JP2015226986A - Fiber-reinforced thermoplastic resin molding body - Google Patents

Fiber-reinforced thermoplastic resin molding body Download PDF

Info

Publication number
JP2015226986A
JP2015226986A JP2014112635A JP2014112635A JP2015226986A JP 2015226986 A JP2015226986 A JP 2015226986A JP 2014112635 A JP2014112635 A JP 2014112635A JP 2014112635 A JP2014112635 A JP 2014112635A JP 2015226986 A JP2015226986 A JP 2015226986A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced thermoplastic
protrusion
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112635A
Other languages
Japanese (ja)
Other versions
JP6567255B2 (en
Inventor
森脇 敦史
Atsushi Moriwaki
敦史 森脇
真信 晝田
Masanobu Hiruta
真信 晝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2014112635A priority Critical patent/JP6567255B2/en
Publication of JP2015226986A publication Critical patent/JP2015226986A/en
Application granted granted Critical
Publication of JP6567255B2 publication Critical patent/JP6567255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin molding body excellent in mechanical characteristics, and molding fluidity to complicated shape parts such as a rib and boss.SOLUTION: A molding body is a fiber-reinforced thermoplastic resin molding body and comprises a substrate part 1 and a projection part 2 whose thickness 6 on a bottom is 2-30 mm, and whose height 7 is 5-150 mm. The molding body is formed of a member A formed of a continuous reinforcement fiber 3 and thermoplastic resin, and a member B formed of a non-continuous reinforcement fiber 4 and thermoplastic resin, in which the member B is filled in a tip end part of the projection part 2, and influx depth 5 of the member A into the projection part 2 is equal to or more than 0.5 mm.

Description

機械的特性と、突起部(リブ、ボス等)を有する複雑形状部材の成形性に優れた、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料からなる繊維強化熱可塑性樹脂成形体に関する。   Fiber reinforced thermoplastic resin molded article composed of continuous fiber reinforced thermoplastic composite material and discontinuous fiber reinforced thermoplastic composite material with excellent mechanical properties and moldability of complex shaped members having protrusions (ribs, bosses, etc.) About.

近年、種々の分野において、部品の材質を金属から樹脂へと変更することが検討されている。なかでも剛性、耐衝撃性などの点から、強化繊維によって補強された繊維強化樹脂を金属に代えることが試みられている。
繊維強化樹脂には、マトリックス樹脂として熱可塑性樹脂が用いられた繊維強化熱可塑性樹脂があり、例えば自動車等の車両分野においては、エンジン周りに使用されるフレーム材や、バンパービームなどへの適用が検討されている(例えば、特許文献1〜5参照。)。
In recent years, it has been studied to change the material of parts from metal to resin in various fields. In particular, attempts have been made to replace the fiber reinforced resin reinforced with reinforcing fibers with metal in terms of rigidity, impact resistance, and the like.
The fiber reinforced resin includes a fiber reinforced thermoplastic resin in which a thermoplastic resin is used as a matrix resin. For example, in a vehicle field such as an automobile, application to a frame material used around an engine, a bumper beam, or the like. (For example, refer patent documents 1-5.).

単純なシート形状である部材の場合は、強化繊維を直線的に配した織物、一方向(UD)材で成形出来、高い機械的強度が確保できるが、用途に応じた、限定空間内に配される複雑形状の繊維強化熱可塑性樹脂成形体を成形する場合には、織物、UD材単体では流動性が悪く、複雑形状に追従出来ない問題がある。この問題を解決するため、強化繊維長が短く、流動性の良いインジェクション材料等で、リブ、ボス等の突起部を埋め、複雑形状部にも材料を充填することで一体化を図る検討が試みられている。しかしながら、流動性の低い織物、UD材層と、流動性の高い短繊維強化樹脂層との界面接着性は低く、変形により剥離破壊を起こし易く、十分な機械的強度を有する繊維強化樹脂成形体は得られていなかった。   In the case of a member with a simple sheet shape, it can be formed with a woven fabric with reinforced fibers linearly arranged and a unidirectional (UD) material, and high mechanical strength can be secured, but it is arranged in a limited space according to the application. In the case of molding a fiber reinforced thermoplastic resin molded body having a complicated shape, the woven fabric and the UD material alone have poor fluidity and cannot follow the complicated shape. In order to solve this problem, it is attempted to integrate by filling the protrusions such as ribs and bosses with a short reinforcing fiber length and good fluidity, etc. It has been. However, the interfacial adhesion between the low fluidity woven fabric, UD material layer and the high fluidity short fiber reinforced resin layer is low, the fiber reinforced resin molded body has a sufficient mechanical strength and easily causes peeling failure due to deformation. Was not obtained.

特開平5−9301号公報JP-A-5-9301 特開平6−313292号公報JP-A-6-313292 特開平7−88840号公報JP-A-7-88840 特開平9−216225号公報JP-A-9-216225 国際公開第09/142291号パンフレットInternational Publication No. 09/142291 Pamphlet

本発明は、前記した課題を解決するもので、機械的特性と成形性に優れた、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料からなる繊維強化熱可塑性樹脂成形体を提供するものである。   The present invention solves the above-mentioned problems and provides a fiber-reinforced thermoplastic resin molded article comprising a continuous fiber-reinforced thermoplastic composite material and a discontinuous fiber-reinforced thermoplastic composite material, which are excellent in mechanical properties and moldability. To do.

