JP2016078258A - Fiber sheet for fiber-reinforced resin and molding using the same - Google Patents

Fiber sheet for fiber-reinforced resin and molding using the same Download PDF

Info

Publication number
JP2016078258A
JP2016078258A JP2014209383A JP2014209383A JP2016078258A JP 2016078258 A JP2016078258 A JP 2016078258A JP 2014209383 A JP2014209383 A JP 2014209383A JP 2014209383 A JP2014209383 A JP 2014209383A JP 2016078258 A JP2016078258 A JP 2016078258A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
resin
sheet
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209383A
Other languages
Japanese (ja)
Other versions
JP6373155B2 (en
Inventor
伊藤 正道
Masamichi Ito
正道 伊藤
歴 堀本
Reki Horimoto
歴 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2014209383A priority Critical patent/JP6373155B2/en
Publication of JP2016078258A publication Critical patent/JP2016078258A/en
Application granted granted Critical
Publication of JP6373155B2 publication Critical patent/JP6373155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fiber sheet for a fiber-reinforced resin which is easy to impregnate with a matrix resin between reinforced resin fibers; and a molding using the same.SOLUTION: A fiber sheet (1) for a fiber-reinforced resin is integrated with a fiber layer arrayed in one direction or at a predetermined angle by a yarn (3). A density of a needle hole when the yarn (3) is knitted in the fiber layer is 80,000 pieces/mor more and 180,000 pieces/mor less. A fiber-reinforced resin molding is a fiber-reinforced resin molding formed by laminating a plurality of fiber sheets (1) for fiber-reinforced resins and impregnating a matrix resin in the fiber sheets (1) for the fiber-reinforced resins by injection molding.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂の含浸性を高めた繊維強化樹脂用繊維シート及びこれを用いた成形体に関する。   The present invention relates to a fiber sheet for fiber reinforced resin having improved resin impregnation properties and a molded body using the same.

炭素繊維強化樹脂(CFRP:Carbon Fiber Reinforced Plastics)は、高強度、軽量等の特色を生かして、ゴルフクラブのシャフト、釣竿等の各種スポーツ用品、航空機、自動車、圧力容器などに広く応用されおり、今後の応用も期待されている。繊維強化樹脂の一般的な成形方法として、例えばハンドレイアップ法、スプレーアップ法などの接触圧成形法、フィラメント・ワインディング(FW)法、引き抜き法、連続積層法などの連続成形法などを使用して目的の成形物に成形している。使用されるマトリックス樹脂は、エポキシ樹脂等の熱硬化性樹脂が使用されている。マトリックス樹脂との結合力を高めるため、マトリックス樹脂に応じたサイジング剤を強化用繊維表面に付着させている(以上、非特許文献1)。   Carbon fiber reinforced resin (CFRP: Carbon Fiber Reinforced Plastics) is widely applied to various sporting goods such as golf club shafts, fishing rods, aircraft, automobiles, pressure vessels, etc., taking advantage of its high strength and light weight. Future applications are also expected. As a general molding method of fiber reinforced resin, for example, a contact pressure molding method such as a hand lay-up method or a spray-up method, a continuous molding method such as a filament winding (FW) method, a drawing method or a continuous lamination method is used. To the desired molded product. As the matrix resin to be used, a thermosetting resin such as an epoxy resin is used. In order to increase the bonding strength with the matrix resin, a sizing agent corresponding to the matrix resin is attached to the reinforcing fiber surface (Non-Patent Document 1).

従来技術として、アクリル基とエポキシ基を有する炭素繊維用サイジング剤を使用する提案がある(特許文献1)。また、サイジング剤を付着させる前の炭素繊維表面をオゾン酸化させる提案もある(特許文献2)。さらにエポキシ基を有する炭素繊維用サイジング剤を使用する提案がある(特許文献3〜4)。   As a prior art, there is a proposal to use a sizing agent for carbon fiber having an acrylic group and an epoxy group (Patent Document 1). There is also a proposal for ozone oxidation of the carbon fiber surface before the sizing agent is attached (Patent Document 2). Furthermore, there is a proposal of using a carbon fiber sizing agent having an epoxy group (Patent Documents 3 to 4).

特開2000−355884号公報JP 2000-355884 A 特開2009−79344号公報JP 2009-79344 A 特開平7−279040号公報JP-A-7-279040 特開2005−146429号公報JP 2005-146429 A

繊維学会編「第3版繊維便覧」,丸善,2004年12月15日,598−601頁,614−615頁Textile Society, 3rd edition Textbook, Maruzen, December 15, 2004, 598-601, 614-615

しかし、従来技術の強化用繊維シートは、マトリックス樹脂が含浸しにくいという問題があった。とくに、一方向または所定角度に配列された繊維層に編み糸で一体化されている繊維強化樹脂用繊維シートは、マトリックス樹脂を注入したときに、マトリックス樹脂が含浸しにくいという問題があった。   However, the conventional reinforcing fiber sheet has a problem that it is difficult to impregnate the matrix resin. In particular, the fiber sheet for fiber reinforced resin integrated with a fiber layer arranged in one direction or at a predetermined angle with a knitting yarn has a problem that the matrix resin is difficult to be impregnated when the matrix resin is injected.

本発明は、前記従来の問題を解決するため、強化樹脂繊維間にマトリックス樹脂が含浸しやすい繊維強化樹脂用繊維シート及びこれを用いた成形体を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a fiber sheet for a fiber reinforced resin in which a matrix resin is easily impregnated between reinforced resin fibers, and a molded body using the same.

本発明の繊維強化樹脂用繊維シートは、一方向または所定角度に配列された繊維層が編み糸で一体化されている繊維強化樹脂用繊維シートであって、
前記編み糸が前記繊維層に編み込まれるときに生じる針孔を有し、
前記針孔の密度が8万個/m2以上18万個/m2以下であることを特徴とする。
The fiber sheet for fiber reinforced resin of the present invention is a fiber sheet for fiber reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a knitting yarn,
Having a needle hole that occurs when the knitting yarn is knitted into the fiber layer;
The needle hole has a density of 80,000 / m 2 or more and 180,000 / m 2 or less.

本発明の繊維強化樹脂成形体は、前記の繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形した繊維強化樹脂成形体であることを特徴とする。   The fiber reinforced resin molded body of the present invention is a fiber reinforced resin molded body formed by laminating a plurality of the fiber reinforced resin fiber sheets and impregnating a matrix resin into the fiber reinforced resin fiber sheet by injection molding. It is characterized by being.

本発明は、編み糸を繊維層に一体化させるための針孔の密度が8万個/m2以上18万個/m2以下であることにより、針孔を通じてマトリックス樹脂が繊維層内ないしは繊維間に含浸しやすい繊維強化樹脂用繊維シート及びこれを用いた成形体を提供できる。 In the present invention, the density of the needle holes for integrating the knitting yarn into the fiber layer is 80,000 pieces / m 2 or more and 180,000 pieces / m 2 or less, so that the matrix resin passes through the needle holes in the fiber layer or the fibers. It is possible to provide a fiber sheet for fiber-reinforced resin that easily impregnates between them and a molded body using the same.

