JP2010195844A - Partially impregnated prepreg, manufacturing method therefor, and manufacturing method for fiber-reinforced composite material using the same - Google Patents
Partially impregnated prepreg, manufacturing method therefor, and manufacturing method for fiber-reinforced composite material using the same Download PDFInfo
- Publication number
- JP2010195844A JP2010195844A JP2009038703A JP2009038703A JP2010195844A JP 2010195844 A JP2010195844 A JP 2010195844A JP 2009038703 A JP2009038703 A JP 2009038703A JP 2009038703 A JP2009038703 A JP 2009038703A JP 2010195844 A JP2010195844 A JP 2010195844A
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- reinforcing fiber
- impregnated
- fiber base
- partially impregnated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 68
- 239000011347 resin Substances 0.000 claims abstract description 68
- 239000000835 fiber Substances 0.000 claims abstract description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 229920000647 polyepoxide Polymers 0.000 claims description 62
- 239000003822 epoxy resin Substances 0.000 claims description 59
- 239000012783 reinforcing fiber Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 238000005470 impregnation Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 12
- 239000004917 carbon fiber Substances 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 claims description 5
- 239000011208 reinforced composite material Substances 0.000 claims description 4
- 238000001723 curing Methods 0.000 claims 4
- 239000011800 void material Substances 0.000 abstract description 11
- 239000011159 matrix material Substances 0.000 abstract description 5
- 230000002787 reinforcement Effects 0.000 abstract description 5
- 239000011342 resin composition Substances 0.000 description 27
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 16
- 238000000465 moulding Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 11
- 239000002759 woven fabric Substances 0.000 description 10
- 239000004744 fabric Substances 0.000 description 8
- 230000006837 decompression Effects 0.000 description 7
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 206010033307 Overweight Diseases 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- XBTRYWRVOBZSGM-UHFFFAOYSA-N (4-methylphenyl)methanediamine Chemical compound CC1=CC=C(C(N)N)C=C1 XBTRYWRVOBZSGM-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- -1 glycidyl ester Chemical class 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052736 halogen Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- VAUOPRZOGIRSMI-UHFFFAOYSA-N n-(oxiran-2-ylmethyl)aniline Chemical class C1OC1CNC1=CC=CC=C1 VAUOPRZOGIRSMI-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005649 polyetherethersulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、オートクレーブのような高価な成形装置を使用することなしに、品位の良好な繊維強化複合材料を成形することができる、且つ、取り扱い性に優れた部分含浸プリプレグと、その製造方法並びにそのプリプレグを用いた繊維強化複合材料の製造方法に関するものである。 The present invention provides a partially impregnated prepreg which can form a high-quality fiber-reinforced composite material without using an expensive molding apparatus such as an autoclave, and has excellent handleability, and a production method thereof, The present invention relates to a method for producing a fiber-reinforced composite material using the prepreg.
近年、炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度・比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフシャフト、釣り竿などの一般産業やスポーツ用途などに広く利用されてきた。 In recent years, fiber reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers have utilized their high specific strength and specific modulus to make structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, etc. It has been widely used in general industries and sports applications.
かかる繊推強化複合材料の製造方法の一つとして、強化繊維基材に高粘度の液状未硬化の熱硬化性樹脂組成物が含浸されたシート状中間基材であるプリプレグを用い、これを積層、賦形し、その後、加熱及び加圧により硬化させ目的の成形体とする方法がある。 As one method for producing such a fiber-reinforced composite material, a prepreg, which is a sheet-like intermediate base material in which a reinforcing fiber base material is impregnated with a high-viscosity liquid uncured thermosetting resin composition, is laminated. There is a method of shaping and then curing by heating and pressurization to obtain a desired molded body.
そして、従来のシート状プリプレグとしては、マトリックス樹脂をシート状の強化繊維基材に完全に含浸したものを用いるのが主であり、また、成形法もオートクレーブ成形が主流であった。しかし、最近では、オートクレーブのような高価な成形装置を使用しない方法として、強化繊維基材にマトリックス樹脂を部分的に含浸したプリプレグを用い、オーブン成形する成形方法が提案されている(例えば、特許文献1と2参照)。 And as a conventional sheet-like prepreg, what used the matrix resin completely impregnated with the matrix-like reinforcing fiber base material is mainly used, and the autoclave molding was mainly used as the molding method. However, recently, as a method that does not use an expensive molding device such as an autoclave, a molding method in which a prepreg obtained by partially impregnating a matrix resin into a reinforcing fiber base and oven-molding has been proposed (for example, a patent) Reference 1 and 2).
従来のプリプレグを積層して複合材料を成形する場合は、層間に閉じこめられた空気が成型品のボイドとなる恐れがあるため、これを防ぐために、オートクレーブなどを用いて高圧をかけて成形することが多かった。ところが、部分含浸プリプレグでは、未含浸の強化繊維の部分が通気パスとなるため、予め充分に減圧した後、加熱及び加圧を行えば、従来のプリプレグの成形より低い圧力で、ボイドの少ない成形(オーブン成形)が可能になるという利点がある。 When molding a composite material by laminating conventional prepregs, the air trapped between the layers may become voids in the molded product. To prevent this, molding is performed by applying high pressure using an autoclave or the like. There were many. However, in the partially impregnated prepreg, the portion of the unimpregnated reinforcing fiber becomes a ventilation path. Therefore, if the pressure and pressure are sufficiently reduced after heating, pressurization is performed at a lower pressure than that of the conventional prepreg and less voids are formed. There is an advantage that (oven molding) becomes possible.
一方、近年、積層作業の簡略化を目的とし、高目付炭素繊維シートが用いられるようになった。とりわけ、炭素繊維束を平行にシート状に配列した層を2層以上積層し、それらの層をステッチ糸等により一体化した多軸ステッチ基材(多軸織物)が良く用いられ、また、かかる基材を用いたプリプレグが多用されつつある。 On the other hand, in recent years, high-weight carbon fiber sheets have been used for the purpose of simplifying the laminating operation. In particular, a multiaxial stitch base material (multiaxial fabric) in which two or more layers in which carbon fiber bundles are arranged in parallel in a sheet shape is laminated and these layers are integrated by stitch yarns is often used. A prepreg using a base material is being frequently used.
ところが、かかるプリプレグを、オーブン成形で用いるために部分含浸プリプレグとした場合には、基材が高目付で、且つ、部分含浸であるが故に、プリプレグ内部にドライな繊維(樹脂が含浸していない繊維)が多数存在することになる。そして、プリプレグのカット時に、ドライな繊維から多数の毛羽が発生し、作業性を著しく悪化させるという問題がある。逆に、毛羽の発生を抑えようとして含浸度合いを上げていった場合には、前記の通り、十分に脱気できずにボイドが発生してしまうという問題がある。 However, when such a prepreg is made into a partially impregnated prepreg for use in oven molding, since the base material has a high basis weight and is partially impregnated, dry fibers (not impregnated with resin) inside the prepreg. A large number of fibers). In addition, when the prepreg is cut, a large number of fluffs are generated from the dry fiber, and there is a problem that workability is remarkably deteriorated. On the contrary, when the impregnation degree is increased in order to suppress the generation of fluff, there is a problem that voids are generated without sufficient deaeration as described above.
本発明の課題は、容易に脱気が可能で、ボイドの少ない大面積の繊維強化複合材料を簡単な方法・手段で、生産性良く製造することが可能な部分含浸プリプレグ、及びかかる部分含浸プリプレグを用いた繊維強化複合材料の製造方法を提供することにある。 An object of the present invention is to provide a partially impregnated prepreg that can be easily degassed and can produce a large-area fiber-reinforced composite material with few voids with a simple method and means, and such a partially impregnated prepreg. It is providing the manufacturing method of the fiber reinforced composite material using this.
本発明者は、部分含浸プリプレグを用いて繊推強化複合材料を製造する方法の検討の過程で、マトリックス樹脂の部分含浸割合と含浸状態、用いる強化繊維基材の種類、用いるマトリックス樹脂の種類、更には部分含浸プリプレグを用いた成形体の成形条件の選定が非常に重要であることを知見し本発明に至ったものである。即ち、本発明の上記課題は、特許請求の範囲の請求項1〜11に記載の下記の本発明によって達成される。 In the course of studying a method for producing a finely reinforced composite material using a partially impregnated prepreg, the present inventor has a partial impregnation ratio and impregnation state of a matrix resin, a type of reinforcing fiber base to be used, a type of matrix resin to be used, Furthermore, the present inventors have found that selection of molding conditions for a molded article using a partially impregnated prepreg is very important, and have reached the present invention. That is, the said subject of this invention is achieved by the following this invention of Claims 1-11 of a claim.