複雑形状に材料を充填し得る成形流動性を確保しつつ、高い機械的強度を得るため、本発明では以下の手段を取る。
すなわち本発明は、以下の通りである。
[1] 基材部と、根元の厚さが2mm〜30mm、高さが5mm〜150mmの突起部を有する成形体であって、該成形体は、連続強化繊維と熱可塑性樹脂からなる部材Aと、非連続強化繊維と熱可塑性樹脂からなる部材Bから構成され、部材Bが突起部の先端部に充填されており、突起部内への部材Aの流れ込み深さが0.5mm以上である事を特徴とする繊維強化熱可塑性樹脂成形体。
[2] 前記部材Bが、長さ5mm〜100mm、幅4mm〜60mm、厚み0.05mm〜0.4mmの薄膜片のテープ状物から構成され、含有される強化繊維と熱可塑性樹脂との質量比が85/15〜30/70である[1]に記載の繊維強化熱可塑性樹脂成形体。
[3] 前記部材Aの連続強化繊維がクロス材であり、部材Aが該クロス材を2〜10層含む積層体である[1]または[2]に記載の繊維強化熱可塑性樹脂成形体。
In order to obtain high mechanical strength while ensuring molding fluidity capable of filling a material in a complicated shape, the present invention takes the following means.
That is, the present invention is as follows.
[1] A molded body having a base portion and a protrusion having a base thickness of 2 mm to 30 mm and a height of 5 mm to 150 mm, and the molded body is a member A composed of continuous reinforcing fibers and a thermoplastic resin. And a member B made of discontinuous reinforcing fibers and a thermoplastic resin, the member B is filled in the tip of the protrusion, and the depth of flow of the member A into the protrusion is 0.5 mm or more. A fiber-reinforced thermoplastic resin molded article characterized by
[2] The mass of the reinforcing fiber and the thermoplastic resin contained in the member B is composed of a thin film piece of tape having a length of 5 mm to 100 mm, a width of 4 mm to 60 mm, and a thickness of 0.05 mm to 0.4 mm. The fiber reinforced thermoplastic resin molded article according to [1], wherein the ratio is 85/15 to 30/70.
[3] The fiber reinforced thermoplastic resin molded article according to [1] or [2], wherein the continuous reinforcing fiber of the member A is a cloth material, and the member A is a laminate including 2 to 10 layers of the cloth material.

本発明によれば、機械的特性と、リブ、ボス等の複雑形状部への成形流動性に優れた、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料からなる繊維強化熱可塑性樹脂成形体を提供することが出来る。また、本発明の繊維強化熱可塑性樹脂成形体は、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料の界面での剥離破壊が起こり難い特徴も有する。   According to the present invention, a fiber reinforced thermoplastic comprising a continuous fiber reinforced thermoplastic composite material and a discontinuous fiber reinforced thermoplastic composite material having excellent mechanical properties and fluidity in forming a complicated shape such as a rib and a boss. A resin molded body can be provided. Further, the fiber-reinforced thermoplastic resin molded article of the present invention also has a feature that peeling failure at the interface between the continuous fiber-reinforced thermoplastic composite material and the discontinuous fiber-reinforced thermoplastic composite material hardly occurs.

本発明の繊維強化熱可塑性樹脂成形体の断面の概略図である。It is the schematic of the cross section of the fiber reinforced thermoplastic resin molding of this invention.

本発明の繊維強化熱可塑性樹脂成形体は、基材部と突起部を有する成形体である。
また、本発明の繊維強化熱可塑性樹脂成形体は、連続強化繊維を含む部材Aと非連続強化繊維を含む部材Bとから構成される。連続繊維によって高い剛性と機械的特性を確保しつつ、寸法安定等を狙って配された突起部には成形流動性の良い非連続繊維を含む部材Bが充填され、トータルの機械的特性を向上させる事が可能になる。
突起部形状を有する金型内に、部材Aは基材部側、部材Bは突起部側に配されて一体成形され、本発明の繊維強化熱可塑性樹脂成形体が得られる。基材部の両側に突起部を有する成形体の場合は、部材Aの両側に部材Bが配されて一体成形される。金型内に配される部材A、部材Bはともにシート形状であることが好ましい。
The fiber-reinforced thermoplastic resin molded body of the present invention is a molded body having a base material portion and a protrusion.
Moreover, the fiber reinforced thermoplastic resin molding of the present invention is composed of a member A containing continuous reinforcing fibers and a member B containing discontinuous reinforcing fibers. While ensuring high rigidity and mechanical properties with continuous fibers, the protrusions arranged for dimensional stability etc. are filled with member B containing discontinuous fibers with good molding fluidity, improving total mechanical properties It becomes possible to make it.
In the mold having the protruding portion shape, the member A is disposed on the base portion side and the member B is disposed on the protruding portion side and integrally molded, and the fiber-reinforced thermoplastic resin molded body of the present invention is obtained. In the case of a molded body having protrusions on both sides of the base material, the member B is disposed on both sides of the member A and is integrally molded. It is preferable that both the member A and the member B arranged in the mold have a sheet shape.

基材部の大きさは、特に限定されない。下記で説明する部材Aの構成から、厚みが0.4mm〜6mmの平板状であることが好ましい。平板状である場合の平板の端は、突起部より30cm以内である事が好ましい。   The magnitude | size of a base material part is not specifically limited. From the configuration of the member A described below, it is preferably a flat plate having a thickness of 0.4 mm to 6 mm. In the case of a flat plate shape, the end of the flat plate is preferably within 30 cm from the protrusion.

突起部の形状は、特に限定されない。角柱形状、円柱形状、それらが先端に行くほど小さくなるテーパー形状であっても良い。
突起部の根元の厚さは2mm〜30mm、高さは5mm〜150mmである。突起部が多角形の角柱である場合、根元の厚さは多角形の最小の辺の長さを指し、突起部が円柱の場合、根元の厚さは円の直径を指す。
The shape of the protrusion is not particularly limited. It may be a prismatic shape, a cylindrical shape, or a tapered shape that decreases as it goes to the tip.
The thickness of the base of the protrusion is 2 mm to 30 mm, and the height is 5 mm to 150 mm. When the protrusion is a polygonal prism, the thickness of the root refers to the length of the smallest side of the polygon, and when the protrusion is a cylinder, the thickness of the root refers to the diameter of the circle.

突起部の根元の厚さが2mm〜30mmである場合、部材Aの突起部への流れ込みによる部材Bとの一体化が図られ易く、繊維強化熱可塑性樹脂成形体の機械的強度を高める事が可能となる。2mm未満である場合、部材Aの突起部への流れ込みによる部材Bとの一体化が十分に行われず好ましくない。逆に30mmを超える場合、不必要に重量が重くなるので好ましくない。故に、より好ましい範囲は3mm〜20mmである。
また突起部の高さが、5mm未満である場合、機械的特性が向上されにくく、150mmを超える場合、不必要に重量が重くなり、さらに部材B自体の充填性が損なわれるため好ましくない。より好ましい範囲は、10mm〜80mmである。
When the thickness of the base of the protrusion is 2 mm to 30 mm, the member A can be easily integrated with the member B by flowing into the protrusion, and the mechanical strength of the fiber-reinforced thermoplastic resin molded body can be increased. It becomes possible. When it is less than 2 mm, the integration with the member B due to the flow of the member A into the protrusion is not sufficiently performed, which is not preferable. Conversely, if it exceeds 30 mm, the weight becomes unnecessarily heavy, which is not preferable. Therefore, a more preferable range is 3 mm to 20 mm.
Further, when the height of the protrusion is less than 5 mm, the mechanical properties are hardly improved, and when it exceeds 150 mm, the weight is unnecessarily heavy, and the filling property of the member B itself is impaired. A more preferable range is 10 mm to 80 mm.

突起部は、1個でも複数個でも構わない。複数個の場合、隣り合う突起部間の距離は、最短距離で15mm以上であることが好ましい。   One or a plurality of protrusions may be provided. In the case of a plurality, it is preferable that the distance between adjacent protrusions is 15 mm or more at the shortest distance.

また、本発明の繊維強化熱可塑性樹脂成形体は、基材部(突起部の根元を結んだ接線)から0.5mm以上の深さまで、連続強化繊維を含む部材Aが突起部内に入り込んだ構成を成す。部材Aが突起部内に入り込んだ深さを、本明細書では流れ込み深さと称する。その測定法は、下記の実施例の項に記載するが、部材Aの流れ込み深さは、実質は部材Aの連続繊維の流れ込み深さを指す。また、図1に本発明の繊維強化熱可塑性樹脂成形体の断面(突起部の根元の厚さが分かる部分)の概略図を示す。
ここが本発明のポイントとなる部分であるが、通常、流動し難い連続繊維を含む部材Aを突起部の窪みに嵌め込む事で、界面の擦過による強化繊維内への樹脂含浸の促進と連続強化繊維のクリンプ形状に伴う一体感が生まれ、剥離破壊を起こしにくくなり、優れた機械的特性を発現する事が可能になる。
手段としては、特に限定されるものでは無いが、突起部に面した連続強化繊維を含む部材Aが成形時に流動し得る布帛サイズ、布帛構造、成形圧力を適宜選定する事で突起物内に充填させる事が可能となる。
連続強化繊維を含む部材Aの突起部への流れ込み深さは、大きければ大きいほど一体化が図られ剥離破壊は起きにくくなるが、流動性の低い材料の押し込み量(流れ込み深さ)にも限界がある。故に、流れ込み深さの好ましい範囲は、0.8mm〜30mmの範囲である。
Further, the fiber reinforced thermoplastic resin molded article of the present invention has a configuration in which the member A containing continuous reinforcing fibers enters the protrusion from the base material (tangent line connecting the base of the protrusion) to a depth of 0.5 mm or more. Is made. The depth at which the member A enters the protrusion is referred to as the flow depth in this specification. The measurement method is described in the section of the following example, but the inflow depth of the member A substantially refers to the inflow depth of the continuous fibers of the member A. Moreover, the schematic of the cross section (part which can understand the thickness of the base of a projection part) of the fiber reinforced thermoplastic resin molding of this invention in FIG. 1 is shown.
This is the point of the present invention. Normally, the member A containing continuous fibers that are difficult to flow is fitted into the depressions of the protrusions, so that the resin impregnation into the reinforcing fibers by the abrasion of the interface is continuous and continuous. A sense of unity accompanying the crimp shape of the reinforcing fiber is born, and it becomes difficult to cause delamination failure, and it is possible to exhibit excellent mechanical properties.
The means is not particularly limited, and the projection A can be filled by appropriately selecting the fabric size, fabric structure, and molding pressure at which the member A including the continuous reinforcing fibers facing the projection can flow during molding. It is possible to make it.
The larger the depth of flow into the protrusions of the member A containing continuous reinforcing fibers, the greater the integration and the less likely the delamination will occur, but there is also a limit to the amount of indentation (flow depth) of materials with low fluidity There is. Therefore, the preferable range of the inflow depth is in the range of 0.8 mm to 30 mm.

部材A、部材Bに用いられる強化繊維は特に限定されないが、代表例としては、炭素繊維、炭化珪素繊維、ガラス繊維などの無機繊維、ボロン繊維などの金属繊維、アラミド繊維などの有機繊維が挙げられる。コスト、ならびに得られる成形品の弾性率および機械的強度の点から、ガラス繊維、炭素繊維などが特に好ましい。   The reinforcing fibers used for the member A and the member B are not particularly limited, but representative examples include inorganic fibers such as carbon fibers, silicon carbide fibers, and glass fibers, metal fibers such as boron fibers, and organic fibers such as aramid fibers. It is done. Glass fiber, carbon fiber and the like are particularly preferable from the viewpoints of cost and the elastic modulus and mechanical strength of the obtained molded product.

部材A、部材Bに用いられる繊維強化熱可塑性樹脂を構成する熱可塑性樹脂としては、特に限定されないが、代表例としては、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド46などのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂などが挙げられる。また、これら各樹脂の変性体を用いてもよいし、複数種の樹脂をブレンドして用いてもよい。また、熱可塑性樹脂は各種添加剤、フィラー、着色剤等を含んでいてもよい。これら成分は、合計量で熱可塑性樹脂中、5質量%以下が好ましい。   The thermoplastic resin constituting the fiber reinforced thermoplastic resin used for the member A and the member B is not particularly limited, but representative examples include polyamide resins such as polyamide 6, polyamide 12, polyamide 66, and polyamide 46, polyethylene Examples thereof include polyester resins such as terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, polyether ketone resins, polyphenylene sulfide resins, polyether imide resins, and polycarbonate resins. Moreover, the modified body of these each resin may be used, and multiple types of resin may be blended and used. Further, the thermoplastic resin may contain various additives, fillers, colorants and the like. These components are preferably 5% by mass or less in the total amount of the thermoplastic resin.

繊維強化熱可塑性樹脂成形体に用いられる非連続強化繊維を含む部材Bは、長さ5mm〜100mm、幅4mm〜60mm、厚み0.05mm〜0.4mmの薄膜片のテープ状物の樹脂を溶融し一体化させた部材からなり、含有される強化繊維と熱可塑性樹脂との質量比(強化繊維/熱可塑性樹脂)が85/15〜30/70である事が好ましい。上記のようにして得られたテープ状物を金型内でランダムにばら撒き、積層された状態のまま、加熱プレスを行い、樹脂を溶融させた後、冷却プレスを行い、所定の厚みのシート部材Bを得て、本発明の繊維強化熱可塑性樹脂成形体に供することが好ましい。
部材Bを構成するテープ状物は、連続繊維を開繊後、連続的に樹脂含浸させ、賦形ローラーで潰し冷却固化させ、テープ状としたものをカットして得る事が出来る。
The member B containing discontinuous reinforcing fibers used for the fiber reinforced thermoplastic resin molded body melts a tape-like resin of a thin film piece having a length of 5 mm to 100 mm, a width of 4 mm to 60 mm, and a thickness of 0.05 mm to 0.4 mm. It is preferable that the mass ratio of the reinforcing fiber and the thermoplastic resin (reinforcing fiber / thermoplastic resin) to be contained is 85/15 to 30/70. The tape-like material obtained as described above is randomly dispersed in a mold, and in a laminated state, a heat press is performed to melt the resin, and then a cooling press is performed to obtain a sheet having a predetermined thickness. It is preferable to obtain the member B and use it for the fiber-reinforced thermoplastic resin molded article of the present invention.
The tape-like material constituting the member B can be obtained by continuously impregnating a continuous fiber with a resin, crushing with a shaping roller, solidifying by cooling, and cutting the tape.

テープの厚みが0.05mm未満であると生産効率が悪く、0.4mmを超えると樹脂含浸性が不足する傾向となる。より好ましくは0.07mm〜0.2mmの範囲内である。また幅は4mm未満、若しくは、60mmを超えると生産効率が悪くなる。より好ましくは10mm〜50mmの範囲である。長さに関しても5mm未満、若しくは100mmを超える場合、生産性が悪くなり好ましくない。より好ましくは10mm〜50mmの範囲内である。また幅と長さが同じサイズに近いと異方性が無くなり、ランダマイズされ易いのでより好ましい。含有される強化繊維の質量比も85%を超えると、樹脂含浸性が不十分となり破壊の基点となり易く、30%未満の場合、強化繊維補強効果が得られにくくなるので好ましくない。強化繊維と熱可塑性樹脂のより好ましい質量比の範囲は、80/20〜50/50である。以上の構成によって、高い成形流動性と機械的特性が確保される。
この強化繊維と熱可塑性樹脂との質量比は、下記で説明する部材Aでも同様である。
When the thickness of the tape is less than 0.05 mm, the production efficiency is poor, and when it exceeds 0.4 mm, the resin impregnation property tends to be insufficient. More preferably, it exists in the range of 0.07 mm-0.2 mm. On the other hand, when the width is less than 4 mm or exceeds 60 mm, the production efficiency is deteriorated. More preferably, it is the range of 10 mm-50 mm. When the length is less than 5 mm or more than 100 mm, the productivity deteriorates, which is not preferable. More preferably, it exists in the range of 10 mm-50 mm. Further, it is more preferable that the width and the length are close to the same size, since the anisotropy is lost and randomization is easily performed. If the mass ratio of the reinforcing fibers contained exceeds 85%, the resin impregnation property becomes insufficient and tends to be a starting point of breakage, and if it is less than 30%, it is difficult to obtain a reinforcing fiber reinforcing effect. A more preferable range of the mass ratio between the reinforcing fiber and the thermoplastic resin is 80/20 to 50/50. With the above configuration, high molding fluidity and mechanical properties are ensured.
The mass ratio between the reinforcing fiber and the thermoplastic resin is the same for the member A described below.

また、部材Aは連続強化繊維と熱可塑性樹脂から構成されるが、連続強化繊維としては、クロス材が好適に使用され、その織り方としては、例えば、平織、綾織、朱子織、三軸織等が例示される。また高い剛性を確保するためには、連続繊維のクリンプ量を出来るだけ少なくする必要がある。その目的で、織り構造を取らないUD材(一方向材)も適宜使用され得る。
部材Aは、このようなクロス材やUD材と、上記の熱可塑性樹脂から得られる。
The member A is composed of continuous reinforcing fiber and thermoplastic resin. As the continuous reinforcing fiber, a cloth material is preferably used. Examples of the weaving method include plain weave, twill weave, satin weave and triaxial weave. Etc. are exemplified. In order to ensure high rigidity, it is necessary to reduce the crimp amount of continuous fibers as much as possible. For this purpose, a UD material (unidirectional material) that does not have a woven structure may be used as appropriate.
The member A is obtained from such a cloth material or UD material and the above thermoplastic resin.

また連続繊維を含む部材Aは、2〜10層のクロス材やUD材を含む積層体から構成される事が好ましい。突起部に近い層が突起部に流れ込みクリンプを形成する事で一体感を保持しつつ、突起部から遠い層の部材Aが繊維の直進性を保ち剛性を確保する事が可能になる。部材Aの積層数は、ターゲット部材の構造、厚みによって異なるが、3〜7層が好ましい。この際、熱可塑性樹脂は、フィルム状、若しくはパウダー状のものを用い、クロス材やUD材を間に挟み、加熱溶融して部材Aとすることが好ましい。つまり、フィルム状若しくはパウダー状の熱可塑性樹脂層とクロス材やUD材の層を交互に積層する構成が好ましい。   Moreover, it is preferable that the member A containing a continuous fiber is comprised from the laminated body containing a 2-10 layer cloth material and UD material. A layer close to the protrusion flows into the protrusion and forms a crimp, so that the member A of the layer far from the protrusion can maintain the straightness of the fiber and ensure rigidity while maintaining a sense of unity. The number of laminated members A varies depending on the structure and thickness of the target member, but 3 to 7 layers are preferable. At this time, the thermoplastic resin is preferably in the form of a film or powder, and a member A is preferably obtained by sandwiching a cloth material or a UD material and heating and melting it. That is, a configuration in which a film-like or powder-like thermoplastic resin layer and a cloth material or UD material layer are alternately laminated is preferable.

このような繊維強化熱可塑性樹脂成形体は、例えば、フロントサブフレーム、リアサブフレーム、フロントピラー、センターピラー、サイドメンバー、クロスメンバー、サイドシル、ルーフレール、プロペラシャフトなどの自動車部品や、海底油田用のパイプ、電線ケーブルコア、印刷機用ロール・パイプ、ロボットフォーク、航空機の一次構造材、二次構造材などに好適に使用される。   Such fiber reinforced thermoplastic resin moldings are used for, for example, automotive parts such as front subframes, rear subframes, front pillars, center pillars, side members, cross members, side sills, roof rails, propeller shafts, and subsea oil fields. It is preferably used for pipes, electric cable cores, rolls and pipes for printing presses, robot forks, aircraft primary structural materials, secondary structural materials, and the like.

以下、実施例を挙げて具体的に本発明を説明するが、これらの実施例により制限されるものではない。
尚、実施例中に記載する連続強化繊維を含むシート部材Bの突起部(リブ部)の流れ込み深さは、成形品をジグソーで切断後、その断面を観察する事で求めた。具体的には、突起部の接線を結んだ線上に定規を当て、そこに直角定規を当て、連続強化繊維が突起部に流れ込んだ長さを測る事で流れ込み深さを求めた。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not restrict | limited by these Examples.
In addition, the inflow depth of the protrusion part (rib part) of the sheet | seat member B containing the continuous reinforcement fiber described in an Example was calculated | required by observing the cross section after cut | disconnecting a molded article with a jigsaw. Specifically, a ruler was applied to the line connecting the tangent lines of the protrusions, a right-angle ruler was applied thereto, and the flow depth was determined by measuring the length of the continuous reinforcing fiber flowing into the protrusions.

(実施例1)
連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)を開繊後、熱可塑性樹脂としてポリアミド6(東洋紡(株)製、A2500、融点220℃)を用い、270℃の樹脂槽を通し、樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングし、ガラス繊維70質量部にポリアミド樹脂30質量部が含浸されてなる、幅15mm、長さ35mm、厚み0.1mmのテープ状の予備成形体(テープ状物)を作製した。
この予備成形体を金型内でランダムにばら撒き積層された状態のまま、260℃の温度で加熱プレスを行い、樹脂を溶融させた後、150℃の金型内で冷却プレスを行い、3mm厚のシート部材Bを得た。
また同じ連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)を用い平織りによる織物を作製後、金型内でポリアミド6フィルムと交互に、ポリアミド6フィルムが5層、間にガラス繊維織物が4層入る様に積層し、260℃の加熱プレスで樹脂を溶融後、150℃の冷却プレスでガラス繊維75質量部にポリアミド樹脂25質量部が含浸されてなる2mm厚のシート部材Aを得た。
その後、非連続強化繊維を含むシート部材Bと、連続強化繊維を含むシート部材Aとを、それぞれ240mm角の大きさに切り出して重ね、遠赤外線ヒーターで材料温度が260℃となるまで加熱後、根元の厚みが4mm、高さが30mm、幅が80mmのリブ形状を持つ外形が250mm角の金型に、非連続強化繊維を含むシート部材Bがリブ側となる様にチャージ後、150℃の冷却プレスにて、繊維強化熱可塑性樹脂成形体を得た。連続強化繊維を含むシート部材Aのリブ部への流れ込み深さは、1.5mmであった。
その後、リブ部が丁度、曲げ物性測定の中心部に来る様、35mmの幅で試料を切り出し、リブ部の裏側から荷重を加える形で曲げ強度を測定した所、界面での剥離破壊もなく、曲げ強度は610MPa、曲げ弾性率は20GPaと非常に良好であった。
Example 1
After opening continuous glass fiber (Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f), polyamide 6 (Toyobo Co., Ltd., A2500, melting point 220 ° C.) was used as the thermoplastic resin at 270 ° C. The resin is continuously impregnated through a resin tank, then crushed with a shaping roller and cooled and solidified, and then cut, and 70 parts by mass of glass fiber is impregnated with 30 parts by mass of polyamide resin. A tape-shaped preform (tape) having a thickness of 35 mm and a thickness of 0.1 mm was produced.
While this preformed body was randomly dispersed and laminated in the mold, heat pressing was performed at a temperature of 260 ° C. to melt the resin, and then cooling pressing was performed in a mold at 150 ° C. A thick sheet member B was obtained.
Also, after producing a plain weave fabric using the same continuous glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f), 5 layers of polyamide 6 film alternately with polyamide 6 film in the mold. 2 mm thick sheet in which 4 layers of glass fiber fabric are laminated, and the resin is melted with a heating press at 260 ° C., and then 75 parts by weight of glass fiber is impregnated with 25 parts by weight of polyamide resin with a cooling press at 150 ° C. Member A was obtained.
Thereafter, the sheet member B containing non-continuous reinforcing fibers and the sheet member A containing continuous reinforcing fibers are each cut out to a size of 240 mm square, and heated with a far infrared heater until the material temperature becomes 260 ° C., After charging so that the sheet member B including the discontinuous reinforcing fibers is on the rib side, the outer shape having a rib shape of 4 mm at the base, 30 mm in height, and 80 mm in width and having an outer shape of 250 mm square is 150 ° C. A fiber reinforced thermoplastic resin molded article was obtained with a cooling press. The flow depth of the sheet member A containing continuous reinforcing fibers into the rib portion was 1.5 mm.
After that, the specimen was cut out with a width of 35 mm so that the rib part was just in the center of the measurement of bending properties, and the bending strength was measured by applying a load from the back side of the rib part. The bending strength was very good at 610 MPa and the bending elastic modulus was 20 GPa.

(実施例2)
実施例1で得られた非連続強化繊維を含む部材Bと連続強化繊維を含む部材Aとを、それぞれ480mm角の大きさに切り出し、実施例1と同様に赤外線ヒーターで表面温度が260℃となるまで加熱後、根元の厚みが4mm、高さが30mm、幅が200mmのリブを持つ外形が500mm角の金型に、非連続強化繊維を含むシート部材Bがリブ側となる様にチャージし、150℃の冷却プレスにて成形後、繊維強化熱可塑性樹脂成形体を得た。連続強化繊維を含むシート部材Aのリブ部の流れ込み深さは、1.2mmであった。
尚、連続強化繊維を含むシート部材Aのリブ部の流れ込み量は、シートサイズを変える事による流動特性差でコントロールした。
その後、リブ部が丁度、曲げ物性測定の中心部に来る様、35mmの幅で試料を切り出し、リブ部の裏側から荷重を加える形で曲げ強度を測定した所、界面での剥離破壊もなく、曲げ強度は590MPa、曲げ弾性率は20GPaと非常に良好であった。
(Example 2)
The member B containing discontinuous reinforcing fibers and the member A containing continuous reinforcing fibers obtained in Example 1 were cut into 480 mm square sizes, and the surface temperature was 260 ° C. with an infrared heater as in Example 1. After heating until the bottom is 4 mm, the height is 30 mm, and the width is 200 mm, the outer shape of the mold is 500 mm square and charged so that the sheet member B containing discontinuous reinforcing fibers is on the rib side. After molding with a cooling press at 150 ° C., a fiber-reinforced thermoplastic resin molded body was obtained. The inflow depth of the rib portion of the sheet member A containing continuous reinforcing fibers was 1.2 mm.
In addition, the flow amount of the rib part of the sheet member A containing the continuous reinforcing fiber was controlled by the flow characteristic difference by changing the sheet size.
After that, the specimen was cut out with a width of 35 mm so that the rib part was just in the center of the measurement of bending properties, and the bending strength was measured by applying a load from the back side of the rib part. The bending strength was very good at 590 MPa and the bending elastic modulus was 20 GPa.

(比較例1)
実施例1で得られた非連続強化繊維を含む部材Bと連続強化繊維を含む部材Aとを、それぞれ680mm角の大きさに切り出し、実施例1と同様に赤外線ヒーターで表面温度が260℃となるまで加熱後、根元の厚みが4mm、高さが30mm、幅が200mmのリブを持つ外形が700mm角の金型に、非連続強化繊維を含むシート部材Bがリブ側となる様にチャージし、150℃の冷却プレスにて成形後、繊維強化熱可塑性樹脂成形体を得た。連続強化繊維を含むシート部材Aのリブ部の流れ込み深さは、0.2mmであった。
尚、連続強化繊維を含むシート部材Aのリブ部の流れ込み量は、シートサイズを変える事による流動特性差でコントロールした。
その後、リブ部が丁度、曲げ物性測定の中心部に来る様、35mmの幅で試料を切り出し、リブ部の裏側から荷重を加える形で曲げ強度を測定した所、界面での剥離破壊が起き、曲げ強度は490MPa、曲げ弾性率は19GPaと低くなった。
(Comparative Example 1)
The member B containing the discontinuous reinforcing fibers and the member A containing the continuous reinforcing fibers obtained in Example 1 were each cut into a size of 680 mm square, and the surface temperature was 260 ° C. with an infrared heater as in Example 1. After heating until the bottom is 4 mm, the height is 30 mm, and the width is 200 mm, the outer shape of the mold is 700 mm square mold, and the sheet member B containing discontinuous reinforcing fibers is charged on the rib side. After molding with a cooling press at 150 ° C., a fiber-reinforced thermoplastic resin molded body was obtained. The inflow depth of the rib part of the sheet member A containing continuous reinforcing fibers was 0.2 mm.
In addition, the flow amount of the rib part of the sheet member A containing the continuous reinforcing fiber was controlled by the flow characteristic difference by changing the sheet size.
After that, the specimen was cut out with a width of 35 mm so that the rib part was exactly at the center of the measurement of bending properties, and the bending strength was measured in the form of applying a load from the back side of the rib part. The bending strength was as low as 490 MPa and the bending elastic modulus was 19 GPa.

(比較例2)
実施例1で得られた非連続強化繊維を含む部材Bを240mm角の大きさに切り出し、実施例1と同様に赤外線ヒーターで表面温度が260℃となるまで加熱後、根元の厚みが4mm、高さが30mm、幅が80mmのリブを持つ外形が250mm角の金型にチャージし、150℃の冷却プレスにて成形後、連続強化繊維の無い繊維強化熱可塑性樹脂成形体を得た。
その後、リブ部が丁度、曲げ物性測定の中心部に来る様、35mmの幅で試料を切り出し、リブ部の裏側から荷重を加える形で曲げ強度を測定した所、曲げ強度は460MPa、曲げ弾性率は18GPaと低くなった。
(Comparative Example 2)
The member B containing the discontinuous reinforcing fibers obtained in Example 1 was cut into a size of 240 mm square, and after heating until the surface temperature reached 260 ° C. with an infrared heater in the same manner as in Example 1, the thickness of the root was 4 mm, A metal mold having an outer shape with a rib having a height of 30 mm and a width of 80 mm was charged to a 250 mm square, and after molding with a cooling press at 150 ° C., a fiber-reinforced thermoplastic resin molded body without continuous reinforcing fibers was obtained.
After that, the specimen was cut out with a width of 35 mm so that the rib part was just at the center of the measurement of bending properties, and the bending strength was measured by applying a load from the back side of the rib part. The bending strength was 460 MPa and the bending elastic modulus. Was as low as 18 GPa.

本発明により、機械的特性と、突起部等の複雑形状部への成形流動性に優れた、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料からなる繊維強化熱可塑性樹脂成形体を提供することが出来る。また、本発明の繊維強化熱可塑性樹脂成形体は、連続繊維強化熱可塑性複合材料と非連続繊維強化熱可塑性複合材料の界面での剥離破壊が起こり難い特徴も有することから、産業界へ寄与することができる。   According to the present invention, a fiber reinforced thermoplastic resin molded article comprising a continuous fiber reinforced thermoplastic composite material and a discontinuous fiber reinforced thermoplastic composite material having excellent mechanical properties and molding fluidity to a complicated shape portion such as a protrusion. Can be provided. In addition, the fiber-reinforced thermoplastic resin molded article of the present invention also contributes to the industry because it has a feature that peeling failure at the interface between the continuous fiber-reinforced thermoplastic composite material and the discontinuous fiber-reinforced thermoplastic composite material hardly occurs. be able to.

1 基材部
2 突起部
3 連続強化繊維
4 非連続強化繊維
5 流れ込み深さ
6 突起部の根元の厚さ
7 突起部の高さ
DESCRIPTION OF SYMBOLS 1 Base material part 2 Protrusion part 3 Continuous reinforcement fiber 4 Non-continuous reinforcement fiber 5 Flowing depth 6 Thickness of the base of a projection part 7 Height of a projection part

Claims (3)

基材部と、根元の厚さが2mm〜30mm、高さが5mm〜150mmの突起部を有する成形体であって、該成形体は、連続強化繊維と熱可塑性樹脂からなる部材Aと、非連続強化繊維と熱可塑性樹脂からなる部材Bから構成され、部材Bが突起部の先端部に充填されており、突起部内への部材Aの流れ込み深さが0.5mm以上である事を特徴とする繊維強化熱可塑性樹脂成形体。 A molded body having a base part and a protrusion having a base thickness of 2 mm to 30 mm and a height of 5 mm to 150 mm, the molded body comprising a member A made of continuous reinforcing fibers and a thermoplastic resin, It is composed of a member B made of continuous reinforcing fiber and thermoplastic resin, the member B is filled in the tip of the protrusion, and the depth of flow of the member A into the protrusion is 0.5 mm or more. Fiber reinforced thermoplastic resin molding. 前記部材Bが、長さ5mm〜100mm、幅4mm〜60mm、厚み0.05mm〜0.4mmの薄膜片のテープ状物から構成され、含有される強化繊維と熱可塑性樹脂との質量比が85/15〜30/70である請求項1に記載の繊維強化熱可塑性樹脂成形体。 The member B is composed of a tape-like material of a thin film piece having a length of 5 mm to 100 mm, a width of 4 mm to 60 mm, and a thickness of 0.05 mm to 0.4 mm, and the mass ratio of the reinforcing fiber contained and the thermoplastic resin is 85. It is / 15-30 / 70, The fiber reinforced thermoplastic resin molded object of Claim 1. 前記部材Aの連続強化繊維がクロス材であり、部材Aが該クロス材を2〜10層含む積層体である請求項1または2に記載の繊維強化熱可塑性樹脂成形体。 The fiber reinforced thermoplastic resin molded article according to claim 1 or 2, wherein the continuous reinforcing fiber of the member A is a cloth material, and the member A is a laminate including 2 to 10 layers of the cloth material.
JP2014112635A 2014-05-30 2014-05-30 Fiber reinforced thermoplastic resin molding Active JP6567255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112635A JP6567255B2 (en) 2014-05-30 2014-05-30 Fiber reinforced thermoplastic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112635A JP6567255B2 (en) 2014-05-30 2014-05-30 Fiber reinforced thermoplastic resin molding

Publications (2)

Publication Number Publication Date
JP2015226986A true JP2015226986A (en) 2015-12-17
JP6567255B2 JP6567255B2 (en) 2019-08-28

Family

ID=54884808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112635A Active JP6567255B2 (en) 2014-05-30 2014-05-30 Fiber reinforced thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP6567255B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158882A1 (en) * 2017-03-01 2018-09-07 日産自動車株式会社 Carbon fiber-reinforced resin molded body and method for manufacturing said carbon fiber-reinforced resin molded body
JPWO2017110616A1 (en) * 2015-12-25 2018-10-11 東レ株式会社 Substrate laminate and method for producing fiber-reinforced plastic
KR20190028487A (en) 2016-11-11 2019-03-18 아사히 가세이 가부시키가이샤 Molded product and compression molding method
JP2021014558A (en) * 2019-07-16 2021-02-12 旭化成株式会社 Continuous fiber-reinforced resin composite material and method for producing the same
JP2021062589A (en) * 2019-10-17 2021-04-22 小島プレス工業株式会社 Molding die and resin part molded using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167863A (en) * 1998-12-09 2000-06-20 Toyobo Co Ltd Method for reinforcing weld
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167863A (en) * 1998-12-09 2000-06-20 Toyobo Co Ltd Method for reinforcing weld
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017110616A1 (en) * 2015-12-25 2018-10-11 東レ株式会社 Substrate laminate and method for producing fiber-reinforced plastic
KR20190028487A (en) 2016-11-11 2019-03-18 아사히 가세이 가부시키가이샤 Molded product and compression molding method
WO2018158882A1 (en) * 2017-03-01 2018-09-07 日産自動車株式会社 Carbon fiber-reinforced resin molded body and method for manufacturing said carbon fiber-reinforced resin molded body
US11230067B2 (en) 2017-03-01 2022-01-25 Nissan Motor Co., Ltd. Carbon fiber-reinforced resin molded body and manufacturing method thereof
JP2021014558A (en) * 2019-07-16 2021-02-12 旭化成株式会社 Continuous fiber-reinforced resin composite material and method for producing the same
JP7293015B2 (en) 2019-07-16 2023-06-19 旭化成株式会社 CONTINUOUS FIBER REINFORCED RESIN COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF
JP2021062589A (en) * 2019-10-17 2021-04-22 小島プレス工業株式会社 Molding die and resin part molded using the same
JP7335127B2 (en) 2019-10-17 2023-08-29 小島プレス工業株式会社 A molding die and a resin part molded using this molding die

Also Published As

Publication number Publication date
JP6567255B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6567255B2 (en) Fiber reinforced thermoplastic resin molding
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
US10399657B2 (en) Fibre-reinforced metal component for an aircraft or spacecraft and production methods for fibre-reinforced metal components
US10195818B2 (en) Reinforcing article
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
US10099432B2 (en) Manufacturing method for fiber-reinforced resin sheet and manufacturing device therefor
US11911933B2 (en) Molded body and manufacturing method therefor
JP5968600B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same
JP2017537826A (en) Method and system for producing parts made from composite materials, and parts produced from composite materials obtained by the method
JP2014125532A5 (en)
CN108349117B (en) Thermoplastic composite material and molded body
EP3398748B1 (en) Method for manufacturing composite molded body
CN109715385A (en) Laminated substrate and its manufacturing method
JP2015178241A (en) Method of producing fiber-reinforced resin material
JP5761867B2 (en) Method for producing fiber reinforced resin base material or resin molded body, and plasticizing dispenser used in this production method
WO2015033980A1 (en) Production method for fiber reinforcing member
CN104690980A (en) Thermoplastic composite support structures with integral fittings and method
CN104976500A (en) Method For Connecting Hollow Profiles
EP3476587A1 (en) Sheet
JP2016078308A (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2012206446A (en) Method for manufacturing lined fiber-reinforced composite material
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
CN109843564A (en) Composite sheet and its manufacturing method
JP6526495B2 (en) Method of manufacturing pipe molded article
KR102185178B1 (en) Multi-material composite and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R151 Written notification of patent or utility model registration

Ref document number: 6567255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350