図1Aは本発明の一実施形態の繊維強化樹脂用繊維シートの表面の平面図、図1Bは同裏面を示す平面図である。FIG. 1A is a plan view of the surface of a fiber sheet for fiber reinforced resin according to an embodiment of the present invention, and FIG. 1B is a plan view showing the back surface thereof. 図2は本発明の別の実施形態を示す多軸挿入たて編物の概念斜視図である。FIG. 2 is a conceptual perspective view of a multi-axis inserted warp knitted fabric showing another embodiment of the present invention. 図3は本発明の一実施形態のインフュージョン成形を説明する模式図である。FIG. 3 is a schematic diagram illustrating infusion molding according to an embodiment of the present invention. 図4は本発明の実施例及び比較例の針孔密度と樹脂含浸時間との関係を示すグラフである。FIG. 4 is a graph showing the relationship between needle hole density and resin impregnation time in Examples and Comparative Examples of the present invention.

本発明者らは、従来の繊維強化樹脂用繊維シートは、繊維層が一方向に配列され、または一方向に配列された繊維層が所定角度に配列されて積層されているため、厚さ方向に樹脂が含浸しにくい問題に直面した。これは、繊維強化樹脂用繊維シートを構成する繊維層は繊維密度が高いため、樹脂が含浸しにくいことに起因する。そこで本発明者らは、前記繊維層の厚さ方向に開けられる針孔に注目し、針孔の密度を従来の針孔数(6万個/m2程度)より増やし、樹脂が繊維層の厚さ方向に含浸しやすい構造にすることを着想した。 In the fiber sheet for a conventional fiber reinforced resin, the present inventors have the fiber layer arranged in one direction, or the fiber layers arranged in one direction are arranged at a predetermined angle and laminated. We faced the problem that resin is difficult to impregnate. This is because the fiber layer constituting the fiber sheet for fiber reinforced resin has a high fiber density, and therefore the resin is difficult to impregnate. Therefore, the inventors pay attention to the needle holes that are opened in the thickness direction of the fiber layer, increase the density of the needle holes from the conventional number of needle holes (about 60,000 pieces / m 2 ), and the resin is the fiber layer. The idea was to make the structure easy to impregnate in the thickness direction.

本発明は、一方向または所定角度に配列された繊維層に編み糸が針孔を通って編み針により編み込まれて多数本の繊維束が形成されている繊維強化樹脂用繊維シートであり、編み糸は前記繊維層を一体化しており、針孔の密度は8万個/m2以上18万個/m2以下が好ましく、さらに好ましくは10万個/m2以上18万個/m2以下であり、とくに好ましくは10万個/m2以上15万個/m2以下である。針孔の密度が前記の範囲であると、マトリックス樹脂の含浸性と、成形体強度などの物性の両立を図れる。これにより、マトリックス樹脂の含浸性を良好にし、成形体強度を高く維持できる。針孔密度が8万個/m2未満では樹脂含浸性が低下し、含浸時間が長くなり、生産性が低下する傾向となる。針孔密度が18万個/m2を超えても、含浸時間はそれ以上短くならず、成形体強度などの物性の低下が予想される。 The present invention is a fiber sheet for a fiber reinforced resin in which a knitting yarn is knitted with a knitting needle through a needle hole in a fiber layer arranged in one direction or at a predetermined angle, and a plurality of fiber bundles are formed. Is integrated with the fiber layer, and the density of the needle holes is preferably 80,000 pieces / m 2 or more and 180,000 pieces / m 2 or less, more preferably 100,000 pieces / m 2 or more and 180,000 pieces / m 2 or less. It is particularly preferably 100,000 / m 2 or more and 150,000 / m 2 or less. When the density of the needle holes is within the above range, both the impregnation property of the matrix resin and physical properties such as the strength of the molded body can be achieved. Thereby, the impregnation property of the matrix resin can be improved and the strength of the molded body can be maintained high. When the needle hole density is less than 80,000 pieces / m 2 , the resin impregnation property decreases, the impregnation time becomes long, and the productivity tends to decrease. Even if the needle hole density exceeds 180,000 pieces / m 2 , the impregnation time is not shortened further, and physical properties such as the strength of the molded article are expected to be reduced.

針孔密度を8万個/m2以上18万個/m2以下とするためには、編み糸の場合、例えばゲージ数を5〜7/inchとし、縦回数を4.1〜6.5回/cmとするのが好ましい。
なお、編み針の形態は特に限定されるものではないが、例えば1.5mm×0.5mm程度の断面長方形の編み針が使用される。また、前記編み糸が前記繊維層に編み込まれるときに生じる針孔には、当然ながら編み糸が存在している。
In order to set the needle hole density to 80,000 pieces / m 2 or more and 180,000 pieces / m 2 or less, in the case of knitting yarn, for example, the number of gauges is 5 to 7 / inch and the number of warp times is 4.1 to 6.5. The number of times / cm is preferable.
The form of the knitting needle is not particularly limited. For example, a knitting needle having a rectangular section of about 1.5 mm × 0.5 mm is used. Needless to say, a knitting yarn is present in a needle hole generated when the knitting yarn is knitted into the fiber layer.

編み糸の好ましい繊度は1〜30texであり、好ましくは2〜25tex、さらに好ましくは3〜20texである。前記の範囲であれば編み糸による編成工程の生産効率性が高い。   The preferred fineness of the knitting yarn is 1 to 30 tex, preferably 2 to 25 tex, more preferably 3 to 20 tex. If it is the said range, the production efficiency of the knitting process by a knitting yarn is high.

編み糸は一軸又は多軸挿入たて編み物で使用される。これらの編み糸は編み針によって繊維層を一体化する。編み糸は熱融着糸であっても良いし、熱融着糸を含んでいても良い。編み糸はポリエステル糸又はナイロン糸が好ましい。なお、一軸挿入たて編み物で編み糸の方向と繊維束の方向が同一の場合、編み糸のみでは繊維層が保形できない場合も生じるが、そのような場合、ガラス糸等の補助糸を例えば緯糸として用い、編み糸と補助的な糸とで繊維層を一体化してもよい。   Knitting yarns are used in knitted yarns with single or multi-axis insertion. These yarns unite the fiber layers with a knitting needle. The knitting yarn may be a heat fusion yarn or may include a heat fusion yarn. The knitting yarn is preferably polyester yarn or nylon yarn. In addition, when the direction of the knitting yarn and the direction of the fiber bundle are the same in a single axis inserted knitting, there are cases where the fiber layer cannot be retained only with the knitting yarn, but in such a case, auxiliary yarn such as glass yarn is used, for example It may be used as a weft and the fiber layer may be integrated with a knitting yarn and an auxiliary yarn.

繊維強化樹脂用繊維には炭素繊維、ガラス繊維又はアラミド繊維が使用でき、その中でも炭素繊維又はガラス繊維が好ましい。他にスーパー繊維と呼ばれている強化用繊維にも使用できる。繊維強化樹脂用繊維シートの目付は50〜2500g/m2が好ましく、さらに好ましくは150〜2000g/m2であり、とくに好ましくは400〜1500g/m2である。 Carbon fiber, glass fiber, or aramid fiber can be used as the fiber for fiber reinforced resin, and carbon fiber or glass fiber is preferable among them. It can also be used for reinforcing fibers called super fibers. The basis weight of the fiber sheet for fiber reinforced resin is preferably 50 to 2500 g / m 2 , more preferably 150 to 2000 g / m 2 , and particularly preferably 400 to 1500 g / m 2 .

編み糸自体又は繊維強化樹脂用繊維シートに組み込まれている編み糸に対してオゾン酸化、エキシマランプ照射や低圧水銀ランプ照射等の波長400nm以下の紫外線照射及びプラズマ照射からなる群から選ばれる少なくとも一つの表面処理をすることが好ましい。これにより、編み糸の水に対する接触角を低減し、結果としてマトリックス樹脂との濡れ性を高め、強化繊維間にマトリックス樹脂が含浸しやすい繊維シートを提供できる。針孔密度を8万個/m2以上18万個/m2以下とすることに加えて、マトリックス樹脂との濡れ性を高めることで、強化繊維間にマトリックス樹脂をさらに含浸しやすくなると共に成形体の欠点は少なくなり、かつ含浸作業工程を短縮化できるメリットがある。 At least one selected from the group consisting of ozone irradiation, ultraviolet irradiation with a wavelength of 400 nm or less such as irradiation with an excimer lamp or low pressure mercury lamp, and plasma irradiation with respect to the knitting yarn itself or the knitting yarn incorporated in the fiber sheet for fiber reinforced resin. One surface treatment is preferred. Thereby, the contact angle with respect to the water of a knitting yarn can be reduced, the wettability with a matrix resin can be improved as a result, and the fiber sheet which a matrix resin can easily impregnate between reinforcement fibers can be provided. In addition to setting the needle hole density to 80,000 pieces / m 2 or more and 180,000 pieces / m 2 or less, by increasing the wettability with the matrix resin, it becomes easier to impregnate the matrix resin between the reinforcing fibers and molding. There are advantages that the body has fewer defects and that the impregnation process can be shortened.

編み糸を、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理することにより、水に対する接触角を低減できる。なお、糸の接触角については、糸を水に挿入する際の前進動的接触角及び後退動的接触角で測定するが、吸水性糸のように前進動的接触角及び後退動的接触角で測定することが好ましくない場合は他の方法、たとえば同材質の樹脂を用いてフィルムを作成し、フィルム上に水を滴下し接触角を図るのでも良い。   The contact angle with water can be reduced by subjecting the knitting yarn to at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment. The yarn contact angle is measured by the forward dynamic contact angle and the backward dynamic contact angle when the yarn is inserted into water. If it is not preferable to measure the thickness of the film by another method, for example, a film may be prepared using a resin of the same material, and the contact angle may be increased by dropping water on the film.

編み糸は、前進動的接触角を75°以下、後退動的接触角を30°以下とするのが好ましい。編み糸がポリエステル糸の場合、表面処理なしでは前進動的接触角が79°であり、後退動的接触角は35°であるから、表面処理すると親水性になることが分かる。これはマトリックス樹脂との濡れ性を上げるために重要である。編み糸の水に対する前進動的接触角は、50〜75°、後退動的接触角は3〜30°が好ましく、さらに好ましくは前進動的接触角65〜72°、後退動的接触角5〜20°である。   The knitting yarn preferably has a forward dynamic contact angle of 75 ° or less and a backward dynamic contact angle of 30 ° or less. When the knitting yarn is a polyester yarn, the advancing dynamic contact angle is 79 ° without the surface treatment, and the receding dynamic contact angle is 35 °. This is important for increasing the wettability with the matrix resin. The advancing dynamic contact angle with respect to water of the knitting yarn is preferably 50 to 75 °, and the receding dynamic contact angle is preferably 3 to 30 °, more preferably the advancing dynamic contact angle 65 to 72 ° and the receding dynamic contact angle 5 to 5. 20 °.

次にそれぞれの表面処理について説明する。
(1)オゾン酸化
オゾンの発生方法としては、無声放電方式、沿面放電方式、紫外線照射方式、電気分解方式などがある。大容量のオゾン生成には効率の面から、主に無声放電方式が利用されている。現在、放電型オゾナイザとして最も一般的に用いられている放電方式である。一対の平行電極の一方または両方に誘電体(主にガラスやセラミックス)の層を設け、両電極間に交流高電圧が印加されると無声放電が生じる。オゾン濃度の好ましい一例として、40000ppmとする。処理時間は2〜60分間が好ましくさらに好ましくは5〜40分間である。オゾンは処理空間に均一に拡散することから、繊維強化樹脂用繊維シートの処理に好適である。すなわち、繊維強化樹脂用繊維シートの表面だけではなく内部まで均一に処理できる。
Next, each surface treatment will be described.
(1) Ozone oxidation Methods for generating ozone include a silent discharge method, a creeping discharge method, an ultraviolet irradiation method, and an electrolysis method. The silent discharge method is mainly used for generating large-volume ozone from the viewpoint of efficiency. At present, this is the most commonly used discharge method as a discharge type ozonizer. When a dielectric (mainly glass or ceramics) layer is provided on one or both of the pair of parallel electrodes and an alternating high voltage is applied between the two electrodes, silent discharge occurs. A preferable example of the ozone concentration is 40000 ppm. The treatment time is preferably 2 to 60 minutes, more preferably 5 to 40 minutes. Since ozone diffuses uniformly into the treatment space, it is suitable for the treatment of the fiber sheet for fiber reinforced resin. That is, not only the surface of the fiber sheet for fiber reinforced resin but also the inside can be treated uniformly.

(2)エキシマランプ照射
エキシマランプとは、誘電体バリア放電の短時間放電が多数生じる特徴を生かして、希ガス原子や、希ガス原子とハロゲン原子によって形成されるエキシマからの光を放射する放電ランプのことである。エキシマランプの代表的放射波長には、Ar2*(126nm)、Kr2*(146nm)、Xe2*(172nm)、KrCl*(222nm)、XeCl*(308nm)などがある。ランプは石英ガラスの二重構造になっており、内管の内側には金属電極、外管の外側には金属網電極がそれぞれ施され、石英ガラス管内には放電ガスが充填されている。電極に交流の高電圧を印加すると、2つの誘電体の間で細い針金状の放電プラズマ(誘電体バリア放電)が多数発生する。この放電プラズマは高エネルギーの電子を包含しており、かつ、瞬時に消滅するという特徴を持っている。この放電プラズマにより、放電ガスの原子が励起され、瞬間的にエキシマ状態となる。このエキシマ状態から元の状態(基底状態)に戻るときに、そのエキシマ特有のスペクトルを発光(エキシマ発光)する。発光スペクトルは、充填された放電ガスによって設定することができる。好ましい照射条件は波長によって異なる。波長172nmの場合、光強度は例えば5〜6mW/cm2とすると、照射時間は0.5〜30分程度が好ましい。波長222nmの場合、光強度は例えば40〜60mW/cm2とすると、照射時間は2〜30分程度が好ましい。ランプと被処理物との間に空気層(ギャップ)があると、波長172nmの場合、空気中の酸素が光エネルギーを吸収してオゾンが発生するので、オゾンによる酸化作用も起きる。
(2) Excimer lamp irradiation An excimer lamp is a discharge that emits light from a rare gas atom or an excimer formed by a rare gas atom and a halogen atom, taking advantage of the fact that a large number of short-time discharges of dielectric barrier discharge occur. It is a lamp. Typical emission wavelengths of excimer lamps include Ar2 * (126 nm), Kr2 * (146 nm), Xe2 * (172 nm), KrCl * (222 nm), XeCl * (308 nm), and the like. The lamp has a double structure of quartz glass. A metal electrode is applied to the inside of the inner tube, a metal mesh electrode is applied to the outside of the outer tube, and a discharge gas is filled in the quartz glass tube. When an alternating high voltage is applied to the electrodes, a large number of thin wire-like discharge plasmas (dielectric barrier discharges) are generated between the two dielectrics. This discharge plasma contains high-energy electrons and has the feature of disappearing instantaneously. The discharge plasma excites the atoms of the discharge gas and instantaneously enters an excimer state. When returning from the excimer state to the original state (ground state), the excimer-specific spectrum is emitted (excimer emission). The emission spectrum can be set by the filled discharge gas. Preferred irradiation conditions vary depending on the wavelength. In the case of a wavelength of 172 nm, when the light intensity is 5 to 6 mW / cm 2 , for example, the irradiation time is preferably about 0.5 to 30 minutes. In the case of a wavelength of 222 nm, when the light intensity is 40 to 60 mW / cm 2 , for example, the irradiation time is preferably about 2 to 30 minutes. If there is an air layer (gap) between the lamp and the object to be processed, in the case of a wavelength of 172 nm, oxygen in the air absorbs light energy and ozone is generated, so that an oxidizing action by ozone also occurs.

(3)低圧水銀ランプ照射
低圧水銀ランプ(低圧UVランプ)は、点灯中の水銀圧力が100Pa以下の水銀蒸気中のアーク放電の発光を利用する。発光管にはアルゴンガスなどの希ガスと、水銀又はそのアマルガムが封入されている。波長185nm,254nmなどの紫外放射のランプがある。光強度は例えば40〜60mW/cm2とする。照射時間は2〜30分程度が好ましい。
(3) Low-pressure mercury lamp irradiation A low-pressure mercury lamp (low-pressure UV lamp) uses light emission of arc discharge in mercury vapor whose mercury pressure during lighting is 100 Pa or less. The arc tube is filled with a rare gas such as argon gas and mercury or its amalgam. There are lamps of ultraviolet radiation having wavelengths of 185 nm and 254 nm. The light intensity is, for example, 40 to 60 mW / cm 2 . The irradiation time is preferably about 2 to 30 minutes.

(4)プラズマ照射処理
プラズマは一般的には気体を構成する分子が部分的に又は完全に電離し、陽イオンと電子に分かれて自由に運動している状態のものである。プラズマ処理装置を使用して炭素繊維にプラズマ照射する条件は、照射量としてワット密度(W・分/m2)で表現すると、1000〜50000W・分/m2が好ましい。また、窒素ガス又は窒素+酸素ガス雰囲気で処理速度(被処理物移動速度)0.05〜1m/minが好ましい。
(4) Plasma irradiation treatment In general, plasma is in a state where molecules constituting a gas are partially or completely ionized, and are freely moving into cations and electrons. Conditions using a plasma processing apparatus for plasma irradiation to carbon fibers, when expressed in watt density (W · min / m 2) as the amount of irradiation, preferably 1000~50000W · min / m 2. Further, a treatment speed (workpiece moving speed) of 0.05 to 1 m / min in a nitrogen gas or nitrogen + oxygen gas atmosphere is preferable.

上記の表面処理は単独でも任意に組み合わせても良い。これらの表面処理により、編み糸表面を活性化し、マトリックス樹脂との濡れ性を良好にして含浸性をさらに高めることができる。また、上記の表面処理のうちでもオゾン酸化が最も好ましい。オゾン酸化は気相で処理できるため、繊維シートの表面だけではなく内部まで均一に処理できるからである。   The above surface treatments may be used alone or in any combination. By these surface treatments, the surface of the knitting yarn can be activated, the wettability with the matrix resin can be improved, and the impregnation property can be further enhanced. Of the above surface treatments, ozone oxidation is most preferable. This is because ozone oxidation can be processed in the gas phase, so that not only the surface of the fiber sheet but also the inside can be uniformly processed.

複数本の繊維はシート状に形成されている。このような繊維としては、例えば構成繊維を一方向に揃えたスダレ状基材、多軸挿入たて編み物等がある。多軸挿入たて編み物の場合は、構成繊維を一方向に揃えた繊維シートを複数方向に積層して編み糸で一体化する。繊維シートを構成する繊維の単繊維繊度はいかなる繊度であっても良い。   The plurality of fibers are formed in a sheet shape. Examples of such fibers include a suede-like base material in which constituent fibers are aligned in one direction, and a multi-axis inserted warp knitted fabric. In the case of a multi-axis inserted knitted fabric, fiber sheets in which constituent fibers are aligned in one direction are laminated in a plurality of directions and integrated with a knitting yarn. The single fiber fineness of the fibers constituting the fiber sheet may be any fineness.

本発明の成形体は繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって成形した繊維強化樹脂成形体である。注入成形としてはインフュージョン成形、RTM成形などが例示される。インフュージョン成形は上型にフィルムを使用し、下型とフィルムの気密性を保ち、真空圧によって樹脂を充填し、含浸させるクローズドモールド成形法である。通常、繊維強化樹脂用繊維シートの積層枚数は3〜300枚が用いられる。より好ましい積層枚数は20〜300枚であり、特に好ましい積層枚数は50〜300枚である。この成形体の一例として、風力発電用ブレード、船艇、スポーツ用品などがある。   The molded body of the present invention is a fiber reinforced resin molded body in which a plurality of fiber sheets for fiber reinforced resin are laminated and molded by injection molding. Examples of injection molding include infusion molding and RTM molding. Infusion molding is a closed mold molding method in which a film is used for the upper mold, the lower mold and the film are kept airtight, and the resin is filled and impregnated by vacuum pressure. Usually, the number of laminated fiber sheets for fiber reinforced resin is 3 to 300. A more preferable number of stacked layers is 20 to 300, and a particularly preferable number of stacked layers is 50 to 300. Examples of this molded body include a blade for wind power generation, a boat, and sports equipment.

本発明の繊維強化樹脂用繊維シートには、汎用性の高いエポキシ樹脂サイジング剤を炭素繊維表面に付着させたものを使用するのが好ましい。サイジング剤の好ましい付着量は0.1〜5.0重量%であり、さらに好ましくは0.2〜3.0重量%である。   For the fiber sheet for fiber-reinforced resin of the present invention, it is preferable to use a sheet having a highly versatile epoxy resin sizing agent attached to the carbon fiber surface. The preferable adhesion amount of the sizing agent is 0.1 to 5.0% by weight, more preferably 0.2 to 3.0% by weight.

マトリックス樹脂は、熱硬化性樹脂が好ましく、例としてエポキシ、不飽和ポリエステル、フェノール、ビニルエステルなどの樹脂がある。   The matrix resin is preferably a thermosetting resin, and examples thereof include resins such as epoxy, unsaturated polyester, phenol, and vinyl ester.

次に図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1Aは本発明の一実施形態の繊維強化樹脂用繊維シート1の表面の平面図、図1Bは同裏面を示す平面図である。この繊維シート1の表面側はポリエステルフィラメント糸の編み糸3がジグザグ状に編み込まれ、多数の繊維束2がタテ方向に配列している。強化繊維層は1層である。この繊維シート1の裏面側は編み糸3がタテ方向に編み込まれ、ヨコ方向にはガラス繊維フィラメント糸4が繊維束2と共に編み糸3により編み込まれている。Xはゲージ数(個/inch)、Yは針孔の縦回数(回/cm)である。XとYから針孔密度(個/m2)を算出できる。 Next, it demonstrates using drawing. In the following drawings, the same symbols indicate the same items. FIG. 1A is a plan view of the surface of the fiber sheet 1 for fiber-reinforced resin according to one embodiment of the present invention, and FIG. 1B is a plan view showing the back surface thereof. On the surface side of the fiber sheet 1, polyester yarn yarns 3 are knitted in a zigzag shape, and a large number of fiber bundles 2 are arranged in the vertical direction. The reinforcing fiber layer is one layer. On the back side of the fiber sheet 1, a knitting yarn 3 is knitted in the vertical direction, and a glass fiber filament yarn 4 is knitted together with the fiber bundle 2 with the knitting yarn 3 in the horizontal direction. X is the number of gauges (pieces / inch), and Y is the number of longitudinal times (times / cm) of the needle holes. The needle hole density (pieces / m 2 ) can be calculated from X and Y.

図2は本発明の別の実施形態を示す多軸挿入たて編物10の概念斜視図である。この多軸挿入たて編物10はヨコ方向に配列された強化用繊維層5と、タテ方向に配列された強化用繊維層6を編針7に掛けられた編み糸8,9によって厚さ方向に縫製し、一体化する。このような多軸挿入たて編み物を繊維シート10とし、マトリックス樹脂と一体成形する。この多軸状の積層シートは、多方向の補強効果に優れた繊維強化樹脂を得ることが可能となる。編み糸はポリエステル糸の代わりに、熱融着糸を使用するか又は併用しても良い。   FIG. 2 is a conceptual perspective view of a multi-axis inserted warp knitted fabric 10 showing another embodiment of the present invention. This multiaxially inserted warp knitted fabric 10 has a reinforcing fiber layer 5 arranged in the horizontal direction and a reinforcing fiber layer 6 arranged in the vertical direction in the thickness direction by knitting yarns 8 and 9 hung on the knitting needle 7. Sewing and integrating. Such a multi-axis inserted warp knitted fabric is used as the fiber sheet 10 and is integrally formed with the matrix resin. This multiaxial laminate sheet can obtain a fiber reinforced resin excellent in multidirectional reinforcement effect. As the knitting yarn, a heat fusion yarn may be used instead of the polyester yarn, or a knitting yarn may be used in combination.

図3は本発明の一実施形態のインフュージョン成形を説明する模式図である。20はインフュージョン成形装置であり、ガラス基台21の上のガラスマット22上に繊維基材23をのせ、その上に剥離布24と樹脂分散板25をのせ、その上から樹脂フィルム(vacuum bag)26を被せ、周囲をシーラント27a,27bでシールする。樹脂フィルム(vacuum bag)26の一方の端にはシール部31でシールされた排気管33が接続されており、この排気管33から矢印方向へ真空引きする。その後、樹脂フィルム(vacuum bag)26の上部にシール部30によってシールされて固定されている樹脂供給管29の弁32を開き、マトリックス樹脂28を繊維基材23に供給する。マトリックス樹脂28が繊維基材23に供給されると繊維基材23は濡れてくるので、ガラスマット22の下面から観察し、マトリックス樹脂がガラスマットのいずれか一部分に到着するまでの時間を測定する。これにより、樹脂の含浸性を測定できる。   FIG. 3 is a schematic diagram illustrating infusion molding according to an embodiment of the present invention. Reference numeral 20 denotes an infusion molding apparatus, in which a fiber base material 23 is placed on a glass mat 22 on a glass base 21, a release cloth 24 and a resin dispersion plate 25 are placed thereon, and a resin film (vacuum bag) is placed thereon. ) 26 and seal the periphery with sealants 27a and 27b. An exhaust pipe 33 sealed by a seal portion 31 is connected to one end of the resin film (vacuum bag) 26, and vacuum is drawn from the exhaust pipe 33 in the direction of the arrow. Thereafter, the valve 32 of the resin supply pipe 29 that is sealed and fixed to the upper part of the resin film (vacuum bag) 26 by the seal portion 30 is opened, and the matrix resin 28 is supplied to the fiber base material 23. When the matrix resin 28 is supplied to the fiber base material 23, the fiber base material 23 gets wet, so that it is observed from the lower surface of the glass mat 22 and the time until the matrix resin arrives at any part of the glass mat 22 is measured. . Thereby, the impregnation property of resin can be measured.

以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   The present invention will be specifically described below with reference to examples. In addition, this invention is not limited to the following Example.

(実施例1)
強化用繊維としてSGL社製炭素繊維(50K)、形状:ラージトゥフィラメント、単繊維径7μm、トータル繊度3300texを使用した。編み糸としてポリエチレンテレフタレート(PET)マルチフィラメント糸(繊度:8.3tex,単位面積当たりの質量:9.3g/m2,ゲージ数:5/inch,トリコット編み,幅:約5.08mm,縦回数4.1回/cm)を使用し、裏面のヨコ糸としてガラスフィラメント糸(繊度:34tex, 単位面積当たりの質量:10g/m2,ゲージ数:7.5/inch)を使用して図1A−Bに示す繊維シート1を作成した。1つの繊維束2の幅は約5mmであった。この繊維シートは一方向基材である。
Example 1
Carbon fiber (50K) manufactured by SGL, shape: large toe filament, single fiber diameter of 7 μm, total fineness of 3300 tex was used as the reinforcing fiber. Polyethylene terephthalate (PET) multifilament yarn as the knitting yarn (fineness: 8.3 tex, mass per unit area: 9.3 g / m 2 , gauge number: 5 / inch, tricot knitting, width: about 5.08 mm, number of warping 1 times / cm), and glass filament yarn (fineness: 34 tex, mass per unit area: 10 g / m 2 , number of gauges: 7.5 / inch) as the weft yarn on the back surface as shown in FIG. The fiber sheet 1 shown to -B was created. The width of one fiber bundle 2 was about 5 mm. This fiber sheet is a unidirectional substrate.

編み糸の針孔の密度は、次の計算式によって算出できる。
ヨコ方向(図1AのX)の針孔数(個/m):(100/2.54)×5=196.9
タテ方向(図1AのY)の針孔数(個/m):(100/1)×4.1=410
単位面積当たりの針孔数(個/m2):196.9×410=80,729
The density of the needle holes of the knitting yarn can be calculated by the following calculation formula.
Number of needle holes in the horizontal direction (X in FIG. 1A) (pieces / m): (100 / 2.54) × 5 = 196.9
Number of needle holes in the vertical direction (Y in FIG. 1A) (pieces / m): (100/1) × 4.1 = 410
Number of needle holes per unit area (pieces / m 2 ): 196.9 × 410 = 80,729

得られた繊維シート(一方向基材)をガラス板上にタテ、ヨコ各200mmの大きさで並べ、同じ方向に22枚積層して単位面積当たりの質量724g/m2の繊維基材とした。これを図3に示すインフュージョン成形方法に従って成形した。20はインフュージョン成形装置であり、ガラス基台21の上のガラスマット22上に繊維基材23をのせ、その上に剥離布24と樹脂分散板25をのせ、その上から樹脂フィルム(vacuum bag)26を被せ、周囲をシーラント27a,27bでシールした。樹脂フィルム(vacuum bag)26の一方の端にはシール部31でシールされた排気管33が接続されており、この排気管33から矢印方向へ真空引きした。その後、樹脂フィルム(vacuum bag)26の上部にシール部30によってシールされて固定されている樹脂供給管29の弁32を開き、マトリックス樹脂28を繊維基材23に供給した。マトリックス樹脂28が繊維基材23に供給されると繊維基材23は濡れてくるので、ガラスマット22の下面から観察し、マトリックス樹脂がガラスマットのいずれか一部分に到着するまでの時間を測定した。この時間を樹脂含浸時間とした。マトリックス樹脂は下記のエポキシ系樹脂(HUNTSMAN社製)を混合して使用した(粘度200〜320mPa・s(25℃))。
主剤:Araldaite LY1564SP:100重量部
硬化剤:Aradur 3416:34重量部
針孔密度と樹脂含浸時間の結果は表1にまとめて示す。
The obtained fiber sheet (unidirectional base material) was arranged on a glass plate in a size of 200 mm in length and width, and 22 sheets were laminated in the same direction to form a fiber base material having a mass per unit area of 724 g / m 2 . . This was molded according to the infusion molding method shown in FIG. Reference numeral 20 denotes an infusion molding apparatus, in which a fiber base material 23 is placed on a glass mat 22 on a glass base 21, a release cloth 24 and a resin dispersion plate 25 are placed thereon, and a resin film (vacuum bag) is placed thereon. ) 26 and covered with sealants 27a and 27b. An exhaust pipe 33 sealed by a seal portion 31 is connected to one end of the resin film (vacuum bag) 26, and vacuum was drawn from the exhaust pipe 33 in the direction of the arrow. Thereafter, the valve 32 of the resin supply pipe 29 that was sealed and fixed to the upper part of the resin film (vacuum bag) 26 by the seal portion 30 was opened, and the matrix resin 28 was supplied to the fiber base material 23. When the matrix resin 28 is supplied to the fiber base material 23, the fiber base material 23 gets wet, so that the time until the matrix resin arrives at any part of the glass mat is measured by observing from the lower surface of the glass mat 22. . This time was defined as resin impregnation time. The matrix resin used was mixed with the following epoxy resin (manufactured by HUNTSMAN) (viscosity 200 to 320 mPa · s (25 ° C.)).
Main agent: Araldaite LY1564SP: 100 parts by weight Curing agent: Aradur 3416: 34 parts by weight The results of needle hole density and resin impregnation time are summarized in Table 1.

(実施例2〜4、比較例1〜2)
針孔密度を表1に示す以外は実施例1と同様に実験した。結果は表1にまとめて示し、図4には実施例及び比較例の針孔密度と樹脂含浸時間との関係をグラフで示す。
(Examples 2-4, Comparative Examples 1-2)
The experiment was performed in the same manner as in Example 1 except that the needle hole density is shown in Table 1. The results are summarized in Table 1, and FIG. 4 is a graph showing the relationship between the needle hole density and the resin impregnation time in Examples and Comparative Examples.

Figure 2016078258
Figure 2016078258

表1及び図4から、針孔密度が8万個/m2以上18万個/m2以下であれば、樹脂含浸時間は短く、成形物の生産性は高いことが分かる。また、樹脂の含浸性も改善され、均質な成形物が得られた。これに対して実施例1は針孔密度が低く、樹脂含浸時間が長くて好ましくなかった。また、比較例2は実施例4と比べて樹脂含浸時間はそれほど短縮されず、針孔が多くなることに起因する欠陥が考えられ、採用するには至らなかった。 From Table 1 and FIG. 4, it can be seen that when the needle hole density is 80,000 / m 2 or more and 180,000 / m 2 or less, the resin impregnation time is short and the productivity of the molded product is high. Moreover, the impregnation property of the resin was also improved, and a homogeneous molded product was obtained. On the other hand, Example 1 was not preferable because the needle hole density was low and the resin impregnation time was long. Further, in Comparative Example 2, the resin impregnation time was not shortened as much as in Example 4, and defects due to an increase in the number of needle holes were considered, so that it could not be adopted.

(実施例5)
実施例3で得られた繊維シート(一方向基材)をオゾン酸化処理した。繊維シート(1枚の繊維シートの大きさ:タテ、ヨコ各200mm,厚さ約0.9mm)をチャンバーに入れ、オゾン雰囲気(濃度40000ppm)に30分間接触させてオゾン酸化処理した。オゾン発生器は三菱電機社製、オゾン発生量:50g/h、最大オゾン濃度:40000ppm、生成方法:無声放電を使用した。オゾン酸化処理後の繊維シートから編み糸を取り出して動的接触角を測定したところ、前進動的接触角は69°、後退動的接触角は7°であった。
(Example 5)
The fiber sheet (unidirectional substrate) obtained in Example 3 was subjected to ozone oxidation treatment. A fiber sheet (size of one fiber sheet: vertical and horizontal 200 mm, thickness of about 0.9 mm) was placed in a chamber and contacted with an ozone atmosphere (concentration 40000 ppm) for 30 minutes for ozone oxidation treatment. The ozone generator manufactured by Mitsubishi Electric Corporation, ozone generation amount: 50 g / h, maximum ozone concentration: 40000 ppm, production method: silent discharge was used. When the knitting yarn was taken out from the fiber sheet after the ozone oxidation treatment and the dynamic contact angle was measured, the forward dynamic contact angle was 69 ° and the backward dynamic contact angle was 7 °.

編み糸と水との動的接触角の測定方法は、次のとおりである。
(a)測定機器(表面張力計)
メーカー:Biolin Scientific社(日本販売代理店:アルテック社)
測定機器:Sigma700
(b)測定方法
編み糸の動的接触角(前進接触角及び後退接触角)はヒステリシスを測定することで算出した。まず、3本の編み糸を並列に並べてアルミ箔に貼り付け、水(蒸留水)と垂直になるように3本の編み糸を同時に水にある一定の深さまで含浸させ、引き抜く操作を3サイクル実施した。この3サイクルのヒステリシスを測定し、前進接触角及び後退接触角を計算した。
(c)測定条件
Speed up:5mm/min
Speed down:5mm/min
Start depth:−1mm
Immersion depth:3mm
Ignore first:0mm
Wait when up:0sec
Wait when down:0sec
Sample interval:0sec
Detect range:5mN/m
Return position:5mm
Return speed:40mm/min
R(周長) *3本換算:0.14mm
(d)計算方法
前進接触角及び後退接触角をヒステリシス測定と次式で算出する。
Wetting force =γLVRcosθ(γLV:溶液の表面張力、R:試料の周長、θ:接触角)
なお、計算ソフトは表面張力計に組み込まれている。
The method for measuring the dynamic contact angle between the knitting yarn and water is as follows.
(A) Measuring instrument (surface tension meter)
Manufacturer: Biolin Scientific (Japan sales agent: Altech)
Measuring instrument: Sigma700
(B) Measuring method The dynamic contact angles (advance contact angle and receding contact angle) of the knitting yarn were calculated by measuring hysteresis. First, three knitting yarns are juxtaposed in parallel and affixed to aluminum foil, and three knitting yarns are simultaneously impregnated with water to a certain depth so that they are perpendicular to water (distilled water), and then pulled out for three cycles. Carried out. The hysteresis of these three cycles was measured, and the advancing contact angle and the receding contact angle were calculated.
(C) Measurement conditions Speed up: 5 mm / min
Speed down: 5mm / min
Start depth: -1mm
Immersion depth: 3mm
Ignore first: 0mm
Wait when up: 0 sec
Wait when down: 0 sec
Sample interval: 0 sec
Detect range: 5 mN / m
Return position: 5mm
Return speed: 40 mm / min
R (peripheral length) * 3 conversion: 0.14mm
(D) Calculation method The advancing contact angle and the receding contact angle are calculated by hysteresis measurement and the following equation.
Wetting force = γLVR cos θ (γLV: surface tension of solution, R: circumference of sample, θ: contact angle)
Calculation software is incorporated in the surface tension meter.

オゾン酸化処理後の繊維シートを実施例3と同様に針孔密度12万個/m2とし、繊維シートを22枚積層し、インフュージョン成形における繊維基材の裏面まで含浸される時間を測定した。結果を表2にまとめて示す。表2には前記表1の実施例3のデータも載せる。 The fiber sheet after the ozone oxidation treatment was made to have a needle hole density of 120,000 / m 2 in the same manner as in Example 3, 22 fiber sheets were laminated, and the time for impregnation to the back surface of the fiber base material in infusion molding was measured. . The results are summarized in Table 2. Table 2 also includes data of Example 3 in Table 1 above.

Figure 2016078258
Figure 2016078258

表3から明らかなとおり、実施例3に比べて実施例5はさらに樹脂含浸時間が短かく、その分生産性は高かった。成形品の品質も優れていた。   As is clear from Table 3, the resin impregnation time was shorter in Example 5 than in Example 3, and the productivity was higher accordingly. The quality of the molded product was also excellent.

本発明の繊維強化樹脂用繊維シート及びこれを用いた成形体は、風力発電に使用するブレード、船艇、ゴルフクラブのシャフト、釣竿等の各種スポーツ用品、航空機、自動車、圧力容器などに広く応用できる。   The fiber sheet for fiber reinforced resin of the present invention and a molded body using the same are widely applied to various sports equipment such as blades, boats, golf club shafts, fishing rods, etc. used in wind power generation, aircraft, automobiles, pressure vessels, etc. it can.

1 繊維強化樹脂用繊維シート
2 繊維束
3,8,9 編み糸
4 ガラス繊維フィラメント糸
5,6 強化用繊維層
7 編針
10 多軸挿入たて編物
20 インフュージョン成形装置
21 ガラス基台
22 ガラスマット
23 繊維基材
24 剥離布
25 樹脂分散板
26 樹脂フィルム(vacuum bag)
27a,27b シーラント
28 マトリックス樹脂
29 樹脂供給管
30,31 シール部
32 弁
33 排気管
X ゲージ数
Y 縦回数
DESCRIPTION OF SYMBOLS 1 Fiber sheet for fiber reinforced resin 2 Fiber bundle 3, 8, 9 Knitting yarn 4 Glass fiber filament yarn 5, 6 Reinforcing fiber layer 7 Knitting needle 10 Multi-axis inserted warp knitted fabric 20 Infusion molding apparatus 21 Glass base 22 Glass mat 23 Fiber substrate 24 Release cloth 25 Resin dispersion plate 26 Resin film (vacuum bag)
27a, 27b Sealant 28 Matrix resin 29 Resin supply pipes 30, 31 Sealing part 32 Valve 33 Exhaust pipe X Number of gauges Y Number of verticals

Claims (6)

一方向または所定角度に配列された繊維層が編み糸で一体化されている繊維強化樹脂用繊維シートであって、
前記編み糸が前記繊維層に編み込まれるときに生じる針孔を有し、
前記針孔の密度が8万個/m2以上18万個/m2以下であることを特徴とする繊維強化樹脂用繊維シート。
A fiber sheet for fiber reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a knitting yarn,
Having a needle hole that occurs when the knitting yarn is knitted into the fiber layer;
The fiber sheet for fiber-reinforced resin, wherein the density of the needle holes is 80,000 pieces / m 2 or more and 180,000 pieces / m 2 or less.
前記編み糸は、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理により、水に対する接触角が低減されている請求項1に記載の繊維強化樹脂用繊維シート。   The fiber for fiber-reinforced resin according to claim 1, wherein the knitting yarn has a contact angle with water reduced by at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment. Sheet. 前記編み糸は、前記表面処理により水に対する前進動的接触角及び後退動的接触角が低減されている請求項1又は2に記載の繊維強化樹脂用繊維シート。   The fiber sheet for fiber-reinforced resin according to claim 1 or 2, wherein the knitting yarn has a forward dynamic contact angle and a receding dynamic contact angle with water reduced by the surface treatment. 前記編み糸の水に対する前進動的接触角が75°以下、後退動的接触角が30°以下である請求項3に記載の繊維強化樹脂用繊維シート。   The fiber sheet for fiber reinforced resin according to claim 3, wherein the forward dynamic contact angle of the knitting yarn with respect to water is 75 ° or less and the backward dynamic contact angle is 30 ° or less. 前記繊維強化樹脂用繊維は炭素繊維及びガラス繊維からなる群から選ばれる少なくとも一つである請求項1〜4のいずれかに記載の繊維強化樹脂用繊維シート。   The fiber sheet for fiber reinforced resin according to any one of claims 1 to 4, wherein the fiber for fiber reinforced resin is at least one selected from the group consisting of carbon fiber and glass fiber. 請求項1〜5のいずれかに記載の繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形したことを特徴とする繊維強化樹脂成形体。   A fiber reinforced resin, wherein a plurality of fiber sheets for fiber reinforced resin according to any one of claims 1 to 5 are laminated and formed by impregnating a matrix resin into the fiber sheet for fiber reinforced resin by injection molding. Resin molded body.
JP2014209383A 2014-10-10 2014-10-10 Fiber sheet for fiber reinforced resin and molded body using the same Expired - Fee Related JP6373155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209383A JP6373155B2 (en) 2014-10-10 2014-10-10 Fiber sheet for fiber reinforced resin and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209383A JP6373155B2 (en) 2014-10-10 2014-10-10 Fiber sheet for fiber reinforced resin and molded body using the same

Publications (2)

Publication Number Publication Date
JP2016078258A true JP2016078258A (en) 2016-05-16
JP6373155B2 JP6373155B2 (en) 2018-08-15

Family

ID=55955680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209383A Expired - Fee Related JP6373155B2 (en) 2014-10-10 2014-10-10 Fiber sheet for fiber reinforced resin and molded body using the same

Country Status (1)

Country Link
JP (1) JP6373155B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284564B (en) * 2017-12-26 2019-08-13 华中科技大学 A kind of preparation method and product of the multilayered structure injection-molded item of fibre reinforced

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2005314837A (en) * 2004-04-28 2005-11-10 Toho Tenax Co Ltd Multiaxial fabric, preform material and fiber-reinforced plastic molded article
JP2006150904A (en) * 2004-12-01 2006-06-15 Toho Tenax Co Ltd Composite sheet and composite material having smooth surface using it
JP2007182065A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp, and manufacturing method for frp
JP2008307692A (en) * 2007-06-12 2008-12-25 Toray Ind Inc Fiber-reinforced plastic and its manufacturing method
JP2009019201A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2009019202A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2009197143A (en) * 2008-02-21 2009-09-03 Honda Motor Co Ltd Method for producing carbon fiber-reinforced composite material
WO2013018860A1 (en) * 2011-08-02 2013-02-07 三菱レイヨン株式会社 Carbon fiber manufacturing method and carbon fiber
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP2014173213A (en) * 2013-03-12 2014-09-22 Kurabo Ind Ltd Method of producing fiber for fiber-reinforced resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2005314837A (en) * 2004-04-28 2005-11-10 Toho Tenax Co Ltd Multiaxial fabric, preform material and fiber-reinforced plastic molded article
JP2006150904A (en) * 2004-12-01 2006-06-15 Toho Tenax Co Ltd Composite sheet and composite material having smooth surface using it
JP2007182065A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp, and manufacturing method for frp
JP2008307692A (en) * 2007-06-12 2008-12-25 Toray Ind Inc Fiber-reinforced plastic and its manufacturing method
JP2009019201A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2009019202A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2009197143A (en) * 2008-02-21 2009-09-03 Honda Motor Co Ltd Method for producing carbon fiber-reinforced composite material
WO2013018860A1 (en) * 2011-08-02 2013-02-07 三菱レイヨン株式会社 Carbon fiber manufacturing method and carbon fiber
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP2014173213A (en) * 2013-03-12 2014-09-22 Kurabo Ind Ltd Method of producing fiber for fiber-reinforced resin

Also Published As

Publication number Publication date
JP6373155B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
US10273349B2 (en) Fibers for use in fiber-reinforced resin, and production method thereof
JP6286112B1 (en) Method for producing carbon fiber spread sheet
JP5960081B2 (en) Manufacturing method of fiber for fiber reinforced resin
AU2009307761B2 (en) Improved processing of polymer matrix composites
JP4444248B2 (en) RTM molding apparatus and RTM molded body manufacturing method
JP6373155B2 (en) Fiber sheet for fiber reinforced resin and molded body using the same
JP2016169469A (en) Method for producing fiber for fiber-reinforced resin
JP5847033B2 (en) Carbon fiber stitch substrate and wet prepreg using the same
JP2019123850A (en) Carbon fiber recovery method
US20170044709A1 (en) Methods for treating reinforcing fiber and treated reinforcing fibers
JP2016056491A (en) Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
RU2009115212A (en) METHOD FOR PRODUCING SUPERPROOF LIGHT COMPOSITE MATERIAL
JP2014101605A (en) Method of manufacturing carbon fiber
WO2017110595A1 (en) Method for manufacturing heated molding material and device for heating molding material
JP6961326B2 (en) Laser light shielding material
JP2013208726A (en) Method of producing carbon fiber-reinforced composite material
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
JP2010195844A (en) Partially impregnated prepreg, manufacturing method therefor, and manufacturing method for fiber-reinforced composite material using the same
JP6261275B2 (en) Method for producing laminated ceramic-based ceramic textile composite material
RU2560362C1 (en) High-modulus carbon fibre with modified surface for reinforcing composites and method for modification thereof
JP6204762B2 (en) Manufacturing method and manufacturing system of fiber composite material
JP6014550B2 (en) Carbon fiber for fiber reinforced resin and method for producing the same
KR20180111034A (en) Method for manufacturing pipe cover using multilayer-prepreg having fire resistance and flame retardancy
JP6232181B2 (en) Fiber fabric opening method and opening device
JP2004346190A (en) Prepreg and fiber reinforced resin composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees