp) of the fiber reinforced thermoplastic resin substrate is measured by the following method. A part of the fiber reinforced thermoplastic resin substrate is cut out, and a cross section perpendicular to the thickness is polished to prepare an observation test piece. The test piece obtained by polishing a depth portion of 100 μm or less from the surface of the fiber-reinforced thermoplastic resin substrate is observed with an optical microscope, and 400 reinforcing fibers are selected at random. The reinforcing fibers are generally elliptical on the polished surface, and the major axis direction of the ellipse is taken as the fiber orientation direction. Next, a reference straight line as an angle reference is arbitrarily set, and all angles formed by the orientation direction of the selected reinforcing fibers with respect to the reference line (hereinafter, may be abbreviated as orientation angle α) are measured. The orientation angle α is measured by measuring the angle in the counterclockwise direction with respect to the reference line. Using this orientation angle α, an orientation parameter (fp) is calculated by the following equation.
Fp = 2 × Σ (cos 2 αi × Ni / Ntotal) −1
Αi: measured orientation angle (unit: °) (i = 1, 2, 3,..., N)
Ni: Frequency of fibers with orientation angle αi (unit: book) (i = 1, 2, 3,..., N)
Ntotal: number of fibers whose orientation angle was measured (400)
The FRP production method of the present invention comprises at least two sheets in which a large number of continuous reinforcing fiber yarns Y are arranged in parallel as shown in FIG. 1 so that the reinforcing fiber yarns Y intersect each other, and , A fabric-like body 5 made of a thermoplastic resin (A) is arranged at least between the sheets to form a laminate, and the laminate is a stitch yarn 6 (or thermoplastic resin (A) made of a thermoplastic resin (B). ), A multiaxial molding material 8 integrated by (not shown), and a fiber in which single fiber-like and discontinuous reinforcing fibers 10 as shown in FIG. 2 are randomly dispersed in the thermoplastic resin (C) 11 The reinforced thermoplastic resin substrate 12 is compression-molded simultaneously.

図1に示すとおり、多軸成形材料8は、強化繊維糸条Yが並行に配列されたシートが、少なくとも2枚、強化繊維糸条Yが交差するように積層されて積層体を構成している。シート1は、強化繊維糸条Yが多軸成形材料の長手方向に並行に配列された層で、シート2は、強化繊維糸条Yが多軸成形材料の長手方向に対して+45°に並行に配列された層で、シート3は、強化繊維糸条Yが多軸成形材料の長手方向に対して90°に並行に配列された層で、シート4は、強化繊維糸条Yが多軸成形材料の長手方向に対して−45°に並行に配列された層である。なお、ここで多軸成形材料の長手方向とは、巻取装置により多軸成形材料を巻き取る方向、もしくは、引取装置により引き取る方向をいう。   As shown in FIG. 1, the multiaxial molding material 8 comprises a laminate in which at least two sheets of reinforcing fiber yarns Y arranged in parallel are laminated so that the reinforcing fiber yarns Y intersect. Yes. Sheet 1 is a layer in which reinforcing fiber yarns Y are arranged in parallel in the longitudinal direction of the multiaxial molding material, and sheet 2 is a layer in which reinforcing fiber yarns Y are parallel to the longitudinal direction of the multiaxial molding material at + 45 °. The sheet 3 is a layer in which the reinforcing fiber yarns Y are arranged in parallel to the longitudinal direction of the multiaxial molding material at 90 °, and the sheet 4 is composed of the reinforcing fiber yarns Y in the multiaxial direction. It is a layer arranged in parallel at −45 ° with respect to the longitudinal direction of the molding material. Here, the longitudinal direction of the multiaxial molding material refers to a direction in which the multiaxial molding material is taken up by a winding device or a direction in which the multiaxial molding material is taken up by a take-up device.

図1に示す多軸成形材料8において、強化繊維糸条のシートの積層枚数は4枚であるが、これらは本発明の多軸成形材料の一例を示したものであり、積層構成、積層枚数はこれに限定するものではない。本発明における好ましい積層構成としては、FRPに成形した際にそりを生じないように鏡面対称積層であり、また、好ましい積層枚数としては、取扱性と樹脂含浸性とのバランスから3〜12枚の範囲内である。   In the multiaxial molding material 8 shown in FIG. 1, the number of sheets of reinforcing fiber yarns is four, but these are examples of the multiaxial molding material of the present invention. Is not limited to this. A preferred laminated structure in the present invention is a mirror-symmetric laminated so as not to warp when formed into FRP, and the preferred laminated number is 3 to 12 from the balance between handleability and resin impregnation. Within range.

本発明で用いられる多軸成形材料8における布帛状体5の形態としては、一枚として取り扱えるものであれば、その形態は特に制限されるものではなく、不織布、フィルム、マット、メッシュ、織物、編物、等の種々の形態から選択することができる。特に不織布の形態であると、材料として安価である点、適度な変形性を有する点、多軸成形材料の製造工程において取扱性に優れる点、ステッチ時のニードルへの負荷を小さくできる点、などから好ましい。不織布としては、例えば、カード法、メルトブロー法、スパンボンド法、抄紙法などにより製造されたものが挙げられる。かかる不織布は、離型紙やフィルムなどの支持体の上に形成されたものでも、単独で扱えるものでもよいが、単独で扱えるものの方が安価に入手できる。前記方法で製造された不織布は、不連続状の熱可塑性繊維を結合したものであるため、多軸成形材料に適用した場合に優れた賦形性や、ステッチにおけるスムーズなニードル貫通性(連続ステッチ性)を発現することができるのである。この他にも、連続繊維を引き揃えて不織組織化した布帛なども例として挙げられ、これらの1種または2種類以上を併用したものも使用することができる。中でも、材料コストの面からはメルトブロー法またはスパンボンド法により製造されたものが、賦形性の面からはカード法により製造されたものを用いるのが好ましい。   As the form of the cloth-like body 5 in the multiaxial molding material 8 used in the present invention, the form is not particularly limited as long as it can be handled as one sheet, and the nonwoven fabric, film, mat, mesh, woven fabric, Various forms such as a knitted fabric can be selected. Especially when it is in the form of non-woven fabric, it is inexpensive as a material, has moderate deformability, has excellent handleability in the manufacturing process of multi-axis molding material, can reduce the load on the needle during stitching, etc. To preferred. As a nonwoven fabric, what was manufactured by the card | curd method, the melt blow method, the spun bond method, the papermaking method etc. is mentioned, for example. Such a non-woven fabric may be formed on a support such as a release paper or a film, or may be handled alone, but those that can be handled independently are available at a lower cost. Since the nonwoven fabric produced by the above method is a combination of discontinuous thermoplastic fibers, it has excellent formability when applied to multiaxial molding materials and smooth needle penetration in stitches (continuous stitching). Sex). In addition, a fabric in which continuous fibers are aligned to form a non-woven structure can be given as an example, and one or a combination of two or more of these can also be used. Among these, it is preferable to use those manufactured by the melt blow method or the spunbond method from the viewpoint of material cost, and those manufactured by the card method from the viewpoint of formability.

積層体は、熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化される。熱可塑性樹脂(A)のシートへの含浸を促進したい場合は樹脂の含浸流路を形成するステッチ糸を用いる前者の態様が好ましい。一方、極めて高い力学特性を発現させたい場合にはステッチ糸を用いて強化繊維糸条の損傷を最小限にできる後者の態様が好ましい。   A laminated body is integrated by the stitch thread | yarn which consists of a thermoplastic resin (B), or a thermoplastic resin (A). In the case where it is desired to promote the impregnation of the thermoplastic resin (A) into the sheet, the former embodiment using a stitch yarn forming a resin impregnation flow path is preferable. On the other hand, when it is desired to express extremely high mechanical properties, the latter embodiment in which the damage of the reinforcing fiber yarn can be minimized by using the stitch yarn is preferable.

本発明で用いられる多軸成形材料8の布帛状体5を構成する熱可塑性樹脂(A)としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレンなどのフッ素系樹脂、液晶ポリマー(LCP)」などの結晶性樹脂、「スチレン系樹脂の他や、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系、およびアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。本発明において、これらの少なくとも1種を好ましい熱可塑性樹脂(A)として採用することができる。さらに好ましくは、炭素繊維間へ熱可塑性樹脂を含浸させる観点から、結晶性樹脂を用いた場合であって、FRPの力学特性を高めることができる。   Examples of the thermoplastic resin (A) constituting the fabric body 5 of the multiaxial molding material 8 used in the present invention include “polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT)”. , Polyethylene naphthalate (PENp), polyester such as liquid crystal polyester, polyolefin such as polyethylene (PE), polypropylene (PP), polybutylene, polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide (PPS), polyketone Fluoropolymers such as (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyethernitrile (PEN), polytetrafluoroethylene, and liquid crystal polymers (LCP) ”and other crystalline resins,“ in addition to styrene resins, polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene ether (PPE), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyarylate (PAR) "and other amorphous resins, phenolic resins, phenoxy resins, polystyrenes, polyolefins, Examples thereof include thermoplastic elastomers such as polyurethane, polyester, polyamide, polybutadiene, polyisoprene, fluorine, and acrylonitrile, and thermoplastic resins selected from copolymers and modified products thereof. In the present invention, at least one of these can be employed as a preferred thermoplastic resin (A). More preferably, from the viewpoint of impregnating the thermoplastic resin between the carbon fibers, a crystalline resin is used, and the mechanical properties of FRP can be enhanced.

本発明で用いられる多軸成形材料8におけるステッチ糸6の形態としては、フィラメントや紡績糸などいずれであってよいが、好ましくは基材表面の平滑性を得るためにマルチフィラメント糸である。マルチフィラメント糸であれば、賦形時や成形時に多軸成形材料を加圧することで、フィラメントの配列位置が移動し、マルチフィラメント糸の厚みを薄くできる。ステッチ糸6を構成する熱可塑性樹脂(B)としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレンなどのフッ素系樹脂、液晶ポリマー(LCP)」などの結晶性樹脂、フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系、およびアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。   The form of the stitch yarn 6 in the multiaxial molding material 8 used in the present invention may be any of a filament and a spun yarn, but is preferably a multifilament yarn in order to obtain the smoothness of the substrate surface. In the case of a multifilament yarn, by pressing the multiaxial molding material at the time of shaping or molding, the arrangement position of the filaments can be moved, and the thickness of the multifilament yarn can be reduced. Examples of the thermoplastic resin (B) constituting the stitch yarn 6 include “polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PENp), liquid crystal polyester and the like. Polyolefins such as polyester, polyethylene (PE), polypropylene (PP), polybutylene, polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide (PPS), polyketone (PK), polyetherketone (PEK), poly Fluorine resins such as ether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether nitrile (PEN), polytetrafluoroethylene, and crystalline resins such as liquid crystal polymer (LCP), Enol resins, phenoxy resins, thermoplastic elastomers such as polystyrenes, polyolefins, polyurethanes, polyesters, polyamides, polybutadienes, polyisoprenes, fluorines, and acrylonitriles, copolymers thereof, Examples thereof include thermoplastic resins selected from modified products.

図2に示すとおり、繊維強化熱可塑性樹脂基材12は、単繊維状でかつ不連続の強化繊維10が熱可塑性樹脂11中にランダムに分散されている。熱可塑性樹脂11の形態としては、粒子状や繊維状などが挙げられ、あるいはそれらが溶融して凝集した状態のものであっても構わない。上記の多軸成形材料8と繊維強化熱可塑性樹脂基材12とを図3に示すように重ね合わせた状態とし、同時に圧縮成形する。重ね合わせの形態としては、多軸成形材料8と繊維強化熱可塑性樹脂基材12とが同じ大きさでも良いし、多軸成形材料8に対して繊維強化熱可塑性樹脂基材12を部分的に配置した形態でも構わない。なお、圧縮成形の手段としては、特に制限しないが、成形時間の早さからプレス成形が好ましい。   As shown in FIG. 2, the fiber reinforced thermoplastic resin base material 12 is a single fiber and discontinuous reinforcing fibers 10 are randomly dispersed in the thermoplastic resin 11. Examples of the form of the thermoplastic resin 11 include a particulate form and a fibrous form, or they may be melted and aggregated. The multiaxial molding material 8 and the fiber reinforced thermoplastic resin base material 12 are overlapped as shown in FIG. 3 and simultaneously compression molded. As a form of superposition, the multiaxial molding material 8 and the fiber reinforced thermoplastic resin base material 12 may be the same size, or the fiber reinforced thermoplastic resin base material 12 is partially formed with respect to the multiaxial molding material 8. An arranged form may be used. The compression molding means is not particularly limited, but press molding is preferred because of the fast molding time.

本発明で用いられる繊維強化熱可塑性樹脂基材12における熱可塑性樹脂(C)11としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレンなどのフッ素系樹脂、液晶ポリマー(LCP)」などの結晶性樹脂、「スチレン系樹脂の他や、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系、およびアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。本発明において、これらの少なくとも1種を好ましい熱可塑性樹脂(C)11として採用することができる。さらに好ましくは、炭素繊維間へ熱可塑性樹脂を含浸させる観点から、結晶性樹脂を用いた場合であって、FRPの力学特性を高めることができる。   Examples of the thermoplastic resin (C) 11 in the fiber reinforced thermoplastic resin substrate 12 used in the present invention include “polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate”. Polyester such as phthalate (PENp), liquid crystal polyester, polyolefin such as polyethylene (PE), polypropylene (PP), polybutylene, polyoxymethylene (POM), polyamide (PA), polyphenylene sulfide (PPS), polyketone (PK) , Fluorinated resins such as polyether ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether nitrile (PEN), polytetrafluoroethylene, Crystalline resins such as MER (LCP), “in addition to styrene resins, polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene ether (PPE), polyimide (PI), polyamide Amorphous resin such as imide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyarylate (PAR), etc., phenolic resin, phenoxy resin, polystyrene, polyolefin , Polyurethane-based, polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based, fluorine-based, and acrylonitrile-based thermoplastic elastomers, and thermoplastic resins selected from copolymers and modified materials thereof. In the present invention, at least one of these can be employed as the preferred thermoplastic resin (C) 11. More preferably, from the viewpoint of impregnating the thermoplastic resin between the carbon fibers, a crystalline resin is used, and the mechanical properties of FRP can be enhanced.

さらに別の視点からは、本発明のFRPの製造方法は、図1に示すような多数本の連続の強化繊維糸条Yが並行に配列されたシートを少なくとも2枚、該強化繊維糸条Yが交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体5が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸6(または熱可塑性樹脂(A)、図示せず)により一体化された多軸成形材料8を圧縮成形した後、図2に示すような単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)11中にランダムに分散された繊維強化熱可塑性樹脂基材12を、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化するように成形するものである。すなわち、多軸成形材料を成形する前工程と、繊維強化熱可塑性樹脂基材を成形する後工程との2段階に分けて成形するというものである。成形の工程を2段階に分けているため、生産性にはやや劣るものの、例えば部分的に繊維強化熱可塑性樹脂基材からなるFRPを配置する場合は、該部分のみに繊維強化熱可塑性樹脂基材を成形することが容易となり、すなわち繊維強化熱可塑性樹脂基材の使用量が少なくて済みコスト面で優れる。なお、前工程で多軸成形材料を圧縮成形する手段としては、特に制限しないが、成形時間の早さからプレス成形が好ましい。繊維強化熱可塑性樹脂基材を後から成形する方法としては、多軸成形材料と同様にプレス成形でも良いが、その他の成形方法を場合に応じて適宜選択することができる。より容易に、かつ効率よく得るには、前工程で成形した多軸成形材料からなるFRPを射出成形機内に配置し、繊維強化熱可塑性樹脂基材を射出成形することにより一体化するように成形を行っても良い。その他に、予めリブなどに相当する形状に成形した繊維強化熱可塑性樹脂基材からなるFRPを、振動融着、超音波融着、高周波融着、熱板融着、レーザー融着などにより多軸成形材料からなるFRPに固着する手法が挙げられ、それらの手法を適宜用いても良い。   From another viewpoint, the method for producing FRP of the present invention includes at least two sheets in which a large number of continuous reinforcing fiber yarns Y are arranged in parallel as shown in FIG. And a fabric-like body 5 made of a thermoplastic resin (A) is arranged at least between the sheets to form a laminate, and the laminate 6 is a stitch yarn 6 made of a thermoplastic resin (B). (Or thermoplastic resin (A), not shown), after compression molding of the multiaxial molding material 8, single fiber-like and discontinuous reinforcing fibers as shown in FIG. C) A fiber-reinforced thermoplastic resin base material 12 randomly dispersed in 11 is molded so that the thermoplastic resin (A) and the thermoplastic resin (C) are integrated in a continuous form. That is, it is divided into two steps, a pre-process for forming a multiaxial molding material and a post-process for forming a fiber-reinforced thermoplastic resin substrate. Although the molding process is divided into two stages, the productivity is somewhat inferior, but when, for example, an FRP partially made of a fiber reinforced thermoplastic resin base material is arranged, the fiber reinforced thermoplastic resin group is only formed in the part. It becomes easy to mold the material, that is, the amount of the fiber-reinforced thermoplastic resin substrate used is small, and the cost is excellent. The means for compression-molding the multiaxial molding material in the previous step is not particularly limited, but press molding is preferred because of the fast molding time. As a method of forming the fiber-reinforced thermoplastic resin substrate later, press molding may be used as in the case of the multiaxial molding material, but other molding methods can be appropriately selected according to circumstances. To obtain more easily and efficiently, FRP made of multi-axial molding material molded in the previous process is placed in an injection molding machine and molded to be integrated by injection molding a fiber reinforced thermoplastic resin substrate. May be performed. In addition, FRP made of a fiber reinforced thermoplastic resin base material previously molded into a shape corresponding to a rib or the like is multiaxial by vibration fusion, ultrasonic fusion, high frequency fusion, hot plate fusion, laser fusion, etc. Examples of the method include fixing to an FRP made of a molding material, and these methods may be used as appropriate.

本発明のFRPの製造方法では、前記熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと前記熱可塑性樹脂(C)の溶解度パラメータ(SP値)δCとの差の絶対値が3以下であることが好ましい。SP値の差の絶対値が3よりも大きい場合、両成分の相溶性は低く、熱可塑性樹脂(A)と熱可塑性樹脂(C)との界面の接着性が低くなり、該界面で剥離を生じる場合がある。上記の絶対値のより好ましい範囲は、2.5以下であり、さらに好ましくは2以下である。本発明におけるSP値は、フェダーズ(Fedors)の方法により決定される25℃の温度におけるポリマーの繰り返し単位の値により求められる。当該方法は、F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。   In the FRP production method of the present invention, the absolute value of the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δC of the thermoplastic resin (C) is 3 or less. Preferably there is. When the absolute value of the difference in SP value is greater than 3, the compatibility of both components is low, the adhesiveness at the interface between the thermoplastic resin (A) and the thermoplastic resin (C) is low, and peeling occurs at the interface. May occur. A more preferable range of the absolute value is 2.5 or less, and more preferably 2 or less. The SP value in the present invention is determined by the value of the repeating unit of the polymer at a temperature of 25 ° C. determined by the method of Fedors. The method is described in F.A. Fedors, Polym. Eng. Sci. 14 (2), 147 (1974).

本発明のFRPの製造方法では、多軸成形材料の各シートにおける強化繊維糸条の目付が50〜350g/mの範囲内であることが好ましい。さらに好ましくは90〜190g/mの範囲内である。各シートにおける強化繊維糸条の目付が50g/m未満であると、隣り合う強化繊維糸条同士の間に隙間ができてFRPにしたときの品位が劣ってくるようになるばかりか、前記隙間が力学特性低下の原因を引き起こすようになる。また、各シートにおける強化繊維糸条の目付が350g/mを越えると、隣り合う強化繊維糸条同士が重なる箇所ができるため、多軸成形材料の表面に凹凸ができる上に、層が厚くなるため賦形性が劣るようになる。さらには、層が厚くなると、熱可塑性樹脂で構成される布帛状体を溶融させて完全に含浸させる際に過大な外圧を加える必要があり、その過大な外圧により強化繊維糸条に目曲がりが生じてくる。 In the manufacturing method of FRP of this invention, it is preferable that the fabric weight of the reinforcing fiber yarn in each sheet | seat of a multiaxial molding material exists in the range of 50-350 g / m < 2 >. More preferably, it is in the range of 90 to 190 g / m 2 . When the basis weight of the reinforcing fiber yarns in each sheet is less than 50 g / m 2 , not only the quality when the gap between the reinforcing fiber yarns adjacent to each other is made FRP but also becomes inferior, The gap causes a decrease in mechanical properties. In addition, when the basis weight of the reinforcing fiber yarns in each sheet exceeds 350 g / m 2 , a portion where adjacent reinforcing fiber yarns overlap with each other is formed, so that the surface of the multiaxial molding material is uneven and the layer is thick. Therefore, the formability becomes inferior. Furthermore, when the layer becomes thick, it is necessary to apply an excessive external pressure when the cloth-like body composed of the thermoplastic resin is melted and completely impregnated, and the excessive external pressure causes the reinforcing fiber yarn to bend. Will arise.

また、熱可塑性樹脂(A)からなる布帛状体の目付が15〜250g/mの範囲内であることが好ましい。さらに好ましくは40〜100g/mの範囲内である。布帛状体の目付が15g/m未満であると熱可塑性樹脂の量が強化繊維糸条の量に対して相対的に不足して十分に含浸ができにくくなる。なお、この問題を避けるために強化繊維糸条のシートの目付を上記の範囲を超えて低くすると、強化繊維糸条同士の間に隙間ができるためFRPにしたときの強度が低下するばかりか品位も悪くなる場合がある。一方、布帛状体の目付が250g/mを越えると、強化繊維糸条の含有量が相対的に少なくなり、FRPにしたときに十分な強度が発現できない。なお、この問題を避けるために強化繊維糸条のシートの目付を本発明の範囲を超えて高くすると強化繊維糸条同士が重なり合うため表面に凸凹が発生し、賦形性や品位が劣るようになるだけでなく、樹脂を含浸させるときに過大な外圧が必要となり、強化繊維糸条の目曲がりが発生する場合がある。なお、各シートの強化繊維糸条および布帛状体の目付は、JIS R7602(1989)5.5項に準拠してサンプルを切り出し、局所的な融着を開放して多軸成形材料を分解して各シートの強化繊維糸条および布帛状体について測定した値とする。 Moreover, it is preferable that the fabric weight of the thermoplastic resin (A) is in the range of 15 to 250 g / m 2 . More preferably, it exists in the range of 40-100 g / m < 2 >. When the fabric weight is less than 15 g / m 2 , the amount of the thermoplastic resin is relatively insufficient with respect to the amount of the reinforcing fiber yarn, and it becomes difficult to sufficiently impregnate. In order to avoid this problem, if the basis weight of the reinforcing fiber yarn is lowered beyond the above range, a gap is formed between the reinforcing fiber yarns, so that the strength when the FRP is used is not only lowered, but also the quality. May get worse. On the other hand, when the basis weight of the fabric-like body exceeds 250 g / m 2 , the content of the reinforcing fiber yarn is relatively reduced, and sufficient strength cannot be expressed when FRP is used. In order to avoid this problem, if the basis weight of the reinforcing fiber yarn sheet is increased beyond the range of the present invention, the reinforcing fiber yarns overlap each other, resulting in unevenness on the surface, and inferior formability and quality. In addition, an excessive external pressure is required when the resin is impregnated, and the reinforcing fiber yarn may be bent. In addition, the basis weight of the reinforcing fiber yarn and the fabric-like body of each sheet is cut out in accordance with JIS R7602 (1989), paragraph 5.5, the local fusion is released, and the multiaxial molding material is disassembled. The values measured for the reinforcing fiber yarns and fabrics of each sheet.

さらに、繊維強化熱可塑性樹脂基材の強化繊維の重量含有率が25〜80wt%であることが好ましい。さらに好ましくは35〜75wt%の範囲内である。不連続の強化繊維の重量含有率が25wt%未満であると、強化繊維の補強効果が小さくなり、FRPにしたときに十分な強度が発現できない場合がある。一方、不連続の強化繊維の重量含有率が80wt%を越えると、強化繊維間への熱可塑性樹脂の含浸が不十分となり、力学特性が極度に低下する場合があり、また、成形時の流動性が低下するため、未充填部分が生じる場合もあり好ましくない。   Furthermore, it is preferable that the weight content of the reinforcing fiber of the fiber-reinforced thermoplastic resin base material is 25 to 80 wt%. More preferably, it is in the range of 35 to 75 wt%. If the weight content of the discontinuous reinforcing fibers is less than 25 wt%, the reinforcing effect of the reinforcing fibers is reduced, and there are cases where sufficient strength cannot be achieved when the FRP is used. On the other hand, if the weight content of the discontinuous reinforcing fibers exceeds 80 wt%, the impregnation of the thermoplastic resin between the reinforcing fibers becomes insufficient, and the mechanical properties may be extremely reduced. Since the properties are lowered, an unfilled portion may occur, which is not preferable.

本発明のFRPの製造方法においてステッチ糸を用いる場合では、前記熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと前記熱可塑性樹脂(B)の溶解度パラメータ(SP値)δBとの差の絶対値が3以下であることが好ましい。前述の熱可塑性樹脂(A)と熱可塑性樹脂(C)との関係と同様に、SP値の差の絶対値が3よりも大きい場合、両成分の相溶性は低く、熱可塑性樹脂(A)と熱可塑性樹脂(B)との界面の接着性が低くなる。FRPに荷重付加をかけた場合、該界面の接着性が低いため該界面に微少な剥離を生じ、繰り返しの荷重付加により該剥離が起点となり破壊へと至ることがあり好ましくない。上記の絶対値のより好ましい範囲は、2.5以下であり、さらに好ましくは2以下である。   When stitch yarn is used in the FRP manufacturing method of the present invention, the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δB of the thermoplastic resin (B) The absolute value is preferably 3 or less. Similar to the relationship between the thermoplastic resin (A) and the thermoplastic resin (C) described above, when the absolute value of the difference in SP value is larger than 3, the compatibility of both components is low, and the thermoplastic resin (A) And the adhesiveness at the interface between the thermoplastic resin (B) is lowered. When a load is applied to the FRP, the adhesion at the interface is low, so that slight peeling occurs at the interface, and the repeated loading causes the peeling to become a starting point, which is not preferable. A more preferable range of the absolute value is 2.5 or less, and more preferably 2 or less.

また、熱可塑性樹脂(A)の融点TmAと熱可塑性樹脂(B)の融点TmBとが、(TmB−150)≦TmA≦(TmB−20)の関係を満足することが好ましい(以下、態様Aと呼称する)。上記融点とは、DSC(示差走査熱量計)を用いてJIS K7121(1987)にしたがい絶乾状態で20℃/minの昇温速度にて測定した値を指す。なお、本発明においては、融点を示さないもの(例えば非晶性ポリマー)について、上記測定方法により得られるガラス転移温度+100℃を簡易的に融点とみなす。   Moreover, it is preferable that the melting point TmA of the thermoplastic resin (A) and the melting point TmB of the thermoplastic resin (B) satisfy the relationship of (TmB-150) ≦ TmA ≦ (TmB-20) (hereinafter referred to as aspect A). Called). The melting point refers to a value measured by DSC (Differential Scanning Calorimeter) according to JIS K7121 (1987) at a heating rate of 20 ° C./min in an absolutely dry state. In the present invention, the glass transition temperature + 100 ° C. obtained by the above measuring method is simply regarded as the melting point for those that do not exhibit a melting point (for example, an amorphous polymer).

ステッチ糸を用いる場合は、熱可塑性樹脂(A)および熱可塑性樹脂(B)の融点が態様Aの関係であると、FRPに成形するときに布帛状体を先に溶融させることができる。このことにより、布帛状体を溶融させて熱可塑性樹脂(A)を強化繊維糸条の層内に含浸させている最中に、強化繊維糸条で構成された各層は溶融していないステッチ糸によって強化繊維糸条の配向の乱れを防ぐことができるうえに、ステッチ糸により形成された強化繊維糸条のシート厚み方向の貫通孔が樹脂の含浸流路となって、溶融した熱可塑性樹脂(A)の含浸性を格段に向上させるという予想外の効果を奏する。さらに、布帛状体を先に溶融させて樹脂を各層に含浸させるため、布帛状体が挿入されていた層間厚みが薄くなってステッチ糸による拘束がゆるみ、各層がせん断変形し易くなり、シワの発生を抑制できる。このため、強化繊維糸条の配向が整った、すぐれた力学特性を発現できる品位のよいFRPを得ることができるのである。   When the stitch yarn is used, when the melting points of the thermoplastic resin (A) and the thermoplastic resin (B) are in the relationship of the aspect A, the fabric-like body can be melted first when the FRP is formed. Thus, while the cloth-like body is melted and the thermoplastic resin (A) is impregnated in the layers of the reinforcing fiber yarns, each layer composed of the reinforcing fiber yarns is not melted. In addition to preventing the disorder of the orientation of the reinforcing fiber yarns, the through holes in the sheet thickness direction of the reinforcing fiber yarns formed by the stitch yarns serve as resin impregnation channels, and the molten thermoplastic resin ( There is an unexpected effect that the impregnation of A) is remarkably improved. Furthermore, since the cloth-like body is melted first and the resin is impregnated in each layer, the interlayer thickness in which the cloth-like body is inserted is thinned, the constraint by the stitch yarn is loosened, and each layer is easily sheared and deformed. Generation can be suppressed. For this reason, it is possible to obtain a high-quality FRP in which the orientation of the reinforcing fiber yarn is aligned and excellent mechanical properties can be expressed.

また、熱可塑性樹脂(A)で構成される布帛状体が多軸成形材料の最外層の少なくとも一方にも配置されている場合には、複数枚の多軸成形材料を積層するにあたって、ステッチ糸を溶融させずに布帛状体を部分的に溶融させて多軸成形材料同士を一体化(例えばプリフォームの態様)することが可能となるため、本発明において好ましい態様といえる。   In addition, when the fabric-like body composed of the thermoplastic resin (A) is also arranged in at least one of the outermost layers of the multiaxial molding material, the stitch yarn is used for laminating the plurality of multiaxial molding materials. It can be said that this is a preferred embodiment in the present invention, because the multi-axial molding material can be integrated (for example, a form of a preform) by partially melting the fabric-like body without melting it.

かかる関係を満たす態様Aの具体的な組合せとしては、例えば、熱可塑性樹脂(A)がポリアミド11、ポリアミド12または共重合ポリアミド(例えば、ポリアミド6/66/12、ポリアミド610/12、ポリアミド6/66/610/12、など)であり、熱可塑性樹脂(B)がポリアミド6またはポリアミド66である組合せや、熱可塑性樹脂(A)がポリアミド6であり、熱可塑性樹脂(B)がポリアミド66である組合せ、熱可塑性樹脂(A)が共重合ポリエステルであり、熱可塑性樹脂(B)がポリエステルである組合せ、熱可塑性樹脂(A)が共重合ポリオレフィンであり、熱可塑性樹脂(B)がポリエチレンまたはポリプロピレンである組合せ、熱可塑性樹脂(A)がポリエチレンであり、熱可塑性樹脂(B)がポリプロピレンである組合せ等が挙げられる。前記組合せであると、熱可塑性樹脂(A)と熱可塑性樹脂(B)とに類似の樹脂を使用すると両者の接着性が優れるため、優れた力学特性を発現することができる。   As a specific combination of the embodiment A satisfying this relationship, for example, the thermoplastic resin (A) is polyamide 11, polyamide 12, or copolymer polyamide (for example, polyamide 6/66/12, polyamide 610/12, polyamide 6 / 66/610/12, etc.), and the thermoplastic resin (B) is polyamide 6 or polyamide 66, or the thermoplastic resin (A) is polyamide 6 and the thermoplastic resin (B) is polyamide 66. In some combinations, the thermoplastic resin (A) is a copolymerized polyester, the thermoplastic resin (B) is a polyester, the thermoplastic resin (A) is a copolymerized polyolefin, and the thermoplastic resin (B) is polyethylene or The combination that is polypropylene, the thermoplastic resin (A) is polyethylene, and the thermoplastic resin (B) is polypropylene. Combinations pyrene and the like. In the case of the above combination, when a resin similar to the thermoplastic resin (A) and the thermoplastic resin (B) is used, the adhesiveness between the two is excellent, and thus excellent mechanical properties can be expressed.

また、熱可塑性樹脂(A)がポリオレフィンであり、熱可塑性樹脂(B)がポリエステルである組合せ等であると、熱可塑性樹脂(A)と熱可塑性樹脂(B)との融点の差を大きくでき、含浸が容易にできるため成形性に優れる利点がある。   Further, when the thermoplastic resin (A) is a polyolefin and the thermoplastic resin (B) is a combination of polyester, the difference in melting point between the thermoplastic resin (A) and the thermoplastic resin (B) can be increased. Since it can be easily impregnated, there is an advantage of excellent moldability.

さらに別の視点からは、熱可塑性樹脂(A)の融点TmAと熱可塑性樹脂(B)の融点TmBとが、(TmB−20)<TmA<(TmB+20)の関係を満足する、すなわち、熱可塑性樹脂(A)の融点TmAと熱可塑性樹脂(B)の融点TmBとが実質的に同一であるものをそれぞれ使用するのが好ましい(以下、態様Bと呼称する)。   From another viewpoint, the melting point TmA of the thermoplastic resin (A) and the melting point TmB of the thermoplastic resin (B) satisfy the relationship of (TmB-20) <TmA <(TmB + 20), that is, thermoplasticity. It is preferable to use those in which the melting point TmA of the resin (A) and the melting point TmB of the thermoplastic resin (B) are substantially the same (hereinafter referred to as Aspect B).

さらに、熱可塑性樹脂(A)の融点TmAと熱可塑性樹脂(C)の融点TmCとが、(TmC−20)<TmA<(TmC+20)の関係を満足する、すなわち、熱可塑性樹脂(A)の融点TmAと熱可塑性樹脂(C)の融点TmCとが実質的に同一であるものをそれぞれ使用するのが好ましい。熱可塑性樹脂(A)および熱可塑性樹脂(C)の融点が実質的に同一であると、2つの樹脂が連続した形態で一体化しやすくなる。融点が上記の範囲外であると、多軸成形材料と繊維強化熱可塑性樹脂基材とを同時に圧縮成形する場合は、片側の樹脂が先に溶融してしまい成形がうまくいかないことがあり、多軸成形材料を成形する前工程と、繊維強化熱可塑性樹脂基材を成形する後工程との2段階に分けて成形する場合は、樹脂同士が相溶しないことがあり、好ましくない。   Further, the melting point TmA of the thermoplastic resin (A) and the melting point TmC of the thermoplastic resin (C) satisfy the relationship of (TmC-20) <TmA <(TmC + 20), that is, the thermoplastic resin (A) It is preferable to use those having a melting point TmA substantially equal to the melting point TmC of the thermoplastic resin (C). When the melting points of the thermoplastic resin (A) and the thermoplastic resin (C) are substantially the same, the two resins are easily integrated in a continuous form. When the melting point is out of the above range, when the multiaxial molding material and the fiber reinforced thermoplastic resin base material are compression molded at the same time, the resin on one side may melt first and the molding may not be successful. In the case where molding is performed in two stages, that is, a pre-process for molding the molding material and a post-process for molding the fiber-reinforced thermoplastic resin base material, the resins may not be compatible with each other, which is not preferable.

本発明で用いる連続および不連続の強化繊維としては、例えば、炭素繊維、黒鉛繊維、ガラス繊維、および、アラミド、パラフェニレンベンゾビスオキサゾール、ポリビニルアルコール、ポリエチレン、ポリアリレートおよびポリイミド等の有機繊維等が挙げられ、これらの1種または2種類以上を併用したものを使用することができる。中でも、炭素繊維は、比強度・比弾性率に優れており、好ましく用いられる。炭素繊維は、その糸条の引張強度が4GPa以上7GPa以下、好ましくは4.5GPa以上6.5GPa以下、引張弾性率が200GPa以上500GPa以下であることが、特に構造材に好適である。   Examples of continuous and discontinuous reinforcing fibers used in the present invention include carbon fibers, graphite fibers, glass fibers, and organic fibers such as aramid, paraphenylenebenzobisoxazole, polyvinyl alcohol, polyethylene, polyarylate, and polyimide. It is possible to use one or a combination of two or more of these. Among these, carbon fibers are excellent in specific strength and specific elastic modulus and are preferably used. The carbon fiber has a tensile strength of 4 GPa or more and 7 GPa or less, preferably 4.5 GPa or more and 6.5 GPa or less, and a tensile elastic modulus of 200 GPa or more and 500 GPa or less, particularly suitable for a structural material.

なお、該糸条の引張強度は、炭素繊維糸条に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS R−7601に規定する引張試験方法に従って求めることができる。
(樹脂組成)
・脂環式エポキシ樹脂(3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシル−カルボキシレート) 100重量部
・3フッ化ホウ素モノエチルアミン 3重量部
・アセトン 4重量部
また、該糸条の引張弾性率は、上記引張強度測定方法と同様の方法で引張試験を行い、荷重−伸び曲線の傾きから求めることができる。
The tensile strength of the yarn can be determined according to a tensile test method specified in JIS R-7601 after impregnating a carbon fiber yarn with a resin having the following composition and curing at 130 ° C. for 35 minutes.
(Resin composition)
-Alicyclic epoxy resin (3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate) 100 parts by weight-3 parts by weight of boron trifluoride monoethylamine-4 parts by weight of acetone The tensile modulus can be obtained from the slope of the load-elongation curve by performing a tensile test in the same manner as the above-described tensile strength measurement method.

多軸成形材料に用いる強化繊維糸条としては、無撚でも有撚でも使用することができるが、引張強度や圧縮強度等の力学特性の面からは、実質的に無撚(1ターン/m未満)のものが好ましい。かかる観点から、本発明における多軸成形材料の製造においては、強化繊維糸条を縦取解舒して解舒撚を混入させてもよいが、横取解舒して解舒撚が入らないようにし、多軸成形材料中に強化繊維糸条を実質的に無撚(1ターン/m未満)の状態で存在させるのが好ましい。横取解舒することにより、本発明の範囲内の目付においても高品位のFRPを確実に得ることが容易になるだけでなく、強化繊維体積配合率Vfや力学特性を高めることができる。特に各シートにおける強化繊維糸条の目付が190g/m以下であると、シート中に強化繊維糸条同士の隙間(ギャップ)が形成され易く、FRPの品位に劣る場合があるので横取解舒が好ましい。上記効果は、強化繊維糸条の繊度が以下の範囲内である場合に顕著に発現する。また、強化繊維糸条の繊度は、好ましくは500〜7,000texであり、より好ましくは1,000〜2,000texである。繊度が小さすぎると、繊維糸条がねじれる問題がほとんどなく、本発明の効果が発揮されない場合がある。また、繊維糸条が高価であり、このような細繊度の繊維糸条を多数本使用することになるので、多軸成形材料そのものも高価になってしまう。一方、繊度が大きすぎると、例えば、1層当たりの強化繊維糸条の目付が100g/m以下の低目付の多軸成形材料を得る際に僅かな力で糸条幅が変動しやすく、安定した糸条幅の維持が困難な場合がある。 The reinforcing fiber yarn used for the multiaxial molding material can be either untwisted or twisted. However, in terms of mechanical properties such as tensile strength and compressive strength, it is substantially untwisted (1 turn / m Less). From this point of view, in the production of the multiaxial molding material in the present invention, the reinforcing fiber yarns may be longitudinally unwound and mixed with unwinding twist, but the horizontal unwinding will not cause unwinding twisting. Thus, it is preferable that the reinforcing fiber yarn is present in the multiaxial molding material in a substantially non-twisted state (less than 1 turn / m). By laterally unraveling, not only is it easy to reliably obtain a high-quality FRP even in the basis weight within the scope of the present invention, but also the reinforcing fiber volume fraction Vf and mechanical characteristics can be enhanced. In particular, if the basis weight of the reinforcing fiber yarn in each sheet is 190 g / m 2 or less, a gap (gap) between the reinforcing fiber yarns is easily formed in the sheet, and the quality of the FRP may be inferior. Spider is preferred. The above effect is remarkably exhibited when the fineness of the reinforcing fiber yarn is within the following range. The fineness of the reinforcing fiber yarn is preferably 500 to 7,000 tex, more preferably 1,000 to 2,000 tex. When the fineness is too small, there is almost no problem that the fiber yarn is twisted, and the effect of the present invention may not be exhibited. Further, since the fiber yarn is expensive and many fiber yarns having such a fineness are used, the multiaxial molding material itself is also expensive. On the other hand, if the fineness is too large, for example, when obtaining a multi-axis molding material having a low basis weight of reinforcing fiber yarns per layer of 100 g / m 2 or less, the yarn width is likely to fluctuate with a slight force and stable. It may be difficult to maintain the finished yarn width.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、特にこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not particularly limited thereto.

実施例および比較例における原材料、およびそれら原材料からなる中間材料は以下の通りである。
<多軸成形材料>
強化繊維糸条
・PAN系炭素繊維糸条:12,000フィラメント、繊度800tex、引張強度4,900MPa、引張弾性率240GPa、0ターン/m、集束剤0.5重量%。
ステッチ糸
・ステッチ糸A:ポリアミド66、10フィラメント、繊度33dtex、融点255℃、SP値13.6。
・ステッチ糸B:ポリテトラフルオロエチレン、10フィラメント、繊度56dtex、融点327℃、SP値6.2
布帛状体
・不織布A:ポリアミド6、目付80g/m、融点220℃、SP値13.5。
・不織布B:ポリアミド12、目付80g/m、融点178℃、SP値13.0。
・フィルムC:ポリアミド6、目付80g/m、融点220℃、SP値13.5。
The raw materials in Examples and Comparative Examples, and intermediate materials composed of these raw materials are as follows.
<Multi-axis molding material>
Reinforcing fiber yarn / PAN-based carbon fiber yarn: 12,000 filaments, fineness 800 tex, tensile strength 4,900 MPa, tensile elastic modulus 240 GPa, 0 turns / m, sizing agent 0.5% by weight.
Stitch yarn / stitch yarn A: polyamide 66, 10 filament, fineness 33 dtex, melting point 255 ° C., SP value 13.6.
-Stitch yarn B: polytetrafluoroethylene, 10 filaments, fineness 56 dtex, melting point 327 ° C., SP value 6.2
Fabric-like / nonwoven fabric A: Polyamide 6, basis weight 80 g / m 2 , melting point 220 ° C., SP value 13.5.
Non-woven fabric B: Polyamide 12, basis weight 80 g / m 2 , melting point 178 ° C., SP value 13.0.
Film C: Polyamide 6, basis weight 80 g / m 2 , melting point 220 ° C., SP value 13.5.

次の手順で1.3m幅の多軸成形材料を作製した。すなわち、強化繊維糸条で構成された各シート間、および、最外層の何れにも不織布Aを有する積層体を形成した。
(1)最外層に配置する不織布Aを連続的にベルトコンベア上に、不織布Aとベルトコンベアとの長手方向が平行になるように配置した。かかるベルトコンベアは、以降の強化繊維糸条の層および不織布を積層する間も一定速度(本実施例では1m/min)で、その長手方向(0°方向)に移動し続け、後述の接着手段へ連続的に搬送するものであった。
(2)前記不織布Aの上に、解舒撚を混入させないように横取解舒した強化繊維糸条を、長手方向(ベルトコンベアが搬送する方向、0°方向)に対して−45°に並行に、かつ、150g/mとなるように配列して−45°シートを形成した。なお、−45°シートの強化繊維糸条の配置はキャリッジ装置により行った。本工程におけるキャリッジ装置は、−45°方向に往復運動するもので、その内の往運動(または復運動)する時に強化繊維糸条をベルトコンベア上に配置する装置で、ベルトコンベアが長手方向へ搬送している速度に同調して強化繊維糸条同士が重ならず、順番に隣り合うように並ぶように制御した。
(3)前記−45°シートの上に2枚目の不織布Aを配置し、その上に、−45°シート形成と同様の方法で、強化繊維糸条を長手方向に対して+90°に並行に、かつ、150g/mとなるように配列し、+90°シートを形成した。
(4)前記+90°シートの上に3枚目の不織布Aを配置し、その上に、−45°シート形成と同様の方法で、強化繊維糸条を長手方向に対して+45°に並行に、かつ、150g/mとなるように配列し、+45°シートを形成した。
(5)前記+45°シート層の上に4枚目の不織布Aを配置し、その上に、−45°シート形成と同様の方法で、強化繊維糸条を長手方向に対して0°に並行に、かつ、150g/mとなるように配列し、0°シートを形成した。
(6)前記0°シートの上に5枚目の不織布Aを配置し、積層体を形成した。
A multiaxial molding material having a width of 1.3 m was prepared by the following procedure. That is, the laminated body which has the nonwoven fabric A in each of between each sheet | seat comprised with the reinforced fiber yarn and outermost layer was formed.
(1) The nonwoven fabric A arranged in the outermost layer was continuously arranged on the belt conveyor so that the longitudinal directions of the nonwoven fabric A and the belt conveyor were parallel. Such a belt conveyor continues to move in the longitudinal direction (0 ° direction) at a constant speed (1 m / min in the present embodiment) while laminating the subsequent layers of reinforcing fiber yarns and the nonwoven fabric. It was intended to be transported continuously.
(2) On the nonwoven fabric A, the reinforcing fiber yarns that have been laterally unwound so as not to mix the untwisted twist are set to −45 ° with respect to the longitudinal direction (the direction in which the belt conveyor conveys, 0 ° direction). A -45 ° sheet was formed in parallel and arranged to be 150 g / m 2 . The arrangement of the reinforcing fiber yarns of the −45 ° sheet was performed by a carriage device. The carriage device in this step reciprocates in the -45 ° direction, and is a device that arranges reinforcing fiber yarns on the belt conveyor during the forward movement (or backward movement), and the belt conveyor moves in the longitudinal direction. Control was performed so that the reinforcing fiber yarns do not overlap each other and are arranged next to each other in order in synchronization with the conveying speed.
(3) The second nonwoven fabric A is placed on the −45 ° sheet, and the reinforcing fiber yarns are parallel to the longitudinal direction at + 90 ° with respect to the longitudinal direction in the same manner as in the −45 ° sheet formation. And a + 90 ° sheet was formed so as to be 150 g / m 2 .
(4) A third non-woven fabric A is placed on the + 90 ° sheet, and the reinforcing fiber yarns are parallel to the longitudinal direction at + 45 ° in the same manner as in the −45 ° sheet formation. And it arranged so that it might become 150 g / m < 2 >, and the +45 degree sheet | seat was formed.
(5) The fourth nonwoven fabric A is arranged on the + 45 ° sheet layer, and the reinforcing fiber yarns are parallel to the longitudinal direction at 0 ° in the same manner as in the −45 ° sheet formation. And a 0 ° sheet was formed by arranging so as to be 150 g / m 2 .
(6) The 5th nonwoven fabric A was arrange | positioned on the said 0 degree sheet | seat, and the laminated body was formed.

続いて、上記の通り形成したベルトコンベア上の積層体を、ステッチ糸Aにてステッチして一体化させた。かかるステッチにおいては、ステッチ糸Aを巻出装置により巻き出し、ニードルを積層体に貫通させながら編成した。ステッチ糸の編組織は鎖編と1/1トリコット編とを複合した変則1/1トリコット編とした。不織布Aはニードル貫通性に優れ、不織布の繊維がニードルに絡まることはなかった。
<繊維強化熱可塑性樹脂基材>
強化繊維糸条
・PAN系炭素繊維糸条、12,000フィラメント、繊度800tex、引張強度4,200MPa、引張弾性率230GPa、集束剤1.5重量%。
熱可塑性樹脂
・樹脂A:ポリアミド6、融点220℃、SP値13.5。
・樹脂B:ポリプロピレン、融点165℃、SP値8.0。
Subsequently, the laminate on the belt conveyor formed as described above was stitched together with the stitch yarn A and integrated. In such stitches, the stitch yarn A was unwound by an unwinding device and knitted while allowing the needle to penetrate the laminate. The knitting structure of the stitch yarn was an irregular 1/1 tricot knitting combining a chain knitting and a 1/1 tricot knitting. Nonwoven fabric A was excellent in needle penetrability, and the fibers of the nonwoven fabric were not entangled with the needle.
<Fiber-reinforced thermoplastic resin substrate>
Reinforcing fiber yarn / PAN-based carbon fiber yarn, 12,000 filaments, fineness 800 tex, tensile strength 4,200 MPa, tensile elastic modulus 230 GPa, sizing agent 1.5% by weight.
Thermoplastic resin / resin A: Polyamide 6, melting point 220 ° C., SP value 13.5.
Resin B: polypropylene, melting point 165 ° C., SP value 8.0.

次の手順で2種類の繊維強化熱可塑性樹脂基材を作製した。
(1)PAN系炭素繊維糸条をカートリッジカッターでカットし、繊維長6.4mmのチョップド糸を得た。
(2)ペレット状のポリアミド6樹脂を液体窒素中に3分間浸積し、粉砕機にて凍結粉砕した。得られた粉砕粒子を14mesh(開孔径1.18mm)のふるいにより分級し、14meshのふるいを通過した粉砕粒子をさらに60mesh(開孔径0.25mm)のふるいにより分級し、60meshのふるい上に残った粉砕粒子を採取し、14〜60meshの粒子Aを得た。
(3)界面活性剤(和光純薬工業(株)社製、「n−ドデシルベンゼンスルホン酸ナトリウム」(製品名))の1.5wt%水溶液10リットルを攪拌し、予め泡立てた分散液を作製した。
(4)この分散液に、得られたチョップド糸430gと、粒子A630gを投入し、10分間攪拌した後、長さ1000mm×幅1000mmの抄紙面を有する抄紙機に流し込み、吸引、脱泡して、繊維強化熱可塑性樹脂ウェブを得た。
(5)この繊維強化熱可塑性樹脂ウェブを100℃の温度で2時間乾燥した後、この繊維強化熱可塑性樹脂ウェブ全体を280℃の温度に予熱し、280℃の温度に保持された熱盤間に配置し、1MPaでプレスした。
(6)30℃の温度に温度制御された冷却盤間に配置し、1MPaで冷却プレスし、長さ1000mm、幅1000mm、厚み1mmの繊維強化熱可塑性樹脂基材Pを得た。炭素繊維の重量含有率は40wt%であり、配向パラメータ(fp)は0.05であった。
(1)ペレット状の樹脂Aを1軸押出機にてその先端に取り付けたクロスヘッドダイ中に十分溶融・混練された状態で押し出しながら、PAN系炭素繊維糸条を前記クロスヘッドダイ中に供給し、樹脂Aを、炭素繊維糸条中に十分含浸させた。ここでクロスヘッドダイとは、そのダイ中で連続した繊維束を開繊させながら溶融樹脂等をその中に含浸させる装置のことをいう。
(2)このようにして得られた連続繊維状のストランドを冷却後、カッターで7mmに切断して、繊維強化熱可塑性樹脂基材Qを得た。炭素繊維の重量含有率は20wt%であり、配向パラメータ(fp)は0.19であった。
Two types of fiber reinforced thermoplastic resin base materials were prepared by the following procedure.
(1) A PAN-based carbon fiber yarn was cut with a cartridge cutter to obtain a chopped yarn having a fiber length of 6.4 mm.
(2) The pellet-like polyamide 6 resin was immersed in liquid nitrogen for 3 minutes, and freeze-pulverized with a pulverizer. The obtained pulverized particles were classified with a 14 mesh (opening diameter 1.18 mm) sieve, and the pulverized particles that passed through the 14 mesh sieve were further classified with a 60 mesh (opening diameter 0.25 mm) sieve and remained on the 60 mesh sieve. The pulverized particles were collected to obtain 14 to 60 mesh particles A.
(3) 10 l of a 1.5 wt% aqueous solution of a surfactant (manufactured by Wako Pure Chemical Industries, Ltd., “sodium n-dodecylbenzenesulfonate” (product name)) is stirred to prepare a previously foamed dispersion. did.
(4) Into this dispersion, 430 g of the chopped yarn and 630 g of particles A were added and stirred for 10 minutes, and then poured into a paper machine having a paper surface of length 1000 mm × width 1000 mm, sucked and degassed. A fiber reinforced thermoplastic resin web was obtained.
(5) After drying this fiber reinforced thermoplastic resin web at a temperature of 100 ° C. for 2 hours, the entire fiber reinforced thermoplastic resin web is preheated to a temperature of 280 ° C. And pressed at 1 MPa.
(6) It arrange | positioned between the cooling boards temperature-controlled at the temperature of 30 degreeC, and it cold-pressed at 1 Mpa, and obtained the fiber reinforced thermoplastic resin base material P of length 1000mm, width 1000mm, and thickness 1mm. The weight content of carbon fibers was 40 wt%, and the orientation parameter (fp) was 0.05.
(1) PAN-based carbon fiber yarn is fed into the crosshead die while extruding the pellet-shaped resin A in a crosshead die attached to the tip of the resin A in a single-screw extruder while being sufficiently melted and kneaded. Then, the resin A was sufficiently impregnated in the carbon fiber yarn. Here, the crosshead die refers to a device that impregnates a molten resin or the like into a continuous fiber bundle in the die while opening the fiber bundle.
(2) The continuous fibrous strand thus obtained was cooled and then cut into 7 mm with a cutter to obtain a fiber reinforced thermoplastic resin substrate Q. The weight content of the carbon fibers was 20 wt%, and the orientation parameter (fp) was 0.19.

(実施例1)
多軸成形材料:4枚を0°シートが中央となるように鏡面対称積層し、繊維強化熱可塑性樹脂基材A1:2枚とを重ね合わせ、図5に示すような半球状の二次曲面を有する金型13に対して多軸成形材料が球面外側となるように配置した。該金型の凸型は図5の点線に示す位置に、図6に示す形状のリブ溝14を備えている。230℃に加熱した状態で不織布および繊維強化熱可塑性樹脂基材中の樹脂を溶融させながら発生したシワを伸ばして型に追従させ、25MPaで240秒間加圧(プレス)した。加圧したまま金型温度を50℃に冷却してから放圧・脱型してリブを有するFRPを得た。
なお、多軸成形材料の布帛状体のSP値と繊維強化熱可塑性樹脂基材の樹脂のSP値との差の絶対値は0、多軸成形材料の布帛状体のSP値とステッチ糸のSP値との差の絶対値は0.1である。
得られたFRPはリブ先端まで繊維および樹脂が充填しており、断面を光学顕微鏡で観察したところ、強化繊維糸条の内部にまで樹脂が含浸し、ボイドの発生もほとんどなかった。また、表面品位に関しても、繊維配向の乱れや表面の凸凹が僅かに発生したが、シワの発生はみられず、概ね良好であった。
Example 1
Multiaxial molding material: 4 sheets are mirror-symmetrically laminated so that the 0 ° sheet is in the center, and fiber reinforced thermoplastic resin base material A1: 2 sheets are overlapped, and a hemispherical quadratic curved surface as shown in FIG. The multi-axis molding material was arranged on the outer side of the spherical surface with respect to the mold 13 having The convex mold has a rib groove 14 having the shape shown in FIG. 6 at the position shown by the dotted line in FIG. The wrinkles generated while melting the resin in the nonwoven fabric and the fiber-reinforced thermoplastic resin base material were stretched while following the mold while being heated to 230 ° C., and pressed (pressed) at 25 MPa for 240 seconds. While pressurizing, the mold temperature was cooled to 50 ° C. and then the pressure was released and demolded to obtain FRP having ribs.
The absolute value of the difference between the SP value of the multiaxial molding material fabric and the SP value of the fiber reinforced thermoplastic resin base material is 0, and the SP value of the multiaxial molding material fabric and the stitch yarn The absolute value of the difference from the SP value is 0.1.
The obtained FRP was filled with fibers and resin up to the end of the rib, and the cross section was observed with an optical microscope. As a result, the resin was impregnated into the inside of the reinforcing fiber yarn, and voids were hardly generated. Further, regarding the surface quality, the fiber orientation disorder and the surface unevenness were slightly generated, but the generation of wrinkles was not observed, and the surface quality was generally good.

(実施例2)
多軸成形材料:6枚を0°シートが中央となるように鏡面対称積層し、実施例1で用いた金型と同様の形状で、かつリブ溝を備えていない金型に配置した後、実施例1と同じ条件でFRPを得た。続けて、得られたFRPを実施例1で用いた金型と同様のリブ溝を備えた金型に配置した後、バレル温度260℃、金型温度80℃にて繊維強化熱可塑性樹脂基材A2を射出成形することにより、リブを有するFRPを得た。
なお、多軸成形材料の布帛状体のSP値と繊維強化熱可塑性樹脂基材の樹脂のSP値との差の絶対値は0、多軸成形材料の布帛状体のSP値とステッチ糸のSP値との差の絶対値は0.1である。
得られたFRPはリブ先端まで繊維および樹脂が充填しており、断面を光学顕微鏡で観察したところ、強化繊維糸条の内部にまで樹脂が含浸し、ボイドの発生もほとんどなかった。また、表面品位に関しても、繊維配向の乱れや表面の凸凹が僅かに発生したが、シワの発生はみられず、概ね良好であった。
(Example 2)
Multiaxial molding material: After six sheets are mirror-symmetrically laminated so that the 0 ° sheet is in the center, and placed in a mold having the same shape as the mold used in Example 1 and not having a rib groove, FRP was obtained under the same conditions as in Example 1. Subsequently, the obtained FRP was placed in a mold having rib grooves similar to the mold used in Example 1, and then a fiber reinforced thermoplastic resin substrate at a barrel temperature of 260 ° C. and a mold temperature of 80 ° C. FRP having a rib was obtained by injection molding A2.
The absolute value of the difference between the SP value of the multiaxial molding material fabric and the SP value of the fiber reinforced thermoplastic resin base material is 0, and the SP value of the multiaxial molding material fabric and the stitch yarn The absolute value of the difference from the SP value is 0.1.
The obtained FRP was filled with fibers and resin up to the end of the rib, and the cross section was observed with an optical microscope. As a result, the resin was impregnated into the inside of the reinforcing fiber yarn, and voids were hardly generated. Further, regarding the surface quality, the fiber orientation disorder and the surface unevenness were slightly generated, but the generation of wrinkles was not observed, and the surface quality was generally good.

(実施例3)
多軸成形材料の布帛状体を不織布B、繊維強化熱可塑性樹脂基材の熱可塑性樹脂を樹脂Bとし、金型温度を200℃とした以外は、実施例1と同様にしてリブを有するFRPを得た。繊維強化熱可塑性樹脂基材の炭素繊維の重量含有率は40wt%であり、配向パラメータ(fp)は−0.06であった。
なお、多軸成形材料の布帛状体のSP値と繊維強化熱可塑性樹脂基材の樹脂のSP値との差の絶対値は5、多軸成形材料の布帛状体のSP値とステッチ糸のSP値との差の絶対値は0.6である。
得られたFRPはリブ先端まで繊維および樹脂が充填しており、断面を光学顕微鏡で観察したところ、強化繊維糸条の内部にまで樹脂が含浸し、ボイドの発生もほとんどなかった。また、表面品位に関しても、繊維配向の乱れや表面の凸凹が僅かに発生したが、シワの発生はみられず、概ね良好であった。ただし、得られたFRPに荷重負荷をかけたところ、多軸成形材料からなるFRPと繊維強化熱可塑性樹脂基材からなるFRPとの界面において一部剥離が確認された。
(Example 3)
FRP having ribs in the same manner as in Example 1 except that the multi-axial molding material is nonwoven fabric B, the fiber reinforced thermoplastic resin base material is resin B, and the mold temperature is 200 ° C. Got. The weight content of carbon fibers in the fiber-reinforced thermoplastic resin substrate was 40 wt%, and the orientation parameter (fp) was -0.06.
The absolute value of the difference between the SP value of the cloth-like body of the multiaxial molding material and the SP value of the resin of the fiber-reinforced thermoplastic resin base material is 5, and the SP value of the cloth-like body of the multiaxial molding material and the stitch yarn The absolute value of the difference from the SP value is 0.6.
The obtained FRP was filled with fibers and resin up to the end of the rib, and the cross section was observed with an optical microscope. As a result, the resin was impregnated into the inside of the reinforcing fiber yarn, and voids were hardly generated. Further, regarding the surface quality, the fiber orientation disorder and the surface unevenness were slightly generated, but the generation of wrinkles was not observed, and the surface quality was generally good. However, when a load was applied to the obtained FRP, partial peeling was confirmed at the interface between the FRP made of a multiaxial molding material and the FRP made of a fiber-reinforced thermoplastic resin substrate.

(実施例4)
多軸成形材料のステッチ糸をステッチ糸Bとした以外は、実施例1と同様にしてリブを有するFRPを得た。
なお、多軸成形材料の布帛状体のSP値と繊維強化熱可塑性樹脂基材の樹脂のSP値との差の絶対値は0、多軸成形材料の布帛状体のSP値とステッチ糸のSP値との差の絶対値は7.3である。
得られたFRPはリブ先端まで繊維および樹脂が充填しており、断面を光学顕微鏡で観察したところ、強化繊維糸条の内部にまで樹脂が含浸し、ボイドの発生もほとんどなかったが、ステッチ糸と樹脂との界面において剥離が観察された。また、表面品位に関しても、繊維配向の乱れや表面の凸凹が僅かに発生したが、シワの発生はみられず、概ね良好であった。
Example 4
An FRP having ribs was obtained in the same manner as in Example 1 except that the stitch yarn of the multiaxial molding material was changed to the stitch yarn B.
The absolute value of the difference between the SP value of the multiaxial molding material fabric and the SP value of the fiber reinforced thermoplastic resin base material is 0, and the SP value of the multiaxial molding material fabric and the stitch yarn The absolute value of the difference from the SP value is 7.3.
The obtained FRP was filled with fibers and resin up to the tip of the rib, and when the cross section was observed with an optical microscope, the resin was impregnated into the inside of the reinforcing fiber yarn and there was almost no void, but the stitch yarn Peeling was observed at the interface between the resin and the resin. Further, regarding the surface quality, the fiber orientation disorder and the surface unevenness were slightly generated, but the generation of wrinkles was not observed, and the surface quality was generally good.

(実施例5)
多軸成形材料の布帛状体をフィルムCとした以外は、実施例1と同様にしてリブを有するFRPを得た。
なお、多軸成形材料の布帛状体のSP値と繊維強化熱可塑性樹脂基材の樹脂のSP値との差の絶対値は0、多軸成形材料の布帛状体のSP値とステッチ糸のSP値との差の絶対値は0.1である。
得られたFRPはリブ先端まで繊維および樹脂が充填しており、断面を光学顕微鏡で観察したところ、強化繊維糸条の内部にまで樹脂が含浸し、ボイドの発生もほとんどなかった。また、表面品位に関しては、概ね良好であったが、繊維配向の乱れや表面の凸凹が僅かに発生し、実施例1では見られなかったシワが僅かに発生した。
(Example 5)
An FRP having ribs was obtained in the same manner as in Example 1 except that the film C was used as the multiaxial molding material.
The absolute value of the difference between the SP value of the multiaxial molding material fabric and the SP value of the fiber reinforced thermoplastic resin base material is 0, and the SP value of the multiaxial molding material fabric and the stitch yarn The absolute value of the difference from the SP value is 0.1.
The obtained FRP was filled with fibers and resin up to the end of the rib, and the cross section was observed with an optical microscope. As a result, the resin was impregnated into the inside of the reinforcing fiber yarn, and voids were hardly generated. Further, the surface quality was generally good, but the fiber orientation was disordered and the surface was slightly uneven, and the wrinkles that were not seen in Example 1 were slightly generated.

(比較例1)
繊維強化熱可塑性樹脂基材を用いず、多軸成形材料:6枚のみを0°シートが中央となるように鏡面対称積層した以外は実施例1と同様にしてリブを有するFRPを得た。
得られたFRPはリブの20%程度しか繊維および樹脂が充填していなかった。
(Comparative Example 1)
An FRP having ribs was obtained in the same manner as in Example 1 except that a fiber reinforced thermoplastic resin base material was not used and only 6 sheets of multiaxial molding material were mirror-symmetrically laminated so that the 0 ° sheet was in the center.
The obtained FRP was filled with fibers and resin only about 20% of the ribs.

本発明の製造方法にて得られたFRPの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフのヘッド等のスポーツ部材、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、複雑な形状の成形追従性が要求されるシートパネルやシートフレーム等の自動車部品に好ましく適用できる。   Applications of the FRP obtained by the manufacturing method of the present invention are required for strength, rigidity and light weight, such as bicycle parts, sports members such as golf heads, automobile members such as doors and seat frames, robot arms, etc. There are mechanical parts. In particular, the present invention can be preferably applied to automobile parts such as seat panels and seat frames that require molding followability of complicated shapes in addition to strength and light weight.

本発明における多軸成形材料の一実施態様を示す概略斜視図である。It is a schematic perspective view which shows one embodiment of the multiaxial molding material in this invention. 本発明における繊維強化熱可塑性樹脂基材の一実施態様を示す概略斜視図である。It is a schematic perspective view which shows one embodiment of the fiber reinforced thermoplastic resin base material in this invention. 本発明における圧縮成形前における多軸成形材料および繊維強化熱可塑性樹脂基材の一実施態様を示す概略断面図である。It is a schematic sectional drawing which shows one embodiment of the multiaxial molding material and the fiber reinforced thermoplastic resin base material before the compression molding in this invention. 本発明の繊維強化複合材料の一実施態様を示す概略断面図である。It is a schematic sectional drawing which shows one embodiment of the fiber reinforced composite material of this invention. 金型形状の一例を示す概略図であり、(A)は側面図、(B)は上面図である。It is the schematic which shows an example of a metal mold | die shape, (A) is a side view, (B) is a top view. リブを形成するために金型に備えられた溝形状の一例を示す断面図である。It is sectional drawing which shows an example of the groove shape with which the metal mold | die was equipped in order to form a rib.

符号の説明Explanation of symbols

Y:強化繊維糸条
1:強化繊維糸条が長手方向に並行に配列されたシート
2:強化繊維糸条が長手方向に対して+45°に並行に配列されたシート
3:強化繊維糸条が長手方向に対して90°に並行に配列されたシート
4:強化繊維糸条は長手方向に対して−45°に並行に配列されたシート
5:層間の布帛状体
6:ステッチ糸
7:ニードル
8:多軸成形材料
9:最外層の布帛状体
10:単繊維状かつ不連続の強化繊維
11:熱可塑性樹脂
12:繊維強化熱可塑性樹脂基材
13:金型
14:リブ溝
Y: Reinforcing fiber yarn 1: Sheet with reinforcing fiber yarns arranged in parallel in the longitudinal direction 2: Sheet with reinforcing fiber yarns arranged in parallel at + 45 ° with respect to the longitudinal direction 3: Reinforcing fiber yarns Sheets arranged in parallel at 90 ° to the longitudinal direction 4: Sheets of reinforcing fiber yarns arranged in parallel at −45 ° to the longitudinal direction 5: Fabric-like material between layers 6: Stitch yarn 7: Needle 8: Multiaxial molding material 9: Outer fabric layer 10: Monofilamentous and discontinuous reinforcing fiber 11: Thermoplastic resin 12: Fiber reinforced thermoplastic resin base material 13: Mold 14: Rib groove

Claims (9)

多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料を成形してなる繊維強化プラスチックと、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材を成形してなる繊維強化プラスチックとが、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化してなることを特徴とする繊維強化プラスチック。 At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel, and a fabric-like body made of the thermoplastic resin (A) is at least between the sheets so that the reinforcing fiber yarns intersect. And a fiber reinforced plastic formed by molding a multiaxial molding material in which the laminate is integrated with a stitch yarn made of the thermoplastic resin (B) or the thermoplastic resin (A). A fiber reinforced plastic formed by molding a fiber reinforced thermoplastic resin base material in which monofilamentous and discontinuous reinforcing fibers are randomly dispersed in the thermoplastic resin (C) is formed of the thermoplastic resin (A) and the heat. A fiber-reinforced plastic, characterized in that the plastic resin (C) is integrated in a continuous form. 多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料と、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材とを同時に圧縮成形することを特徴とする繊維強化プラスチックの製造方法。 At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel, and a fabric-like body made of the thermoplastic resin (A) is at least between the sheets so that the reinforcing fiber yarns intersect. And a multiaxial molding material in which the laminate is integrated with a stitch yarn made of the thermoplastic resin (B) or the thermoplastic resin (A), and a single fiber and discontinuous A method for producing a fiber-reinforced plastic, comprising simultaneously compression-molding a fiber-reinforced thermoplastic resin base material in which reinforcing fibers are randomly dispersed in a thermoplastic resin (C). 多数本の連続の強化繊維糸条が並行に配列されたシートを少なくとも2枚、該強化繊維糸条が交差するように、かつ、熱可塑性樹脂(A)からなる布帛状体が少なくとも前記シート間に配置されて積層体を構成し、該積層体が熱可塑性樹脂(B)からなるステッチ糸または熱可塑性樹脂(A)により一体化された多軸成形材料を圧縮成形した後、単繊維状でかつ不連続の強化繊維が熱可塑性樹脂(C)中にランダムに分散された繊維強化熱可塑性樹脂基材を、熱可塑性樹脂(A)と熱可塑性樹脂(C)が連続した形態で一体化するように成形することを特徴とする繊維強化プラスチックの製造方法。 At least two sheets in which a large number of continuous reinforcing fiber yarns are arranged in parallel, and a fabric-like body made of the thermoplastic resin (A) is at least between the sheets so that the reinforcing fiber yarns intersect. A multi-axial molding material in which the laminated body is integrated with a stitch yarn made of the thermoplastic resin (B) or the thermoplastic resin (A). A fiber reinforced thermoplastic resin base material in which discontinuous reinforcing fibers are randomly dispersed in the thermoplastic resin (C) is integrated in a continuous form of the thermoplastic resin (A) and the thermoplastic resin (C). A method for producing a fiber-reinforced plastic, characterized by being molded as described above. 前記熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと前記熱可塑性樹脂(C)の溶解度パラメータ(SP値)δCとの差の絶対値が3以下であることを特徴とする請求項2または3に記載の繊維強化プラスチックの製造方法。 The absolute value of the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δC of the thermoplastic resin (C) is 3 or less. Or the manufacturing method of the fiber reinforced plastic of 3. 前記各シートにおける強化繊維糸条の目付が50〜350g/mの範囲内であり、前記熱可塑性樹脂(A)からなる布帛状体の目付が15〜250g/mの範囲内であり、かつ、前記繊維強化熱可塑性樹脂基材の強化繊維の重量含有率が25〜80wt%であることを特徴とする請求項2〜4のいずれかに記載の繊維強化プラスチックの製造方法。 The basis weight of the reinforcing fiber yarns in each sheet is in the range of 50 to 350 g / m 2 , and the basis weight of the fabric-like body made of the thermoplastic resin (A) is in the range of 15 to 250 g / m 2 , And the weight content rate of the reinforced fiber of the said fiber reinforced thermoplastic resin base material is 25-80 wt%, The manufacturing method of the fiber reinforced plastic in any one of Claims 2-4 characterized by the above-mentioned. 熱可塑性樹脂(A)の溶解度パラメータ(SP値)δAと熱可塑性樹脂(B)の溶解度パラメータ(SP値)δBとの差の絶対値が3以下であることを特徴とする請求項2〜5のいずれかに記載の繊維強化プラスチックの製造方法。 6. The absolute value of the difference between the solubility parameter (SP value) δA of the thermoplastic resin (A) and the solubility parameter (SP value) δB of the thermoplastic resin (B) is 3 or less. The manufacturing method of the fiber reinforced plastic in any one of. 熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(B)の融点をTmBとしたとき、TmAとTmBとが、式(TmB−150)≦TmA≦(TmB−20)の関係を満足することを特徴とする請求項2〜6のいずれかに記載の繊維強化プラスチックの製造方法。 When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (B) is TmB, TmA and TmB satisfy the relationship of the formula (TmB-150) ≦ TmA ≦ (TmB-20). A method for producing a fiber-reinforced plastic according to any one of claims 2 to 6. 熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(B)の融点をTmBとしたとき、TmAとTmBとが、式(TmB−20)<TmA<(TmB+20)の関係を満足することを特徴とする請求項2〜6のいずれかに記載の繊維強化プラスチックの製造方法。 When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (B) is TmB, TmA and TmB satisfy the relationship of the formula (TmB-20) <TmA <(TmB + 20). The method for producing a fiber-reinforced plastic according to any one of claims 2 to 6. 熱可塑性樹脂(A)の融点をTmAとし、熱可塑性樹脂(C)の融点をTmCとしたとき、TmAとTmCとが、式(TmC−20)<TmA<(TmC+20)の関係を満足することを特徴とする請求項2〜8のいずれかに記載の繊維強化プラスチックの製造方法。 When the melting point of the thermoplastic resin (A) is TmA and the melting point of the thermoplastic resin (C) is TmC, TmA and TmC satisfy the relationship of the formula (TmC-20) <TmA <(TmC + 20). The method for producing a fiber-reinforced plastic according to any one of claims 2 to 8.
JP2007154803A 2007-06-12 2007-06-12 Fiber-reinforced plastic and its manufacturing method Pending JP2008307692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154803A JP2008307692A (en) 2007-06-12 2007-06-12 Fiber-reinforced plastic and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154803A JP2008307692A (en) 2007-06-12 2007-06-12 Fiber-reinforced plastic and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008307692A true JP2008307692A (en) 2008-12-25

Family

ID=40235748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154803A Pending JP2008307692A (en) 2007-06-12 2007-06-12 Fiber-reinforced plastic and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008307692A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056474A (en) * 2011-09-08 2013-03-28 Toyota Motor Corp Method of manufacturing fiber reinforced resin material
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
KR20150143415A (en) * 2013-04-19 2015-12-23 더 보잉 컴파니 Compacting uncured composite members on contoured mandrel surfaces
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same
KR20160132429A (en) * 2014-03-13 2016-11-18 칼 프로이덴베르크 카게 Element for manipulating light
CN107988669A (en) * 2018-01-15 2018-05-04 苏州耐德新材料科技有限公司 A kind of modified polyphenyl thioether sewing thread preparation method and its compound filter bag sewing thread
US10195811B2 (en) 2011-08-08 2019-02-05 The Boeing Company Flexible compactor with reinforcing spine
US10569484B2 (en) 2011-08-08 2020-02-25 The Boeing Company Device for transporting, placing and compacting composite stiffeners
WO2020179584A1 (en) * 2019-03-07 2020-09-10 株式会社クラレ Continuous long-fiber non-woven fabric, layered body, and composite material and production method therefor
US10857436B2 (en) 2016-03-04 2020-12-08 Bauer Hockey, Inc. 3D weaving material and method of 3D weaving for sporting implements
US11471736B2 (en) 2016-03-04 2022-10-18 Bauer Hockey, Llc 3D braiding materials and 3D braiding methods for sporting implements
JP7475326B2 (en) 2019-03-07 2024-04-26 株式会社クラレ Continuous long fiber nonwoven fabric, laminate, and composite material, and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195811B2 (en) 2011-08-08 2019-02-05 The Boeing Company Flexible compactor with reinforcing spine
US10569484B2 (en) 2011-08-08 2020-02-25 The Boeing Company Device for transporting, placing and compacting composite stiffeners
JP2013056474A (en) * 2011-09-08 2013-03-28 Toyota Motor Corp Method of manufacturing fiber reinforced resin material
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
KR20150143415A (en) * 2013-04-19 2015-12-23 더 보잉 컴파니 Compacting uncured composite members on contoured mandrel surfaces
KR102205337B1 (en) * 2013-04-19 2021-01-21 더 보잉 컴파니 Compacting uncured composite members on contoured mandrel surfaces
JP2016521221A (en) * 2013-04-19 2016-07-21 ザ・ボーイング・カンパニーThe Boeing Company Consolidation of uncured composites on contoured mandrel surfaces.
US10315750B2 (en) 2013-04-19 2019-06-11 The Boeing Company Compacting uncured composite members on contoured mandrel surfaces
US10472770B2 (en) 2014-03-13 2019-11-12 Carl Freudenberg Kg Element for manipulating light
KR101922192B1 (en) 2014-03-13 2018-11-26 칼 프로이덴베르크 카게 Element for manipulating light
KR20160132429A (en) * 2014-03-13 2016-11-18 칼 프로이덴베르크 카게 Element for manipulating light
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same
US10857436B2 (en) 2016-03-04 2020-12-08 Bauer Hockey, Inc. 3D weaving material and method of 3D weaving for sporting implements
US11471736B2 (en) 2016-03-04 2022-10-18 Bauer Hockey, Llc 3D braiding materials and 3D braiding methods for sporting implements
CN107988669A (en) * 2018-01-15 2018-05-04 苏州耐德新材料科技有限公司 A kind of modified polyphenyl thioether sewing thread preparation method and its compound filter bag sewing thread
WO2020179584A1 (en) * 2019-03-07 2020-09-10 株式会社クラレ Continuous long-fiber non-woven fabric, layered body, and composite material and production method therefor
CN113544322A (en) * 2019-03-07 2021-10-22 株式会社可乐丽 Continuous filament nonwoven fabric, laminate, composite material, and method for producing same
CN113544322B (en) * 2019-03-07 2022-10-11 株式会社可乐丽 Continuous filament nonwoven fabric, laminate, composite material, and method for producing same
CN113544322B9 (en) * 2019-03-07 2022-11-25 株式会社可乐丽 Continuous filament nonwoven fabric, laminate, composite material, and method for producing same
JP7475326B2 (en) 2019-03-07 2024-04-26 株式会社クラレ Continuous long fiber nonwoven fabric, laminate, and composite material, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2008307692A (en) Fiber-reinforced plastic and its manufacturing method
JP5949896B2 (en) Sheet for fiber-reinforced plastic molded body and molded body thereof
CN101466535B (en) Thermalplastic resin multi-layer reinforced sheet, production method thereof and forming method for thermalplastic resin composite material forming article
JP5658176B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
US8192662B2 (en) Processes for producing perform and FRP
CN104160081B (en) Plane composite material
CN1906233B (en) Stabilizable preform precursors and stabilized preforms for composite materials and processes for stabilizing and debulking preforms
KR102197486B1 (en) Articles including untwisted fibers and methods of using them
JP2007182065A (en) Multi-axial molding material, preform, frp, and manufacturing method for frp
CN110139747B (en) Integrated molded body and method for producing same
JP2009019202A (en) Molding material, preform and fiber-reinforced resin
JP2005280348A (en) Manufacturing method of fiber-reinforcing substrate and of composite material using the substrate
JP2007182661A (en) Multi-axial molding material, preform, frp and production method thereof
CN1886542A (en) Needled glass mat
US11135742B2 (en) Vehicle component based on selective comingled fiber bundle positioning form
JP2009019201A (en) Molding material, preform and fiber-reinforced resin
JP2008132775A (en) Multilayer substrate and preform
JP6315648B2 (en) Laminated molded body
JP5547412B2 (en) Planar composite
JP5877431B2 (en) Method for producing carbon fiber reinforced composite material
JP5864324B2 (en) Method for producing fiber reinforced composite
JP2017205977A (en) Preform, method for producing the preform, and fiber-reinforced plastic using the preform
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
JP6746973B2 (en) Base material for preform, reinforced fiber preform, fiber reinforced resin molding and method for manufacturing fiber reinforced resin molding
KR101777732B1 (en) Long-fiber nonwoven textile preforms including Long-fiber web layer and method of manufacturing the same and composite material including Long-fiber nonwoven textile preforms and method of manufacturing the same