請求項1に記載された発明は、強化繊維基材の両面に熱硬化性樹脂シートが部分的に含浸してなるプリプレグであって、該樹脂シートの転写時の不均一加圧により樹脂の含浸部と未含浸部が縞状、格子状又は斜め格子状になっており、その未含浸部分の割合が、超音波探傷法で評価した場合に、該強化繊維基材の面積の25%以上80%未満の範囲にあることを特徴とする部分含浸プリプレグである。 The invention described in claim 1 is a prepreg in which a thermosetting resin sheet is partially impregnated on both surfaces of a reinforcing fiber substrate, and the resin impregnation is performed by non-uniform pressure during transfer of the resin sheet. When the ratio of the unimpregnated portion is evaluated by an ultrasonic flaw detection method, the area of the reinforcing fiber base is 80% or more 80%. % Partially impregnated prepreg characterized by being in the range of less than%.
請求項2に記載された発明は、強化繊維基材が、炭素繊維束を平行にシート状に配列した層を2層以上積層し、それらの層をステッチ糸により一体化した多軸ステッチ基材であることを特徴とする請求項1記載の部分含浸プリプレグである。 The invention described in claim 2 is a multiaxial stitch base material in which the reinforcing fiber base material is formed by laminating two or more layers in which carbon fiber bundles are arranged in parallel in a sheet shape, and integrating these layers with stitch yarns. The partially impregnated prepreg according to claim 1, wherein:
請求項3に記載された発明は、強化繊維基材の繊維目付が、200〜1,000g/m2であることを特徴とする請求項1又は2記載の部分含浸プリプレグである。 The invention described in claim 3, the fiber basis weight of the reinforcing fiber substrate is a portion impregnated prepreg according to claim 1 or 2 characterized in that the 200~1,000g / m 2.
請求項4に記載された発明は、熱硬化性樹脂の未含浸部分の割合が、吸水法で評価した場合、吸水率で2〜15%の範囲にあることを特徴とする請求項1記載の部分含浸プリプレグである。 The invention described in claim 4 is characterized in that the ratio of the unimpregnated portion of the thermosetting resin is in the range of 2 to 15% in terms of water absorption when evaluated by the water absorption method. It is a partially impregnated prepreg.
請求項5に記載された発明は、強化繊維基材の両面に熱硬化性樹脂シートを重ねて配置し、次いで該強化繊維基材と該樹脂シートを不均一に加圧して樹脂を強化繊維基材に不均一に含浸せしめ、超音波探傷法で評価した場合の樹脂の未含浸部分の割合が、該強化繊維基材の面積の25%以上80%未満の範囲になるようにすることを特徴とする部分含浸プリプレグの製造方法である。 In the invention described in claim 5, a thermosetting resin sheet is placed on both sides of a reinforcing fiber base material, and then the reinforcing fiber base material and the resin sheet are non-uniformly pressed to apply the resin to the reinforcing fiber base. The material is impregnated non-uniformly, and the ratio of the unimpregnated portion of the resin when evaluated by an ultrasonic flaw detection method is within a range of 25% or more and less than 80% of the area of the reinforcing fiber base. This is a method for producing a partially impregnated prepreg.
請求項6に記載された発明は、強化繊維基材と熱硬化性樹脂シートを加圧するに際し、該強化繊維基材として、厚み方向に0.02〜0.1mmの凹凸を有する基材を用いて加圧することを特徴とする請求項5記載の部分含浸プリプレグ製造方法である。 In the invention described in claim 6, when pressurizing the reinforcing fiber base and the thermosetting resin sheet, a base having 0.02-0.1 mm unevenness in the thickness direction is used as the reinforcing fiber base. The partially impregnated prepreg manufacturing method according to claim 5, wherein the pressurizing is performed.
請求項7に記載の発明は、強化繊維基材と熱硬化性樹脂シートを加圧するに際し、表面に0.02〜0.1mmの凹凸を有するスリットローラーを用いて不均一に加圧することを特徴とする請求項5記載の部分含浸プリプレグ製造方法である。 The invention according to claim 7 is characterized in that when the reinforcing fiber base and the thermosetting resin sheet are pressed, the surface is pressed non-uniformly using a slit roller having an unevenness of 0.02 to 0.1 mm on the surface. The partially impregnated prepreg manufacturing method according to claim 5.
請求項8に記載の発明は、強化繊維基材の両面に熱硬化性樹脂シートが部分的に含浸してなるプリプレグであって、該樹脂シートの転写時の不均一加圧により樹脂の含浸部と未含浸部が縞状、格子状又は斜め格子状になっており、その未含浸部分の割合が、超音波探傷法で評価した場合に、該強化繊維基材の面積の25%以上80%未満の範囲にある部分含浸プリプレグを、複数枚積層し積層体とし、得られた積層体をバック材で覆い、次いで、その内部を25℃以下の温度で減圧し、その後減圧を維持しながら外部から加熱することによって、前記強化繊維基材の内部にまで熱硬化性樹脂を含浸させ、かつ、硬化させることを特徴とする繊維強化複合材料の製造方法である。 The invention according to claim 8 is a prepreg formed by partially impregnating a thermosetting resin sheet on both sides of a reinforcing fiber base material, wherein the resin impregnated portion is formed by non-uniform pressure during transfer of the resin sheet. And the unimpregnated portion is in the form of stripes, lattices, or diagonal lattices, and the proportion of the unimpregnated portions is 25% or more and 80% of the area of the reinforcing fiber substrate when evaluated by an ultrasonic flaw detection method. A plurality of partially impregnated prepregs in the range below are laminated to form a laminated body, and the obtained laminated body is covered with a back material, and then the inside is depressurized at a temperature of 25 ° C. or lower, and then the outside is maintained while maintaining the reduced pressure. The fiber-reinforced composite material manufacturing method is characterized in that a thermosetting resin is impregnated into the inside of the reinforcing fiber base material and cured by heating.
請求項9に記載の発明は、熱硬化性樹脂として、25℃での粘度が100Pa・S以上である液状エポキシ樹脂(A)と、25℃で固体であるエポキシ樹脂(B)と、ジシアンジアミド硬化剤(C)とを必須成分として含むエポキシ樹脂組成物を用いることを特徴とする請求項8記載の繊維強化複合材料の製造方法である。 The invention according to claim 9 is, as a thermosetting resin, a liquid epoxy resin (A) whose viscosity at 25 ° C. is 100 Pa · S or more, an epoxy resin (B) which is solid at 25 ° C., and dicyandiamide curing. The method for producing a fiber-reinforced composite material according to claim 8, wherein an epoxy resin composition containing an agent (C) as an essential component is used.
請求項10に記載の発明は、減圧が、エポキシ樹脂組成物の粘度が5×105Pa・S以上の範囲で、15分間以上、真空度が−0.09MPa以下の範囲で行なわれることを特徴とする請求項9記載の繊維強化複合材料の製造方法である。 In the invention according to claim 10, the pressure reduction is performed in the range where the viscosity of the epoxy resin composition is 5 × 10 5 Pa · S or more, 15 minutes or more, and the degree of vacuum is −0.09 MPa or less. It is a manufacturing method of the fiber reinforced composite material of Claim 9 characterized by the above-mentioned.
そして、請求項11記載の発明は、加熱が、エポキシ樹脂組成物の硬化開始温度より10〜25℃低い温度で一定時間保持し、その後、硬化温度まで上げるステップキュアの方法で行なわれることを特徴とする請求項9又は10記載の繊維強化複合材料の製造方法である。 The invention according to claim 11 is characterized in that the heating is performed by a step cure method in which the heating is held for 10 hours at a temperature lower by 10 to 25 ° C. than the curing start temperature of the epoxy resin composition, and then raised to the curing temperature. It is a manufacturing method of the fiber reinforced composite material of Claim 9 or 10.
本発明によると、取り扱い性に優れた部分含浸プリプレグであって、オーブン成形用高目付プリプレグが得られる。そして、かかるプリプレグを用いると、オートクレーブのような高価な成形装置を使用することなしに、品位の良好な繊維強化複合材料を得ることができる。 According to the present invention, a partially impregnated prepreg excellent in handleability, which is a high weight prepreg for oven molding, can be obtained. When such a prepreg is used, a fiber-reinforced composite material with good quality can be obtained without using an expensive molding device such as an autoclave.
本発明の部分含浸プリプレグは、強化繊維基材の両面に熱硬化性樹脂シート(フィルムも含む)が含浸してなるプリプレグであって、該樹脂シートの樹脂が該強化繊維基材に部分的に含浸しており、超音波探傷法で評価した場合の樹脂の未含浸部分の割合が、該強化繊維基材の面積の25%以上80%未満の範囲、好ましくは30〜70%の範囲にあるものである。また、熱硬化性樹脂の未含浸部分の割合は、吸水法で評価した場合、吸水率で2〜15%の範囲、好ましくは3〜10%の範囲にあるものが適当である。 The partially impregnated prepreg of the present invention is a prepreg obtained by impregnating both sides of a reinforcing fiber substrate with a thermosetting resin sheet (including a film), and the resin of the resin sheet is partially applied to the reinforcing fiber substrate. The ratio of the resin impregnated portion when impregnated and evaluated by the ultrasonic flaw detection method is in the range of 25% or more and less than 80%, preferably 30 to 70% of the area of the reinforcing fiber base. Is. Moreover, when the ratio of the non-impregnated part of the thermosetting resin is evaluated by a water absorption method, the water absorption is in the range of 2 to 15%, preferably in the range of 3 to 10%.
超音波探傷法によるプリプレグの未含浸部分の面積は、次の方法によって求められる。超音波探傷測定装置(例えば、SDS−3600:日本クラウトクレイマー社製など)を用い、二重透過法で、周波数5Hzで測定を行なう。先ず、完全に樹脂組成物を含浸させたプリプレグを超音波探傷測定し、増幅度(dB)の値を設定する。次に、設定した増幅度(dB)の値で部分含浸プリプレグを測定し、しきい値50%以下を未含浸部とする。そして、測定した面積に対し、しきい値50%以下の割合を算出し、未含浸部分の割合を数値化する。 The area of the unimpregnated portion of the prepreg by the ultrasonic flaw detection method is determined by the following method. Using an ultrasonic flaw detector (for example, SDS-3600: manufactured by Nippon Kraut Kramer Co., Ltd.), measurement is performed at a frequency of 5 Hz by the double transmission method. First, ultrasonic flaw detection is performed on a prepreg completely impregnated with a resin composition, and a value of amplification degree (dB) is set. Next, the partially impregnated prepreg is measured with the set amplification factor (dB), and a threshold value of 50% or less is defined as an unimpregnated portion. Then, the ratio of the threshold value of 50% or less is calculated with respect to the measured area, and the ratio of the unimpregnated portion is quantified.
プリプレグの吸水率は、次の方法によって求められる。プリプレグを100×100mmにカットし、重量(W1)を測定する。その後、デシケーター中で、プリプレグを水中に沈め、減圧し、プリプレグ内部の空気と水を置換させる。プリプレグを水中から取り出し、表面の水を拭き取り、プリプレグの重量(W2)を測定する。そして、吸水率は下記式で算出されるものである。
吸水率(%)=[(W2−W1)/W1]×100
W1:プリプレグの重量(g)
W2:吸水後のプリプレグの重量(g)
The water absorption rate of the prepreg is determined by the following method. Cut the prepreg to 100 × 100 mm and measure the weight (W1). Thereafter, the prepreg is submerged in water in a desiccator and decompressed to replace the air and water inside the prepreg. The prepreg is taken out of the water, the surface water is wiped off, and the weight (W2) of the prepreg is measured. The water absorption rate is calculated by the following formula.
Water absorption (%) = [(W2−W1) / W1] × 100
W1: Weight of prepreg (g)
W2: Weight of prepreg after water absorption (g)
前記において未含浸部分が、所定範囲未満の場合には、強化繊維層の通気パスが不十分になる恐れがあり、所定範囲を超えると、プリプレグをカットする際に毛羽が生じる可能性が高くなる。 When the unimpregnated portion is less than the predetermined range in the above, the ventilation path of the reinforcing fiber layer may be insufficient, and if it exceeds the predetermined range, there is a high possibility that fluff is generated when the prepreg is cut. .
本発明においては、強化繊維基材の両面に熱硬化性樹脂シートが含浸してなるプリプレグであって、この樹脂シートの樹脂が、前記強化繊維基材内部で、繊維方向において縞状、格子状又は斜め格子状に含浸部と未含浸部が形成されているものが好ましい。かかる場合、プリプレグ内部に含浸部と未含浸部が交互に存在し、未含浸部の通気パスが確保されているため、オーブン成形における減圧工程にて十分に脱気が可能となる。従って、含浸度合いを上げた高目付プリプレグであっても、プリプレグ内部に縞状に樹脂の含浸部と連続した未含浸部を持たせることで、ボイドの少ない成形物を得ることが可能になる。 In the present invention, a prepreg formed by impregnating a thermosetting resin sheet on both sides of a reinforcing fiber substrate, the resin of the resin sheet is striped in the fiber direction inside the reinforcing fiber substrate, and in a lattice shape Or what has the impregnation part and the non-impregnation part formed in the diagonal grid | lattice form is preferable. In such a case, the impregnated portion and the non-impregnated portion are alternately present in the prepreg, and the ventilation path of the non-impregnated portion is secured, so that the deaeration can be sufficiently performed in the decompression step in the oven molding. Therefore, even a highly-prepared prepreg having an increased degree of impregnation can be obtained by providing a non-impregnated portion continuous with the resin-impregnated portion in a striped manner inside the prepreg, thereby obtaining a molded product with less voids.
本発明のプリプレグは、単位面積あたりの強化繊維量が200〜1000g/m2であるものが好ましい。プリプレグの強化繊維量が、200g/m2未満では、繊維強化複合材料用に成形する際、所定の厚みを得るために積層枚数を多くする必要があり、作業が繁雑となることがある。1000g/m2を超えるとプリプレグのドレープ性が低下する傾向にある。 The prepreg of the present invention, the reinforcing fiber content per unit area of those is preferably 200 to 1000 g / m 2. When the amount of prepreg reinforcing fibers is less than 200 g / m 2, it is necessary to increase the number of laminated sheets in order to obtain a predetermined thickness when forming for a fiber reinforced composite material, which may complicate the operation. When it exceeds 1000 g / m 2 , the drapeability of the prepreg tends to decrease.
本発明において用いられる強化繊維基材用の強化繊維としては、特に制限はないが、例えば、ガラス繊維、アラミド繊維、炭素繊維、黒鉛繊維、ホウ素繊維などが挙げられる。中でも比強度・比弾性率の点で炭素繊維が好ましい。 The reinforcing fiber for reinforcing fiber substrate used in the present invention is not particularly limited, and examples thereof include glass fiber, aramid fiber, carbon fiber, graphite fiber, boron fiber and the like. Among these, carbon fiber is preferable in terms of specific strength and specific modulus.
プリプレグ用の強化繊維基材の形態としては、特に限定はないが、強化繊維束を経糸及び/又は緯糸として使用した平織物、綾織物、朱子織物や、平行に引き揃えた強化繊維束の集合からなる一方向織物、二方向織物、多軸織物等がある。あるいは、強化繊維からなる不織布、マット、ニット、組み紐などであっても良い。多軸織物とは、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。 The form of the reinforcing fiber base material for prepreg is not particularly limited, but a plain fabric, a twill fabric, a satin fabric using reinforcing fiber bundles as warp and / or weft, and a collection of reinforcing fiber bundles arranged in parallel Unidirectional woven fabric, bi-directional woven fabric, multiaxial woven fabric, and the like. Alternatively, it may be a nonwoven fabric made of reinforcing fibers, mat, knit, braid or the like. Multiaxial woven fabric is a bundle of fiber reinforcements aligned in one direction, laminated at different angles, and stitched yarns such as nylon yarn, polyester yarn, and glass fiber yarn. It refers to a woven fabric that penetrates in the direction and stitches by reciprocating along the surface direction between the front and back surfaces of the laminate.
本発明においては、部分含浸プリプレグの未含浸部分の割合を制御する観点から、部分含浸に使用する繊維強化織物は、多軸織物が好ましい。多軸織物とは、強化繊維基材が、炭素繊維束を平行にシート状に配列した層を2層以上積層し、該積層体をステッチ糸等により一体化した多軸ステッチ基材である。好ましい多軸織物の例としては、〔+45/−45〕、〔−45/+45〕、〔0/90〕、〔0/+45/−45〕、〔0/−45/+45〕、〔0/+45/90/−45〕等を挙げることができる。0、±45、90は、多軸織物を構成する各層の積層角度を表し、それぞれ一方向に引き揃えた強化繊維の繊維軸方向が、織物の長さ方向に対して0°、±45°、90°であることを示している。積層角度はこれらの角度に限定されず、任意の角度とすることができる。本発明においては、多軸織物の中でも、厚み方向に高さが0.02〜0.1mmの凹凸を有するものが特に好ましい。 In the present invention, from the viewpoint of controlling the proportion of the unimpregnated portion of the partially impregnated prepreg, the fiber reinforced fabric used for partial impregnation is preferably a multiaxial fabric. The multiaxial woven fabric is a multiaxial stitch base material in which a reinforcing fiber base material is formed by laminating two or more layers in which carbon fiber bundles are arranged in parallel in a sheet shape, and the laminated body is integrated by stitch yarns or the like. Examples of preferred multiaxial fabrics include [+ 45 / −45], [−45 / + 45], [0/90], [0 / + 45 / −45], [0 / −45 / + 45], [0 / + 45/90 / -45]. 0, ± 45, 90 represents the lamination angle of each layer constituting the multiaxial woven fabric, and the fiber axis directions of the reinforcing fibers aligned in one direction are 0 °, ± 45 ° with respect to the length direction of the woven fabric. , 90 °. The stacking angle is not limited to these angles, and can be any angle. In the present invention, among the multiaxial woven fabrics, those having unevenness with a height of 0.02 to 0.1 mm in the thickness direction are particularly preferable.
本発明において、プリプレグは繊維含有率が30〜80重量%のものが好ましく用いられる。より好ましくは35〜70重量%であり、更に好ましくは40〜65重量%である。繊維比率が30重量%未満だと樹脂の量が多すぎて、比強度、比弾性率が優れた繊維強化複合材料の利点が得られず、80重量%を超えると樹脂の含浸不良が生じ、得られる複合材料はボイドの多いものとなる恐れがある。 In the present invention, the prepreg preferably has a fiber content of 30 to 80% by weight. More preferably, it is 35-70 weight%, More preferably, it is 40-65 weight%. If the fiber ratio is less than 30% by weight, the amount of the resin is too large to obtain the advantages of the fiber-reinforced composite material having excellent specific strength and specific elastic modulus, and if it exceeds 80% by weight, poor resin impregnation occurs. The resulting composite material can be highly voided.
本発明に適した熱硬化性樹脂としては、樹脂又は樹脂組成物の25℃での粘度が5×105Pa・S以上であり、該樹脂組成物の硬化開始温度が100〜120℃の範囲にあり、且つ、その時の粘度(最低粘度)が0.1〜2Pa・Sの範囲にあるエポキシ樹脂組成物が望ましい。 As a thermosetting resin suitable for the present invention, the viscosity at 25 ° C. of the resin or resin composition is 5 × 10 5 Pa · S or more, and the curing start temperature of the resin composition is in the range of 100 to 120 ° C. In addition, an epoxy resin composition having a viscosity (minimum viscosity) in the range of 0.1 to 2 Pa · S is desirable.
上記エポキシ樹脂組成物としては、例えば、25℃での粘度が100Pa・S以上である液状エポキシ樹脂(A)と、25℃で固体であるエポキシ樹脂(B)と、ジシアンジアミド硬化剤(C)とを必須成分として含むエポキシ樹脂組成物であって、該樹脂組成物の25℃での粘度が5×105Pa・S以上であり、該樹脂組成物の硬化開始温度が100〜120℃の範囲にあり、且つ、その時の粘度(最低粘度)が0.1〜2Pa・Sの範囲にあるエポキシ樹脂組成物を挙げることができる。 Examples of the epoxy resin composition include a liquid epoxy resin (A) having a viscosity at 25 ° C. of 100 Pa · S or more, an epoxy resin (B) that is solid at 25 ° C., and a dicyandiamide curing agent (C). Is an epoxy resin composition containing, as an essential component, the viscosity of the resin composition at 25 ° C. is 5 × 10 5 Pa · S or more, and the curing start temperature of the resin composition is in the range of 100 to 120 ° C. And an epoxy resin composition having a viscosity (minimum viscosity) in the range of 0.1 to 2 Pa · S.
本発明の好ましい態様のエポキシ樹脂組成物は、25℃での粘度が100Pa・S以上である液状エポキシ樹脂(A)を必須成分とする。かかる成分(A)の配合により、室温でプリプレグに適度なタックやドレープ性を与えることができる。25℃の粘度が100Pa・S未満の樹脂組成物では、部分含浸プリプレグを用いて繊推強化複合材料を製造する際、部分含浸プリプレグの積層後の減圧工程で樹脂が流動し、未含浸の強化繊維の部分が充分に減圧される前に、通気パスがふさがるため、加熱成形後、内部ボイドが多く発生するおそれがある。 The epoxy resin composition of the preferable aspect of this invention uses the liquid epoxy resin (A) whose viscosity in 25 degreeC is 100 Pa * S or more as an essential component. By blending this component (A), it is possible to impart appropriate tack and drape to the prepreg at room temperature. In a resin composition having a viscosity at 25 ° C. of less than 100 Pa · S, when a finely reinforced composite material is produced using a partially impregnated prepreg, the resin flows in the decompression step after lamination of the partially impregnated prepreg, and the unimpregnated reinforcement Since the ventilation path is blocked before the fiber portion is sufficiently decompressed, many internal voids may be generated after the thermoforming.
具体的には、液状エポキシ樹脂(A)としては、例えば、分子内に水酸基を有する化合物から得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物から得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物から得られるグリシジルエステル型エポキシ樹脂、分子内に不飽和結合を有する化合物から得られる環式脂肪族エポキシ樹脂、あるいはこれらから選ばれる2種類以上のタイプが分子内に混在するエポキシ樹脂などを用いることができる。 Specifically, as the liquid epoxy resin (A), for example, a glycidyl ether type epoxy resin obtained from a compound having a hydroxyl group in the molecule, a glycidylamine type epoxy resin obtained from a compound having an amino group in the molecule, a molecule A glycidyl ester type epoxy resin obtained from a compound having a carboxyl group in it, a cycloaliphatic epoxy resin obtained from a compound having an unsaturated bond in the molecule, or two or more types selected from these are mixed in the molecule An epoxy resin or the like can be used.
グリシジルエーテル型エポキシ樹脂の具体例としては、ビスフェノールAとエピクロロヒドリンの反応により得られるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロロヒドリンの反応により得られるビスフェノールF型エポキシ樹脂、レゾルシノールとエピクロロヒドリンの反応により得られるレゾルシノール型エポキシ樹脂、その他ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びこれらのハロゲンあるいはアルキル置換体などが挙げられる。 Specific examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin obtained by reaction of bisphenol A and epichlorohydrin, bisphenol F type epoxy resin obtained by reaction of bisphenol F and epichlorohydrin, resorcinol and epi Examples thereof include resorcinol type epoxy resins obtained by reaction of chlorohydrin, other polyethylene glycol type epoxy resins, polypropylene glycol type epoxy resins, naphthalene type epoxy resins, and halogen or alkyl substituted products thereof.
グリシジルアミン型エポキシ樹脂の具体例としては、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物類、グリシジルアニリン類、キシレンジアミンのグリシジル化合物などが挙げられる。 Specific examples of the glycidylamine type epoxy resin include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine.
本発明の好ましい態様のエポキシ樹脂組成物は、25℃で固体であるエポキシ樹脂(B)を必須成分とする。かかる成分(B)は、本発明のエポキシ樹脂組成物中に溶解して使用され、部分含浸プリプレグの室温付近での減圧工程で、エポキシ樹脂組成物の粘度を増加させ樹脂流動性を抑える一方、成形・硬化の際には、エポキシ樹脂組成物のゲル化前(硬化開始前)に粘度を低下させ良好な流動性を賦与するものである。成分(B)の融点の好ましい範囲は50〜130℃であり、より好ましくは60〜100℃である。 The epoxy resin composition of the preferable aspect of this invention uses the epoxy resin (B) which is solid at 25 degreeC as an essential component. Such component (B) is used by being dissolved in the epoxy resin composition of the present invention, and in the decompression step near the room temperature of the partially impregnated prepreg, while increasing the viscosity of the epoxy resin composition and suppressing the resin fluidity, At the time of molding and curing, the viscosity is lowered before gelation of the epoxy resin composition (before the start of curing) and good fluidity is imparted. The preferable range of the melting point of the component (B) is 50 to 130 ° C, more preferably 60 to 100 ° C.
上記成分(B)の固形エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、テレフタル酸型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、ポリアルキルビスフェノールF型エポキシ樹脂等が挙げられる。 The component (B) solid epoxy resin includes bisphenol A type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, terephthalic acid type epoxy resin, isocyanurate type epoxy resin. And polyalkyl bisphenol F type epoxy resins.
本発明の好ましい態様のエポキシ樹脂組成物においてもう一つの必須成分は、ジシアンジアミド硬化剤(C)である。かかる成分(C)は、本発明のエポキシ樹脂組成物中に分散して使用される。硬化剤は通常粒子状で使用されるが、その粒径は平均で10μm以下が好ましく、7μm以下がより好ましい。また、硬化開始温度を調整するため、上記成分(A)、(B)、(C)以外に、硬化促進剤を併用することが好ましい。硬化促進剤としては、尿素系硬化促進剤、イミダゾール化合物、アミンアダクト物などが好ましく用いられる。 Another essential component in the epoxy resin composition of a preferred embodiment of the present invention is a dicyandiamide curing agent (C). Such component (C) is used by being dispersed in the epoxy resin composition of the present invention. The curing agent is usually used in the form of particles, but the average particle size is preferably 10 μm or less, and more preferably 7 μm or less. In order to adjust the curing start temperature, it is preferable to use a curing accelerator in addition to the components (A), (B), and (C). As the curing accelerator, urea-based curing accelerators, imidazole compounds, amine adducts and the like are preferably used.
本発明の好ましい態様のエポキシ樹脂組成物には、必要に応じて、上記成分(A)と(B)と(C)の他に、ゴム粒子や熱可塑性樹脂粒子等の有機粒子、可溶性熱可塑性樹脂等を1種または2種以上含有させることができる。添加量は上記成分(A)と(B)と(C)の合計量に対し20重量%以下の範囲である。 In the epoxy resin composition of a preferred embodiment of the present invention, if necessary, in addition to the components (A), (B), and (C), organic particles such as rubber particles and thermoplastic resin particles, soluble thermoplastic One or more resins can be contained. The addition amount is in the range of 20% by weight or less with respect to the total amount of the components (A), (B), and (C).
ゴム粒子としては、架橋ゴム粒子、及び架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。熱可塑性樹脂粒子としては、ポリアミド粒子、ポリイミド粒子が好ましく用いられる。可溶性熱可塑性樹脂としては、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリエーテルエーテルスルホン、ボリビニルホルマール、ポリメタクリル酸メチルなどが好ましく用いられる。 As the rubber particles, cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like. As the thermoplastic resin particles, polyamide particles and polyimide particles are preferably used. As the soluble thermoplastic resin, polyethersulfone, polysulfone, polyimide, polyetherimide, polycarbonate, polyetherethersulfone, polyvinyl formal, polymethyl methacrylate and the like are preferably used.
本発明の好ましい態様のエポキシ樹脂組成物は、25℃での粘度が5×105Pa・S以上であり、また、この樹脂組成物の硬化開始温度が100〜120℃の範囲にあり、且つ、その時の粘度(最低粘度)が0.1〜2Pa・Sの範囲にあるものである。25℃における粘度は、7×105Pa・s以上が更に好ましい。成形性、特に炭素繊維等の強化繊維への含浸性の観点から、最低粘度は0.1〜1Pa・Sであるのが更に好ましい。 The epoxy resin composition according to a preferred embodiment of the present invention has a viscosity at 25 ° C. of 5 × 10 5 Pa · S or more, the curing start temperature of the resin composition is in the range of 100 to 120 ° C., and The viscosity (minimum viscosity) at that time is in the range of 0.1 to 2 Pa · S. The viscosity at 25 ° C. is more preferably 7 × 10 5 Pa · s or more. From the viewpoint of moldability, particularly impregnation into reinforcing fibers such as carbon fibers, the minimum viscosity is more preferably 0.1 to 1 Pa · S.
本発明において樹脂又は樹脂組成物の粘度は、次の方法によって求めた。即ち、動的粘弾性測定装置(例えば、レオメーター
VAR−100:レオロジカ社製など)を用い、パラレルプレートで、昇温速度2℃/minで単純昇温し、周波数1Hz、プレート間隔
1mmで測定を行った。粘度104Pa・s以上では、Ф8のパラレルプレートを用い測定した。粘度104Pa・s未満では、Ф40のパラレルプレートを用い測定した。樹脂組成物を加熱して行く過程で、樹脂組成物の粘度は低下していくが、ある温度で硬化が開始すると粘度が急激に増加する。このときの粘度曲線の屈曲点の温度が硬化開始温度であり、その時の粘度が最低粘度として定義される。
In the present invention, the viscosity of the resin or resin composition was determined by the following method. That is, using a dynamic viscoelasticity measuring device (for example, rheometer VAR-100: manufactured by Rheology Corporation), the temperature is simply raised at a heating rate of 2 ° C./min with a parallel plate, and measured at a frequency of 1 Hz and a plate interval of 1 mm. Went. When the viscosity was 10 4 Pa · s or more, measurement was performed using a parallel plate of Ф8. When the viscosity was less than 10 4 Pa · s, the measurement was performed using a parallel plate of Ф40. In the process of heating the resin composition, the viscosity of the resin composition decreases, but when curing starts at a certain temperature, the viscosity rapidly increases. The temperature at the bending point of the viscosity curve at this time is the curing start temperature, and the viscosity at that time is defined as the minimum viscosity.
以下、本発明の部分含浸プリプレグとそれを用いた繊維強化複合材料の製造方法の一例について説明する。本発明においては、先ず、前記樹脂又は樹脂組成物を、リバースロールコーターやナイフコーターなどにより離型紙上に塗布してシート化又はフィルム化し、得られたシート又はフィルムを強化繊維基材の両面に積層・配置し、そして、加熱・加圧して樹脂又は樹脂組成物を強化繊維基材に含浸させることにより製造することができる。 Hereinafter, an example of a method for producing a partially impregnated prepreg of the present invention and a fiber-reinforced composite material using the same will be described. In the present invention, first, the resin or the resin composition is applied onto a release paper by a reverse roll coater or a knife coater to form a sheet or film, and the obtained sheet or film is applied to both surfaces of the reinforcing fiber base. It can be produced by laminating, arranging, and impregnating a reinforcing fiber substrate with a resin or a resin composition by heating and pressing.
ここで、樹脂の含浸状態を、強化繊維基材に縞状、格子状又は斜め格子状に含浸部と未含浸部を存在させる方法としては、樹脂シート(フィルムを含む)から繊維基材へ転写する際に、不均一加圧を行って製造する方法がある。不均一加圧の方法としては、予め、わずかな凹凸を持つ基材を用いる方法や、わずかな凹凸加工を施した加圧プレートを用いる方法、連続含浸の場合にはわずかな凹凸加工を施したローラー(スリットローラー)を用いる方法で、本発明において好ましい態様の部分含浸プリプレグを製造することができる。 Here, the resin impregnated state is transferred from the resin sheet (including film) to the fiber base material as a method of causing the reinforcing fiber base material to have the impregnated portion and the non-impregnated portion in a striped, lattice-like or oblique lattice shape. There is a method of manufacturing by performing non-uniform pressurization. As a method of non-uniform pressing, a method using a substrate having slight unevenness, a method using a pressure plate subjected to slight unevenness processing, and a slight unevenness processing were performed in the case of continuous impregnation. A partially impregnated prepreg of a preferred embodiment in the present invention can be produced by a method using a roller (slit roller).
わずかな凹凸を持つ基材としては、強化繊維基材が、厚み方向に高さが0.02〜0.1mmの凹凸を有するものが好ましい。一般的な織物では、厚み方向の凹凸が0.02mm以下であるので、凹凸を持たせるための方法としては、隣り合う強化繊維をオーバーラップさせることにより作製することが可能である。また、わずかな凹凸加工を施したローラーとしては、高さが0.02〜0.1mmの凹凸を表面に有するスリットローラーが好ましい。 As the base material having slight unevenness, the reinforcing fiber base material preferably has unevenness with a height of 0.02 to 0.1 mm in the thickness direction. In a general woven fabric, the unevenness in the thickness direction is 0.02 mm or less. Therefore, as a method for providing the unevenness, it can be produced by overlapping adjacent reinforcing fibers. Moreover, as a roller which gave the slight uneven | corrugated process, the slit roller which has the unevenness | corrugation whose height is 0.02-0.1 mm on a surface is preferable.
プリプレグ内部に含浸部分と未含浸部分が交互に存在し、未含浸部分の通気パスが確保されていると、オーブン成形における減圧工程にて十分に脱気が可能となる。従って、含浸度合いを上げた高目付プリプレグであっても、プリプレグ内部に縞状、格子状又は斜め格子状に樹脂の含浸部分と連続した未含浸部分を持たせることで、ボイドの少ない成形物を得ることが可能になる。 If the impregnated portion and the non-impregnated portion are alternately present in the prepreg, and the ventilation path of the non-impregnated portion is secured, sufficient deaeration is possible in the decompression step in the oven molding. Therefore, even a high-weight prepreg with a high degree of impregnation can be obtained by forming an unimpregnated portion continuous with a resin-impregnated portion in a striped, lattice-like or oblique lattice shape inside the prepreg so that a molded product with less voids can be obtained. It becomes possible to obtain.
本発明の繊維強化複合材料は、上記の部分含浸プリプレグを複数枚積層し、積層体とし、得られた積層体をバック材(バギングバッグ)で覆い、次いで、その内部を25℃以下の温度で減圧し、その後減圧を維持しながら外部から加熱・硬化することにより製造できる。積層又は賦形は部分含浸プリプレグを型上で複数枚積層しても行っても良く、マンドレルに複数の部分含浸プリプレグを捲回しても良い。加熱は、オートクレーブ、オーブン、プレスなどの装置により行われる。 The fiber reinforced composite material of the present invention is obtained by laminating a plurality of the above partially impregnated prepregs to form a laminated body, covering the obtained laminated body with a back material (bagging bag), and then the inside at a temperature of 25 ° C. or lower. It can be produced by reducing the pressure and then heating and curing from the outside while maintaining the reduced pressure. Lamination or shaping may be performed by laminating a plurality of partially impregnated prepregs on a mold, or a plurality of partially impregnated prepregs may be wound around a mandrel. Heating is performed by an apparatus such as an autoclave, an oven, or a press.
バッグ内の減圧工程は、例えば、エポキシ樹脂組成物の粘度が5×105Pa・s以上となる条件で行うのが好ましい。部分含浸プリプレグの取扱の関係上、25℃で樹脂粘度が5×105Pa・s以上となることが好ましいが、25℃以下に温度を制御し、エポキシ樹脂組成物の粘度が5×105Pa・s以上となる条件を選んでもよい。 It is preferable to perform the pressure reduction process in a bag on the conditions from which the viscosity of an epoxy resin composition will be 5 * 10 < 5 > Pa * s or more, for example. In view of handling the partially impregnated prepreg, the resin viscosity is preferably 5 × 10 5 Pa · s or more at 25 ° C., but the temperature is controlled to 25 ° C. or less, and the viscosity of the epoxy resin composition is 5 × 10 5. You may choose the conditions used as Pa * s or more.
また、減圧工程は、真空度−0.09MPa以下で、15分以上減圧してから硬化温度まで昇温することが好ましい。減圧時の圧力としては−0.1MPaまで減圧すれば最もよいが、−0.09MPa以下まで減圧すれば、基材に内在する空気を十分に除去することが出来る。減圧時の圧力が−0.09MPaより大きい、即ち、真空が充分に確保されていないと、得られる成形品の中にボイドが残留し、良好な成形品を得ることが出来ない。 Moreover, it is preferable that a pressure reduction process is a vacuum degree -0.09 Mpa or less, and is heated up to hardening temperature after depressurizing for 15 minutes or more. The pressure during decompression is best reduced to -0.1 MPa, but if the pressure is reduced to -0.09 MPa or less, the air present in the substrate can be sufficiently removed. If the pressure during decompression is greater than -0.09 MPa, that is, if the vacuum is not sufficiently secured, voids remain in the obtained molded product, and a good molded product cannot be obtained.
また、室温から硬化温度まで温度を上げる際には、硬化温度まで一定の昇温速度で上げてもよいし、途中の温度で一定時間保持し、その後、硬化温度まで上げてもよい。このように途中の温度で一定時間保持するステップキュアの場合、エポキシ樹脂組成物が硬化開始温度より10〜25℃低い温度で、かつ、エポキシ樹脂組成物の粘度が3Pa・s以下となる条件を選ぶのがよい。硬化温度としては、ジシアンジアミド硬化剤及び硬化促進剤の特徴から、120〜150℃が好ましく用いられる。昇温速度は、1〜10℃/分昇温が好ましく用いられる。1℃/分未満であると、粘度が十分に下がらないため強化繊維へエポキシ樹脂が含浸しにくくなることがある。また、10℃/分を超えると、強化繊維各所での温度差が生じてしまうため、均一な硬化物が得られなくなることがある。 Further, when the temperature is raised from room temperature to the curing temperature, the temperature may be increased to a curing temperature at a constant rate of temperature increase, or the temperature may be maintained at an intermediate temperature for a certain period of time, and then increased to the curing temperature. Thus, in the case of step cure that is held for a certain period of time at an intermediate temperature, the condition that the epoxy resin composition is 10 to 25 ° C. lower than the curing start temperature and the viscosity of the epoxy resin composition is 3 Pa · s or less. It is good to choose. As the curing temperature, 120 to 150 ° C. is preferably used because of the characteristics of the dicyandiamide curing agent and the curing accelerator. A temperature increase rate of 1 to 10 ° C./min is preferably used. If it is less than 1 ° C./minute, the viscosity may not be lowered sufficiently, so that it may be difficult to impregnate the reinforcing fiber with the epoxy resin. On the other hand, if the temperature exceeds 10 ° C./minute, a temperature difference occurs in various portions of the reinforcing fibers, and a uniform cured product may not be obtained.
本発明の好ましい態様は、要するところ、上記のごとく、エポキシ樹脂組成物の室温における粘度を制御し、減圧工程で樹脂が流動しない程度に樹脂を高粘度化し、且つ、100℃付近の加熱・硬化温度領域では、粘度が十分低くなるエポキシ樹脂組成物を用いること、そして、そのエポキシ樹脂組成物の強化繊維基材への含浸状態を制御した点にある。 As described above, the preferred embodiment of the present invention is, as described above, controlling the viscosity of the epoxy resin composition at room temperature, increasing the viscosity of the resin to such an extent that the resin does not flow in the decompression step, and heating / curing around 100 ° C. In the temperature range, an epoxy resin composition having a sufficiently low viscosity is used, and the impregnation state of the epoxy resin composition into the reinforcing fiber base is controlled.
以下、実施例によって本発明をより具体的に説明する。実施例において、プリプレグは以下の様にして作製した。エポキシ樹脂組成物を、ナイフコーターを用いて、単位面積あたりの重量125g/m2となるように離型紙上でフィルム化し、樹脂フィルムを作製した。強化繊維基材として、東邦テナックス社製の“テナックス”(登録商標)HTA−12Kからなる炭素繊維多軸ステッチ基材(0/90の角度で積層したもの、隣り合う強化繊維をオーバーラップさせることにより予め0.04mm程度の凹凸を基材に付与したもの、織物基材の総目付450g/m2)を使用し、この炭素繊維多軸織物の上下両面に上記樹脂フィルムを重ね、所定温度に加熱したプレスで面圧0.1MPaで40秒間加圧し、樹脂含有率36重量%のプリプレグを得た。 Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, the prepreg was produced as follows. The epoxy resin composition was formed into a film on release paper using a knife coater so that the weight per unit area was 125 g / m 2 , thereby producing a resin film. Carbon fiber multiaxial stitch base material made of “Tenax” (registered trademark) HTA-12K manufactured by Toho Tenax Co., Ltd. as a reinforcing fiber base material (stacked at an angle of 0/90, overlapping adjacent reinforcing fibers) Using a substrate having a surface roughness of about 0.04 mm, 450 g / m 2 ), and the resin film is laminated on both upper and lower surfaces of the carbon fiber multiaxial fabric. Pressure was applied with a heated press at a surface pressure of 0.1 MPa for 40 seconds to obtain a prepreg having a resin content of 36% by weight.
上記のプリプレグから100×100mmの小片を切り取り、この小片をデシケーター中で水中に沈め、減圧し、プリプレグ内部の空気と水を置換させた。次いで、プリプレグの小片を水中から取り出し、表面の水を拭き取り、吸水前後のプリプレグの小片重量を測定し、吸水率を算出し、プリプレグの部分含浸の程度を求めた。 A small piece of 100 × 100 mm was cut from the prepreg, and the small piece was submerged in water in a desiccator and decompressed to replace the air and water inside the prepreg. Next, the prepreg pieces were taken out of the water, the surface water was wiped off, the weight of the prepreg pieces before and after water absorption was measured, the water absorption was calculated, and the degree of partial impregnation of the prepreg was determined.
また、上記プリプレグを超音波探傷装置(SDS−3600:日本クラウトクレイマー社製)を用い、二重透過法で、周波数5Hz、増幅度
25dBで測定を行った。測定した面積に対し、しきい値50%以下の割合を算出し、プリプレグの樹脂の未含浸部分の割合を数値化した。
Further, the prepreg was measured by a double transmission method using an ultrasonic flaw detector (SDS-3600: manufactured by Nippon Kraut Kramer Co., Ltd.) at a frequency of 5 Hz and an amplification factor of 25 dB. The ratio of the threshold value of 50% or less was calculated with respect to the measured area, and the ratio of the non-impregnated portion of the resin of the prepreg was quantified.
前記のごとくして得られたプリプレグを、アルミ製の型に、面対称に4枚積層し、全体をナイロンバッグでバギングし、25℃雰囲気下でバック内部を真空度−0.1MPaで15分間減圧した。その後、減圧を維持しながら90℃まで5℃/分の昇温で加熱し、90℃で30分間保持した。その後、130℃まで5℃/分の昇温で加熱し、130℃で90分間硬化させ繊維強化複合材料(成形体)を作製した。この成形体の中央部の断面観察を行い、断面積に対するボイドの面積率を算出しボイド率とした。 The prepregs obtained as described above were laminated on an aluminum mold in plane symmetry, and the whole was bagged with a nylon bag, and the interior of the bag was vacuumed at -0.1 MPa for 15 minutes at 25 ° C. The pressure was reduced. Thereafter, while maintaining the reduced pressure, the mixture was heated to 90 ° C. at a temperature increase of 5 ° C./min and held at 90 ° C. for 30 minutes. Then, it heated at 130 degreeC with the temperature increase of 5 degree-C / min, and it hardened at 130 degreeC for 90 minutes, and produced the fiber reinforced composite material (molded object). A cross-sectional observation of the central portion of the molded body was performed, and the void area ratio with respect to the cross-sectional area was calculated as the void ratio.
[実施例1]
樹脂成分(A)として、EPN−1138(フェノールノボラック樹脂
[旭化成エポキシ社製]:25℃の粘度 1,000Pa・s)を62重量部と、成分(B)として、EP−1002(ビスフェノールA型エポキシ樹脂
[ジャパンエポキシレジン社製]:固体)38重量部、成分(C)として、ジシアンジアミドを5重量部、硬化促進剤(D)として3−(3,4−ジクロロフェニル)−1,1−ジメチルユリアを3重量部用いた。
[Example 1]
As resin component (A), EPN-1138 (phenol novolak resin [manufactured by Asahi Kasei Epoxy Co., Ltd.): 62 parts by weight of viscosity at 25 ° C., 1,000 Pa · s, and as component (B), EP-1002 (bisphenol A type) Epoxy resin [manufactured by Japan Epoxy Resin Co., Ltd.]: 38 parts by weight of solid, 5 parts by weight of dicyandiamide as component (C), and 3- (3,4-dichlorophenyl) -1,1-dimethyl as curing accelerator (D) 3 parts by weight of urea was used.
成分(A)と(B)の混合物を120℃で加熱溶解後、70℃まで室温で冷却し、成分(C)並びに(D)を加え混練した。この樹脂組成物の25℃における粘度は、1×106Pa・sであり、また、樹脂組成物の最低粘度は1Pa・s(硬化開始温度106℃)であった。 The mixture of components (A) and (B) was heated and dissolved at 120 ° C., then cooled to 70 ° C. at room temperature, and components (C) and (D) were added and kneaded. The viscosity of this resin composition at 25 ° C. was 1 × 10 6 Pa · s, and the minimum viscosity of the resin composition was 1 Pa · s (curing start temperature 106 ° C.).
この樹脂組成物を用いて、125℃に加熱したプレスで、面圧0.1MPaで、40秒間加圧により作製した部分含浸プリプレグの吸水率は15%であり、超音波探傷法による未含浸部分の割合は55%であった。そして、この部分含浸プリプレグを用いて、前記方法により作製した成形体のボイド率は0.5%であった。プリプレグカット時に毛羽は発生しなかった。 Using this resin composition, the partially impregnated prepreg produced by pressing for 40 seconds with a press heated to 125 ° C. with a surface pressure of 0.1 MPa has a water absorption of 15%, and the unimpregnated part by the ultrasonic flaw detection method. The proportion of was 55%. And the void rate of the molded object produced by the said method using this partial impregnation prepreg was 0.5%. Fluff did not occur during prepreg cutting.
[実施例2]
実施例1の樹脂組成物を用いて、前記と同様な方法(但し、プレス温度105℃、プレスで面圧0.1MPaで60秒間加圧)により部分含浸プリプレグを作成した。得られたプリプレグの吸水率は13%であり、超音波探傷法による未含浸割合は76%であった。このプリプレグを用いて前記方法により作製した成形体のボイド率は0.4%であった。プリプレグカット時に毛羽は発生しなかった。
[Example 2]
Using the resin composition of Example 1, a partially impregnated prepreg was prepared by the same method as described above (however, the pressing temperature was 105 ° C. and the pressing was performed at a surface pressure of 0.1 MPa for 60 seconds). The water absorption of the obtained prepreg was 13%, and the unimpregnated ratio by ultrasonic flaw detection was 76%. The void ratio of the molded body produced by the above method using this prepreg was 0.4%. Fluff did not occur during prepreg cutting.
[実施例3]
実施例1の樹脂組成物を用いて、前記と同様な方法(但し、プレス温度125℃、炭素繊維基材への凹凸付与無しで、凹凸プレス(段差0.05mm)を使用し、面圧0.1MPaで40秒間加圧)により部分含浸プリプレグを作成した。得られたプリプレグの吸水率は3%であり、超音波探傷法による未含浸割合は33%であった。このプリプレグを用いて前記方法により作製した成形体のボイド率は0.6%であった。プリプレグカット時に毛羽は発生しなかった。
[Example 3]
Using the resin composition of Example 1, the same method as described above (however, using a concavo-convex press (step difference of 0.05 mm) without applying concavo-convex to the carbon fiber substrate at a press temperature of 125 ° C., the surface pressure was 0 A partially impregnated prepreg was prepared by pressurizing at 1 MPa for 40 seconds). The water absorption of the obtained prepreg was 3%, and the unimpregnated ratio by ultrasonic flaw detection was 33%. The void ratio of the molded body produced by the above method using this prepreg was 0.6%. Fluff did not occur during prepreg cutting.
[実施例4]
成分(A)として、EP−604(テトラグリシジルジアミノジフェニルメタン:ジャパンエポキシレジン社製:25℃の粘度
200Pa・s)を40重量部と、成分(B)として、EP−1002(ビスフェノールA型エポキシ樹脂:ジャパンエポキシレジン社製:固体)30重量部とEP−1001(ビスフェノールA型エポキシ樹脂:固体)30重量部、及び、成分(C)として、ジシアンジアミドを5重量部、更に、硬化促進剤(D)として、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリアを3重量部用いた。
[Example 4]
As component (A), EP-604 (tetraglycidyldiaminodiphenylmethane: manufactured by Japan Epoxy Resin Co., Ltd .: viscosity of 25 Pa at 200 Pa · s) is 40 parts by weight, and as component (B), EP-1002 (bisphenol A type epoxy resin) : Japan Epoxy Resin Co., Ltd .: solid) 30 parts by weight, EP-1001 (bisphenol A type epoxy resin: solid) 30 parts by weight, and as component (C), 5 parts by weight of dicyandiamide, and further a curing accelerator (D ), 3 parts by weight of 3- (3,4-dichlorophenyl) -1,1-dimethylurea was used.
成分(A)と(B)の混合物を120℃で加熱溶解後、70℃まで室温で冷却し、成分(C)並びに(D)を加え混練した。この樹脂組成物の25℃における粘度は、8×105Pa・sであり、また、樹脂組成物の最低粘度は0.8Pa・s(硬化開始温度106℃)であった。 The mixture of components (A) and (B) was heated and dissolved at 120 ° C., then cooled to 70 ° C. at room temperature, and components (C) and (D) were added and kneaded. The viscosity of this resin composition at 25 ° C. was 8 × 10 5 Pa · s, and the minimum viscosity of the resin composition was 0.8 Pa · s (curing start temperature 106 ° C.).
この樹脂組成物を用いて実施例1と同じ方法により作製した部分含浸プリプレグの吸水率は12%であり、超音波探傷法による未含浸割合は75%であった。そして、この部分含浸プリプレグを用いて、前記方法により作製した成形体のボイド率は0.5%であった。プリプレグカット時に毛羽は殆ど発生しなかった。 The water absorption of the partially impregnated prepreg produced using this resin composition by the same method as in Example 1 was 12%, and the unimpregnated ratio by ultrasonic flaw detection was 75%. And the void rate of the molded object produced by the said method using this partial impregnation prepreg was 0.5%. Fuzz was hardly generated during the prepreg cut.
[比較例1]
実施例1の樹脂組成物を用いて実施例1と同様の方法により部分含浸プリプレグを作成した(ただし、プレス温度105℃、プレスで面圧0.1MPaで40秒間加圧)。この部分含浸プリプレグの吸水率は26%であり、超音波探傷法による未含浸割合は95%であった。そして、この部分含浸プリプレグを用いて、前記方法により作製した成形体のボイド率は0.5%であった。プリプレグカット時に、実施例1では発生しなかった毛羽が発生した。
[Comparative Example 1]
Using the resin composition of Example 1, a partially impregnated prepreg was prepared in the same manner as in Example 1 (however, pressing was performed at a pressing temperature of 105 ° C. and pressing with a surface pressure of 0.1 MPa for 40 seconds). This partially impregnated prepreg had a water absorption of 26%, and the unimpregnated ratio by ultrasonic flaw detection was 95%. And the void rate of the molded object produced by the said method using this partial impregnation prepreg was 0.5%. Fluff that did not occur in Example 1 occurred during prepreg cutting.
[比較例2]
実施例1の樹脂組成物を用いて、実施例1と同様の方法により部分含浸プリプレグを作成した。次いで、このプリプレグを用いて、35℃の雰囲気下で(35℃における樹脂組成物の粘度は、3×104Pa・sであった)、積層、バギングし、バック内部を減圧した以外は、実施例1と同様の方法で成形体を作製した。得られた成形体はボイドが多く、ボイド率は2.5%であった。
[Comparative Example 2]
Using the resin composition of Example 1, a partially impregnated prepreg was prepared in the same manner as in Example 1. Next, using this prepreg, under the atmosphere of 35 ° C. (viscosity of the resin composition at 35 ° C. was 3 × 10 4 Pa · s), stacking, bagging, and reducing the pressure inside the bag, A molded body was produced in the same manner as in Example 1. The obtained molded body had many voids and the void ratio was 2.5%.
[比較例3]
成分(A)として、EPN−1138(フェノールノボラック樹脂
:25℃の粘度 1,000Pa・s)を70重量部、成分(A)には該当しないEP−828(ビスフェノールA型エポキシ樹脂:ジャパンエポキシレジン社製:25℃の粘度
15Pa・s)を10重量部、成分(B)として、EP−1002(ビスフェノールA型エポキシ樹脂:固体)20重量部、成分(C)として、ジシアンジアミドを5重量部、更に、硬化促進剤(D)として、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリアを3重量部用いた。
[Comparative Example 3]
As component (A), EPN-1138 (phenol novolac resin: viscosity at 25 ° C., 1,000 Pa · s) is 70 parts by weight, and EP-828 (bisphenol A type epoxy resin: Japan epoxy resin not applicable to component (A)) 10 parts by weight, viscosity (15 Pa · s at 25 ° C.) as component (B), 20 parts by weight of EP-1002 (bisphenol A type epoxy resin: solid), 5 parts by weight of dicyandiamide as component (C), Further, 3 parts by weight of 3- (3,4-dichlorophenyl) -1,1-dimethylurea was used as the curing accelerator (D).
成分(A)とEP−828と成分(B)の混合物を120℃で加熱溶解後、70℃まで室温で冷却し、成分(C)並びに(D)を加え混練した。この樹脂組成物の25℃における粘度は、5×104Pa・sであり、樹脂組成物の最低粘度は0.4Pa・s(硬化開始温度106℃)であった。 A mixture of component (A), EP-828 and component (B) was heated and dissolved at 120 ° C., cooled to 70 ° C. at room temperature, and components (C) and (D) were added and kneaded. The viscosity of this resin composition at 25 ° C. was 5 × 10 4 Pa · s, and the minimum viscosity of the resin composition was 0.4 Pa · s (curing start temperature 106 ° C.).
この樹脂組成物を用いて、実施例1と同じ方法により作製した部分含浸プリプレグの吸水率は1重量%であり、超音波探傷法による未含浸部分の割合は15%であった。そして、このプリプレグを用いて前記方法により作製した成形体はボイドが多く、ボイド率は2.0%であった。実施例1と2のものに比べて、ボイド率が高くなっていた。
The water absorption of the partially impregnated prepreg produced using this resin composition by the same method as in Example 1 was 1% by weight, and the proportion of the unimpregnated part by ultrasonic flaw detection was 15%. And the molded object produced by the said method using this prepreg had many voids, and the void rate was 2.0%. Compared with those of Examples 1 and 2, the void ratio was high.
Claims (11)
The fiber according to claim 9 or 10, wherein the heating is performed by a step curing method in which the heating is held for 10 hours at a temperature lower by 10 to 25 ° C than the curing start temperature of the epoxy resin composition and then raised to the curing temperature. A method for producing a reinforced composite material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009038703A JP5441437B2 (en) | 2009-02-21 | 2009-02-21 | Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009038703A JP5441437B2 (en) | 2009-02-21 | 2009-02-21 | Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010195844A true JP2010195844A (en) | 2010-09-09 |
JP5441437B2 JP5441437B2 (en) | 2014-03-12 |
Family
ID=42820895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009038703A Expired - Fee Related JP5441437B2 (en) | 2009-02-21 | 2009-02-21 | Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5441437B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015078310A (en) * | 2013-10-17 | 2015-04-23 | 三菱レイヨン株式会社 | Prepreg |
JP2016510833A (en) * | 2013-03-15 | 2016-04-11 | ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pre-preg curing method for preparing composite materials with excellent surface finish and high fiber compaction |
JP2018114721A (en) * | 2017-01-20 | 2018-07-26 | 三菱重工業株式会社 | Method for repairing composite material |
WO2018199154A1 (en) * | 2017-04-25 | 2018-11-01 | 三菱ケミカル株式会社 | Fiber-reinforced resin molding material and method for manufacturing same, and fiber-reinforced resin molded article |
US10329696B2 (en) * | 2012-12-21 | 2019-06-25 | Cytec Industries Inc. | Curable prepregs with surface openings |
WO2024122587A1 (en) * | 2022-12-07 | 2024-06-13 | 株式会社レゾナック | Prepreg, laminated plate, metal-clad laminated plate, printed wiring board, semiconductor package, method for manufacturing prepreg, and method for manufacturing metal-clad laminated plate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01200914A (en) * | 1987-10-20 | 1989-08-14 | Mitsubishi Rayon Co Ltd | Resin impregnating method |
JP2002249605A (en) * | 2001-02-26 | 2002-09-06 | Toray Ind Inc | Partially impregnated prepreg |
JP2008088276A (en) * | 2006-09-30 | 2008-04-17 | Toho Tenax Co Ltd | Partially impregnated prepreg and method for producing fiber-reinforced composite material by using the same |
-
2009
- 2009-02-21 JP JP2009038703A patent/JP5441437B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01200914A (en) * | 1987-10-20 | 1989-08-14 | Mitsubishi Rayon Co Ltd | Resin impregnating method |
JP2002249605A (en) * | 2001-02-26 | 2002-09-06 | Toray Ind Inc | Partially impregnated prepreg |
JP2008088276A (en) * | 2006-09-30 | 2008-04-17 | Toho Tenax Co Ltd | Partially impregnated prepreg and method for producing fiber-reinforced composite material by using the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10329696B2 (en) * | 2012-12-21 | 2019-06-25 | Cytec Industries Inc. | Curable prepregs with surface openings |
US10821680B2 (en) * | 2012-12-21 | 2020-11-03 | Cytec Industries Inc. | Curable prepregs with surface openings |
JP2016510833A (en) * | 2013-03-15 | 2016-04-11 | ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pre-preg curing method for preparing composite materials with excellent surface finish and high fiber compaction |
JP2015078310A (en) * | 2013-10-17 | 2015-04-23 | 三菱レイヨン株式会社 | Prepreg |
JP2018114721A (en) * | 2017-01-20 | 2018-07-26 | 三菱重工業株式会社 | Method for repairing composite material |
WO2018199154A1 (en) * | 2017-04-25 | 2018-11-01 | 三菱ケミカル株式会社 | Fiber-reinforced resin molding material and method for manufacturing same, and fiber-reinforced resin molded article |
JPWO2018199154A1 (en) * | 2017-04-25 | 2019-06-27 | 三菱ケミカル株式会社 | Fiber-reinforced resin molding material, method for producing the same, and fiber-reinforced resin molded article |
WO2024122587A1 (en) * | 2022-12-07 | 2024-06-13 | 株式会社レゾナック | Prepreg, laminated plate, metal-clad laminated plate, printed wiring board, semiconductor package, method for manufacturing prepreg, and method for manufacturing metal-clad laminated plate |
Also Published As
Publication number | Publication date |
---|---|
JP5441437B2 (en) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5090701B2 (en) | Partially impregnated prepreg and method for producing fiber reinforced composite material using the same | |
KR101951058B1 (en) | Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material | |
US9963586B2 (en) | Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material | |
JP5940521B2 (en) | Structured thermoplastics in composite interleaf | |
EP2711170A1 (en) | Improvements in or relating to fibre reinforced composites | |
JP2019070127A (en) | Fast cure epoxy resin systems | |
JP5441437B2 (en) | Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same | |
WO2018003694A1 (en) | Prepreg and production method therefor | |
EP2976216A2 (en) | Improvements in or relating to fibre reinforced composites | |
JP2004050574A (en) | Prepreg and method for producing fiber-reinforced composite material using prepreg | |
JP5173358B2 (en) | Prepreg with protective film | |
JP6698634B2 (en) | Fast curable composition | |
JP2009235182A (en) | Base material for preform and method for manufacturing the same | |
JP7298610B2 (en) | Prepreg sheets and prepreg stacks useful for making low void content fiber reinforced composites | |
JP5966969B2 (en) | Manufacturing method of prepreg | |
CN111989359B (en) | Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material | |
JP7167976B2 (en) | Epoxy resin composition, method for producing molding material, and method for producing fiber-reinforced composite material | |
GB2509616A (en) | A fast cure epoxy resin formulation | |
JP6957914B2 (en) | Prepreg and carbon fiber reinforced composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100930 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20100930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101109 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5441437 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |