JP2012206446A - Method for manufacturing lined fiber-reinforced composite material - Google Patents

Method for manufacturing lined fiber-reinforced composite material Download PDF

Info

Publication number
JP2012206446A
JP2012206446A JP2011075071A JP2011075071A JP2012206446A JP 2012206446 A JP2012206446 A JP 2012206446A JP 2011075071 A JP2011075071 A JP 2011075071A JP 2011075071 A JP2011075071 A JP 2011075071A JP 2012206446 A JP2012206446 A JP 2012206446A
Authority
JP
Japan
Prior art keywords
composite material
resin
mold
material sheet
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011075071A
Other languages
Japanese (ja)
Inventor
Hironori Nagakura
裕規 長倉
Ryuichi Ishitsubo
隆一 石坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011075071A priority Critical patent/JP2012206446A/en
Publication of JP2012206446A publication Critical patent/JP2012206446A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an integral molding with an attached part integrated with a fiber-reinforced composite material sheet.SOLUTION: A method for manufacturing the integral molding with a lining resin containing a thermoplastic resin formed on the fiber-reinforced composite material sheet with a thickness of 0.1-1.5 mm by injection molding or press molding, includes the following 1-3 processes: 1. A step for inserting the fiber-reinforced composite material sheet into a die heated to the softening temperature of thermoplastic resin, 2. A step for injecting the lining resin into the die, and 3. A step for cooling the die to the solidifying temperature of the thermoplastic resin or lower to obtain the integral molding.

Description

本発明は繊維強化複合材料シートに裏打樹脂により成形される付属パーツを一体化させた一体成形物の製造方法である。   The present invention is a method for producing an integrally molded product in which an accessory part formed of a backing resin is integrated with a fiber reinforced composite material sheet.

炭素繊維、ガラス繊維、アラミド繊維等を強化繊維として用いた複合材料は、その高い比強度、比剛性を利用して、自動車、航空機、スポーツ・レジャーなど様々な用途に使用されている。近年、二酸化炭素の排出規制が厳しくなるにつれ、自動車業界では車体の軽量化が必要となっている。そのような中で炭素繊維は比強度、比剛性が優れているため、軽量化の効果が大きいという利点がある。さらに、熱可塑性樹脂をマトリックスとした炭素繊維複合材料はその成形性の良さから量産品への適用が期待されている。特に射出成形は連続成形品の生産には適しており、繊維強化複合材料シートを金型内にセットして、付属パーツを形成する裏打ち材の接着を連続して行うことができる。しかし、この方法では裏打ち材の熱により繊維強化複合材料シートの表面に樹脂ヒケが生じてしまい、意匠性が低下してしまうことや、金型表面の転写が充分に行なえないなどの問題がある。表面の意匠性を改善するために、金型のコア若しくはキャビ側に断熱層や薄膜金属層を挿入して熱の伝わりを抑制する技術がある(特許文献1)。   Composite materials using carbon fibers, glass fibers, aramid fibers, and the like as reinforcing fibers are used in various applications such as automobiles, aircraft, sports and leisure, utilizing their high specific strength and specific rigidity. In recent years, as the carbon dioxide emission regulations become stricter, the automobile industry needs to reduce the weight of the vehicle body. Under such circumstances, the carbon fiber is excellent in specific strength and specific rigidity, and therefore has an advantage that the effect of weight reduction is great. Furthermore, the carbon fiber composite material using a thermoplastic resin as a matrix is expected to be applied to mass-produced products because of its good moldability. In particular, injection molding is suitable for production of continuous molded products, and a fiber reinforced composite material sheet can be set in a mold and the backing material forming the attached parts can be continuously bonded. However, in this method, resin sink marks are generated on the surface of the fiber-reinforced composite material sheet due to the heat of the backing material, which causes problems such as deterioration in design and insufficient transfer of the mold surface. . In order to improve the design of the surface, there is a technique for suppressing heat transfer by inserting a heat insulating layer or a thin film metal layer on the core or cavity side of the mold (Patent Document 1).

特開2000−33635号公報JP 2000-33635 A

本発明は、繊維強化複合材料シートに付属パーツを一体化させた一体成形物の製造方法である。なかでも薄い繊維強化複合材料シートの表面の意匠性を維持したまま、裏打樹脂を成形して付属パーツを付与しようとするものである。さらには裏打樹脂を、繊維強化複合材料シートの全面ではなくランナーを通して射出成形または、プレス成形によって成形することで、軽量効果も高い一体成形物の製造方法を提供するものである。   The present invention is a method for producing an integrally molded product in which accessory parts are integrated with a fiber-reinforced composite material sheet. In particular, while maintaining the design of the surface of the thin fiber-reinforced composite material sheet, the backing resin is molded to give the attached parts. Furthermore, the present invention provides a method for producing an integrally molded product having a high light weight effect by molding the backing resin by injection molding or press molding through a runner instead of the entire surface of the fiber reinforced composite material sheet.

本発明は薄い繊維強化複合材料シートに付属パーツを一体化させた一体成形物の製造方法であって、裏打ち樹脂の冷却時の固化収縮によるヒケ(収縮歪み)の発生を抑制しようとするものである。すなわち本発明は厚さ0.1mm〜3mmの繊維強化複合材料シートに、熱可塑性樹脂を含む裏打樹脂が射出成形またはプレス成形によって成形された、以下の1〜3の工程を含む一体成形物の製造方法である。
1 熱可塑性樹脂の軟化温度以上に加熱した金型中に繊維強化複合材料シートを挿入し
2 金型中に裏打樹脂の射出および注入を行い、
3 圧力を付与しつつ、金型を熱可塑性樹脂の固化温度以下に冷却し、成形物を得る
The present invention is a method for manufacturing an integrally molded product in which accessory parts are integrated with a thin fiber-reinforced composite material sheet, and is intended to suppress the occurrence of sink marks (shrinkage distortion) due to solidification shrinkage during cooling of the backing resin. is there. That is, the present invention is an integrally molded article including the following steps 1 to 3, wherein a backing resin containing a thermoplastic resin is formed by injection molding or press molding on a fiber reinforced composite sheet having a thickness of 0.1 mm to 3 mm. It is a manufacturing method.
1 Insert a fiber reinforced composite material sheet into a mold heated above the softening temperature of the thermoplastic resin, 2 Inject and inject the backing resin into the mold,
3 While applying pressure, cool the mold below the solidification temperature of the thermoplastic resin to obtain a molded product

本発明の一体成形物の製造方法により、炭素繊維強化複合材料シートが薄ものであっても、表面に樹脂のヒケを発生させることなく付属パーツが付与された一体成形物を製造することができ、高い意匠性と軽量化の効果を得ることができる。   According to the method for producing an integrally molded product of the present invention, even if the carbon fiber reinforced composite material sheet is thin, it is possible to produce an integrally molded product with attached parts without causing resin sink on the surface. High designability and light weight can be obtained.

炭素繊維複合材料シートの形状例Carbon fiber composite material sheet shape example 裏打樹脂付与後の炭素繊維複合材料シートの略図Schematic diagram of carbon fiber composite sheet after application of backing resin クリップ、ボス、リブ、ランナーの形状寸法図Dimensional drawing of clip, boss, rib, and runner

[繊維強化複合材料シート]
本発明で用いられる繊維強化複合材料シートは強化繊維と熱可塑性樹脂を積層させホットプレスで熱可塑性樹脂を含浸させたものである。繊維強化複合材料シートは厚さ0.1mm〜3mmである。本発明の効果、すなわち意匠性、軽量化の効果が得られる観点から、0.1〜1.5mm、さらには0.3mm〜1.0mmの範囲内にあることがより好ましい。
[Fiber-reinforced composite sheet]
The fiber reinforced composite material sheet used in the present invention is obtained by laminating reinforcing fibers and a thermoplastic resin and impregnating the thermoplastic resin with a hot press. The fiber reinforced composite material sheet has a thickness of 0.1 mm to 3 mm. From the viewpoint of obtaining the effects of the present invention, that is, the effect of design and weight reduction, it is more preferable to be within the range of 0.1 to 1.5 mm, and further 0.3 to 1.0 mm.

繊維強化複合材料シートにおいて強化繊維は好ましくは炭素繊維であり、炭素繊維が連続繊維または、不連続繊維である。強化繊維が炭素繊維の場合、平均繊維径は好ましくは3〜12μmであり、より好ましくは5〜7μmである。   In the fiber-reinforced composite sheet, the reinforcing fibers are preferably carbon fibers, and the carbon fibers are continuous fibers or discontinuous fibers. When the reinforcing fiber is a carbon fiber, the average fiber diameter is preferably 3 to 12 μm, more preferably 5 to 7 μm.

連続繊維の場合は繊維束が1000本〜5万本までの炭素繊維から作製した織物、一方向(UD)等が使用できるが、意匠性が好まれる織物を使用する方が好ましい。不連続繊維の場合は繊維束が1000本〜5万本までの炭素繊維を5mm〜100mmの長さにカットしたものを使用することができるが、コストの面から炭素繊維は2万本以上のものを使用することが好ましく、意匠性の面から10mm〜30mmの長さにカットした繊維を使用することが好ましい。   In the case of continuous fibers, a woven fabric produced from carbon fibers having a fiber bundle of 1000 to 50,000, unidirectional (UD), and the like can be used, but it is preferable to use a woven fabric that has a favorable design. In the case of discontinuous fibers, carbon fibers having a fiber bundle of 1000 to 50,000 cut to a length of 5 mm to 100 mm can be used, but in terms of cost, the number of carbon fibers is 20,000 or more. It is preferable to use a thing, and it is preferable to use the fiber cut into the length of 10 mm-30 mm from the surface of the design property.

強化繊維複合材料シートを構成する熱可塑性樹脂は例えばポリプロピレン等のポリオレフィン、ナイロン等のポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートあるいはポリブチレンテレフタレート等のポリエステル、ポリ乳酸、ポリアセタール、ポリフェニレンスルフィド、ポリ(スチレン−アクリロニトリル−ブタジエン)系共重合体(ABS樹脂)、ポリ(アクリロニトリル−スチレン)系共重合体(AS樹脂)あるいはハイインパクトポリスチレン(HIPS)等のスチレン系樹脂、ポリメチルメタクリレート等のアクリル系樹脂等を好ましく挙げることができる。炭素繊維の意匠性を活かすためには、透明であるポリカーボネート、AS樹脂、アクリル系樹脂を使用することが好ましい。含浸させる熱可塑性樹脂の形態は特に制限が無く、フィルム、不織布、パウダー、繊維状のものが使用できるが、繊維強化複合材料シートの厚さを安定させるためにはフィルムを使用することが好ましい。   The thermoplastic resin constituting the reinforcing fiber composite material sheet is, for example, polyolefin such as polypropylene, polyamide such as nylon, polycarbonate, polyethylene terephthalate, polyester such as polyethylene naphthalate or polybutylene terephthalate, polylactic acid, polyacetal, polyphenylene sulfide, poly (styrene). -Acrylonitrile-butadiene) copolymer (ABS resin), poly (acrylonitrile-styrene) copolymer (AS resin), styrene resin such as high impact polystyrene (HIPS), acrylic resin such as polymethyl methacrylate, etc. Can be preferably mentioned. In order to make use of the design properties of the carbon fiber, it is preferable to use a transparent polycarbonate, AS resin, or acrylic resin. The form of the thermoplastic resin to be impregnated is not particularly limited, and a film, non-woven fabric, powder, or fibrous material can be used. However, in order to stabilize the thickness of the fiber reinforced composite material sheet, it is preferable to use a film.

強化繊維複合材料シートを構成する熱可塑性樹脂と強化繊維との量比にとくに限定はないが、熱可塑性樹脂100容量部に対し、強化繊維10〜150容量部であることが好ましく、さらには強化繊維50〜100容量部である。   The amount ratio of the thermoplastic resin and the reinforcing fiber constituting the reinforcing fiber composite material sheet is not particularly limited, but is preferably 10 to 150 parts by volume of reinforcing fibers and 100 parts by volume with respect to 100 parts by volume of the thermoplastic resin. 50 to 100 parts by volume of fiber.

本発明の炭素繊維への熱可塑性樹脂の含浸方法はとくに限定はないが、熱可塑性樹脂の軟化温度以上、結晶性樹脂であれば融点以上、非晶性樹脂であればガラス転移温度以上でホットプレスにより炭素繊維へ熱可塑性樹脂を含浸させる。   The method for impregnating the carbon fiber of the present invention with the thermoplastic resin is not particularly limited, but it is hot above the softening temperature of the thermoplastic resin, above the melting point if it is a crystalline resin, and above the glass transition temperature if it is an amorphous resin. Carbon fiber is impregnated with a thermoplastic resin by pressing.

繊維強化複合材料シートは、熱可塑性樹脂を含浸し製品形状に賦形させたものであることが好ましい。図1に炭素繊維複合材料シートの形状の一例を示す。繊維強化複合材料シートの賦形方法はとくに限定はないが、好ましくは熱可塑性樹脂を含浸させた繊維強化複合材料シートを熱風乾燥機もしくは赤外線加熱炉で軟化するまで加熱を行い、金型温度を熱可塑性樹脂のガラス転移温度以下に保った金型でコールドプレスを行い賦形された繊維強化複合材料シートを作製する方法が挙げられる。   It is preferable that the fiber reinforced composite material sheet is impregnated with a thermoplastic resin and shaped into a product shape. FIG. 1 shows an example of the shape of the carbon fiber composite material sheet. The method for shaping the fiber reinforced composite material sheet is not particularly limited, but preferably the fiber reinforced composite material sheet impregnated with the thermoplastic resin is heated until it is softened in a hot air dryer or an infrared heating furnace, and the mold temperature is set. Examples thereof include a method of producing a shaped fiber-reinforced composite material sheet by cold pressing with a mold maintained at a temperature lower than the glass transition temperature of the thermoplastic resin.

[裏打樹脂]
本発明方法で製造する一体成形物は、繊維強化複合材料シートに、裏打樹脂が射出成形または、プレス成形によって成形されたものである。裏打樹脂は、付属パーツを形成するためのものである、付属パーツは、例えば製品取り付けのための部品や補強用の部品であり、具体的には補強リブ、取り付けクリップ、ボス等である。
[Backing resin]
The integrally molded product produced by the method of the present invention is obtained by molding a backing resin on a fiber-reinforced composite material sheet by injection molding or press molding. The backing resin is for forming an accessory part. The accessory part is, for example, a part for product attachment or a part for reinforcement, specifically a reinforcement rib, an attachment clip, a boss, or the like.

裏打樹脂は熱可塑性樹脂から主としてなり、本発明の目的を損なわない範囲で各種添加剤を含んでも良い。裏打樹脂に用いられる熱可塑性樹脂の種類としてはポリプロピレン等のポリオレフィン、ナイロン等のポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートあるいはポリブチレンテレフタレート等のポリエステル、ポリ乳酸、ポリアセタール、ポリフェニレンスルフィド、ポリ(スチレン−アクリロニトリル−ブタジエン)系共重合体(ABS樹脂)、ポリ(アクリロニトリル−スチレン)系共重合体(AS樹脂)あるいはハイインパクトポリスチレン(HIPS)等のスチレン系樹脂、ポリメチルメタクリレート等のアクリル系樹脂または、それらのアロイ、発泡体等を挙げることができる。接着性を良好にするために繊維強化複合材料シートを構成する熱可塑性樹脂と同種類のものを使用することが好ましい。   The backing resin is mainly composed of a thermoplastic resin and may contain various additives as long as the object of the present invention is not impaired. The types of thermoplastic resins used for the backing resin include polyolefins such as polypropylene, polyamides such as nylon, polycarbonates, polyesters such as polyethylene terephthalate, polyethylene naphthalate or polybutylene terephthalate, polylactic acid, polyacetal, polyphenylene sulfide, poly (styrene- Acrylonitrile-butadiene) copolymer (ABS resin), poly (acrylonitrile-styrene) copolymer (AS resin), styrene resin such as high impact polystyrene (HIPS), acrylic resin such as polymethyl methacrylate, or Examples thereof include alloys and foams thereof. In order to improve the adhesiveness, it is preferable to use the same type of thermoplastic resin that constitutes the fiber-reinforced composite material sheet.

[金型]
本発明方法に好ましく用いられる金型は、付属パーツ形成部がランナーによって繋がっている金型である。裏打樹脂付与後の炭素繊維複合材料シートの具体例(略図)を図2に示すが、このような型を用いてリブ、ボス、クリップがランナーによって繋がっている一体成形物を得ることができる。
[Mold]
The metal mold | die preferably used for the method of this invention is a metal mold | die with which the attached part formation part is connected by the runner. A specific example (schematic diagram) of the carbon fiber composite material sheet after application of the backing resin is shown in FIG. 2, and an integral molded product in which ribs, bosses, and clips are connected by a runner can be obtained using such a mold.

金型はコア側および/またはキャビ側がシェアエッジ構造(食い切り構造)を有しているものが好ましい。シェアエッジ構造のシェアの角度はとくに限定はないが、1°〜3°であることが好ましい。金型のクリアランスが0.03mm〜0.1mm未満であることが好ましい。   The mold preferably has a shear edge structure (cut-off structure) on the core side and / or the cab side. The shear angle of the shear edge structure is not particularly limited, but is preferably 1 ° to 3 °. The mold clearance is preferably 0.03 mm to less than 0.1 mm.

[工程1]
工程1では、前述の繊維強化複合材料シートを樹脂の軟化温度以上に保持された金型内に挿入する。金型温度は樹脂の種類により適宜選択され、結晶性樹脂の場合は融点+0℃〜+20℃の範囲内にあることが好ましく、非晶性樹脂ではガラス転移温度+0度〜+50℃以内の範囲内にあることが好ましい。金型温度が低いと繊維強化複合材料の意匠性を得ることが困難になる場合があり、高すぎると繊維強化複合材料シートの熱可塑性樹脂が流動してしまい寸法精度を得ることが困難になる場合がある。
[Step 1]
In step 1, the above-mentioned fiber-reinforced composite material sheet is inserted into a mold held at a temperature equal to or higher than the softening temperature of the resin. The mold temperature is appropriately selected depending on the type of resin. In the case of a crystalline resin, it is preferably in the range of melting point + 0 ° C. to + 20 ° C., and in the case of an amorphous resin, it is within the range of glass transition temperature + 0 ° C. to + 50 ° C. It is preferable that it exists in. If the mold temperature is low, it may be difficult to obtain the design properties of the fiber-reinforced composite material. If the mold temperature is too high, the thermoplastic resin of the fiber-reinforced composite material will flow, making it difficult to obtain dimensional accuracy. There is a case.

[工程2]
工程2で金型中に裏打樹脂の注入を行う。上述に好ましい態様として記載したような付属パーツがランナーで繋がっていて裏打樹脂が製品裏面全体に無い場合、注入時に型締めを完全にしてしまうと圧縮時に圧力がかからない箇所が出来てしまうことがある。また金型を開きすぎた状態で裏打樹脂を注入するとバリの発生に繋がってしまうことがある。そのため、金型を完全には型締めせずに、インサート材料の厚さよりも0.05mm〜0.1mm厚く開き、射出成形機もしくは、プレス機と樹脂注入ユニットの組み合わせられた機械により裏打ち樹脂を金型内に注入することが好ましい。注入樹脂の温度は金型内へ流動する温度であれば良く、保圧はかけても、かけなくても良い。
[Step 2]
In step 2, the backing resin is injected into the mold. If the accessory parts as described above as a preferred embodiment are connected by a runner and the backing resin is not on the entire back side of the product, there may be a place where pressure is not applied during compression if the mold clamping is completely completed during injection. . Moreover, if the backing resin is injected with the mold opened too much, it may lead to the generation of burrs. Therefore, without completely clamping the mold, the mold is opened 0.05 mm to 0.1 mm thicker than the thickness of the insert material, and the backing resin is applied by an injection molding machine or a machine that combines a press machine and a resin injection unit. It is preferable to inject into the mold. The temperature of the injected resin may be any temperature as long as it flows into the mold, and the holding pressure may or may not be applied.

[工程3]
工程3では、工程2の裏打樹脂注入後に圧力を付与しつつ、金型を繊維強化複合材料シートあるいは裏打樹脂を構成する熱可塑性樹脂の固化温度以下に冷却し、成形物を得る。具体的には裏打樹脂の注入が完了と同時に、射出成形機もしくはプレス機械で圧縮を行なう。加圧力は製品単位面積あたり1kg/cm〜150kg/cmが好ましく、安定した寸法と高意匠性を得るためには5kg/cm〜100kg/cmの加圧力の範囲内にあることが好ましい。
[Step 3]
In step 3, the mold is cooled to below the solidification temperature of the thermoplastic resin constituting the fiber-reinforced composite material sheet or the backing resin while applying pressure after injecting the backing resin in step 2 to obtain a molded product. Specifically, compression is performed with an injection molding machine or a press machine simultaneously with the completion of the injection of the backing resin. Pressure is preferably the product per unit area 1kg / cm 2 ~150kg / cm 2 , that the stable in order to obtain a size and high design property is within the range of pressure of 5kg / cm 2 ~100kg / cm 2 preferable.

加圧力を加えた状態で金型を熱可塑性樹脂の固化温度以下に冷却する。具体的には金型温度は60℃〜150℃の範囲から任意に設定し冷却するが、裏打樹脂、繊維強化複合材料シートに使用されている熱可塑性樹脂が結晶性樹脂の場合は結晶化温度以下まで、非晶性樹脂の場合はガラス転移温度以下まで冷却する。繊維強化複合材料シートを構成する熱可塑性樹脂と、裏打樹脂を構成する熱可塑性樹脂が異なる場合、それぞれの固化温度の低い方の温度以下に金型を冷却し固化させる。ただし、使用されている樹脂がアロイの場合で明確な結晶化温度、ガラス転移温度を持たない場合はこの限りではなく、樹脂が充分に固化する温度を固化温度とする。   The mold is cooled below the solidification temperature of the thermoplastic resin with the applied pressure applied. Specifically, the mold temperature is arbitrarily set from the range of 60 ° C. to 150 ° C. and cooled. However, when the thermoplastic resin used for the backing resin or the fiber reinforced composite material sheet is a crystalline resin, the crystallization temperature is set. In the case of an amorphous resin, it is cooled to below the glass transition temperature. When the thermoplastic resin that constitutes the fiber-reinforced composite material sheet and the thermoplastic resin that constitutes the backing resin are different, the mold is cooled and solidified to a temperature lower than the lower one of the respective solidification temperatures. However, this is not the case when the resin used is an alloy and does not have a clear crystallization temperature or glass transition temperature, and the temperature at which the resin is sufficiently solidified is defined as the solidification temperature.

[一体成形物]
本発明で得られる一体成形物は、インスツルメントパネル、ドアトリム、スカッフプレート、ピラー、コンソール等の自動車用内装部品や各種電気製品の筐体、機械・装置の筐体等に用いることができる。
[Integrated molding]
The integrally molded product obtained by the present invention can be used for automobile interior parts such as instrument panels, door trims, scuff plates, pillars, and consoles, housings of various electric products, housings of machines and devices, and the like.

以下に実施例を示すが、本発明はこれらに制限されるものではない。本実施例では、補強リブ1(幅2mm、高さ5mm)、補強リブ2(幅1.5mm、高さ20mm)、取り付けクリップ(幅2mm、高さ15mm)、ボス(幅10mm、高さ15mm)の4種類の付属パーツを設ける。   Examples are shown below, but the present invention is not limited thereto. In this embodiment, reinforcing rib 1 (width 2 mm, height 5 mm), reinforcing rib 2 (width 1.5 mm, height 20 mm), mounting clip (width 2 mm, height 15 mm), boss (width 10 mm, height 15 mm). 4 types of accessory parts are provided.

[実施例1]
炭素繊維織物(東邦テナックス社製 W3101)とメタクリル樹脂(住友化学社製 スミペックス(登録商標)LG21 固化温度100℃)を用いて炭素繊維織物200g/mをメタクリル樹脂フィルム300μmで挟み込んでホットプレスにより含浸シートを成形した。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.7mmであり、Vf=16%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを130℃に温度調節された金型内に挿入後、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、金型の冷却と同時に炭素繊維複合材料シートに20ton(50kg/cm)の圧力を加えたまま、金型を60℃まで冷却し型開きをして製品を得た。表1に示す通り外観を確認したが、表面の樹脂ヒケは見られなかった。
[Example 1]
A carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and a methacrylic resin (Sumipex (registered trademark) LG21 manufactured by Sumitomo Chemical Co., Ltd., solidification temperature 100 ° C.) are used to sandwich a carbon fiber fabric 200 g / m 2 with a 300 μm methacrylic resin film and hot-pressed. An impregnated sheet was formed. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.7 mm and Vf = 16% as shown in FIG.
After inserting the carbon fiber composite material sheet into a mold whose temperature is adjusted to 130 ° C., the ABS resin for lining (Japan A & L Clastic (registered trademark) SXD220 solidification temperature 80 ° C.) is injected at the same time as the mold clamping, FIG. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After injection of the backing resin, the mold was cooled to 60 ° C. and the mold was opened while a pressure of 20 ton (50 kg / cm 2 ) was applied to the carbon fiber composite material sheet simultaneously with cooling of the mold to obtain a product. As shown in Table 1, the appearance was confirmed, but no resin sink on the surface was observed.

[実施例2]
炭素繊維織物(東邦テナックス社製 W3101)とメタクリル樹脂(住友化学社製 スミペックス(登録商標)LG21固化温度100℃)を用いて炭素繊維織物200g/mをメタクリル樹脂フィルム125μmで挟み込んでホットプレスにより含浸シートを得た。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.3mmであり、Vf=38%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを130℃に温度調節された金型内に挿入後、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、金型の冷却と同時に炭素繊維複合材料シートに20ton(50kg/cm)の圧力を加えたまま、金型を60℃まで冷却し型開きをして製品を得た。表1に示す通り外観を確認したが、表面の樹脂ヒケは見られなかった。
[Example 2]
Using a carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and a methacrylic resin (Sumipex (registered trademark) LG21 solidification temperature 100 ° C. manufactured by Sumitomo Chemical Co., Ltd.), 200 g / m 2 of carbon fiber fabric is sandwiched between 125 μm methacrylic resin film and hot-pressed. An impregnated sheet was obtained. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.3 mm as shown in FIG. 1 and Vf = 38%.
After inserting the carbon fiber composite material sheet into a mold whose temperature is adjusted to 130 ° C., the ABS resin for lining (Japan A & L Clastic (registered trademark) SXD220 solidification temperature 80 ° C.) is injected at the same time as the mold clamping, FIG. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After injection of the backing resin, the mold was cooled to 60 ° C. and the mold was opened while a pressure of 20 ton (50 kg / cm 2 ) was applied to the carbon fiber composite material sheet simultaneously with cooling of the mold to obtain a product. As shown in Table 1, the appearance was confirmed, but no resin sink on the surface was observed.

[実施例3]
炭素繊維織物(東邦テナックス社製 W3101)とポリカーボネート(帝人化成社製 L1225固化温度150℃)を用いて炭素繊維織物200g/mをポリカーボネート樹脂フィルム125μmで挟み込んでホットプレスにより含浸シートを得た。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.3mmであり、Vf=38%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを160℃に温度調節された金型内に挿入後、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、金型の冷却と同時に炭素繊維複合材料シートに30ton(80kg/cm)の圧力を加えたまま、金型を60℃まで冷却し型開きをして製品を得た。表1に示す通り外観を確認したが、表面の樹脂ヒケは見られなかった。
[Example 3]
A carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and polycarbonate (L1225 solidification temperature 150 ° C manufactured by Teijin Kasei Co., Ltd.) were used to sandwich 200 g / m 2 of carbon fiber fabric with a polycarbonate resin film of 125 μm to obtain an impregnated sheet by hot pressing. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.3 mm as shown in FIG. 1 and Vf = 38%.
The carbon fiber composite material sheet is inserted into a mold whose temperature is adjusted to 160 ° C., and then the ABS resin for lining (Japan A & L Clarastic (registered trademark) SXD220 solidification temperature 80 ° C.) is injected at the same time as the mold is clamped. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After the injection of the backing resin, the mold was cooled to 60 ° C. and the mold was opened while a pressure of 30 ton (80 kg / cm 2 ) was applied to the carbon fiber composite material sheet simultaneously with cooling of the mold to obtain a product. As shown in Table 1, the appearance was confirmed, but no resin sink on the surface was observed.

[実施例4]
炭素繊維織物(東邦テナックス社製 W3101)とポリプロピレン(三井化学東セロ CP−S25固化温度100℃)を用いて炭素繊維織物200g/mをポリプロピレン樹脂フィルム125μmで挟み込んでホットプレスにより含浸シートを得た。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.3mmであり、Vf=38%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを160℃に温度調節された金型内に挿入後、型締めと同時に裏打ち用のポリプロピレン樹脂(株式会社プライムポリマー プライムポリプロ(登録商標)J106G固化温度100℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、金型の冷却と同時に炭素繊維複合材料シートに30ton(80kg/cm)の圧力を加えたまま、金型を50℃まで冷却し型開きをして製品を得た。表1に示す通り外観を確認したが、表面の樹脂ヒケは見られなかった。
[Example 4]
Carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and polypropylene (Mitsui Chemicals Tosero CP-S25 solidification temperature 100 ° C.) were used to sandwich carbon fiber fabric 200 g / m 2 with a polypropylene resin film 125 μm to obtain an impregnated sheet by hot pressing. . Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.3 mm as shown in FIG. 1 and Vf = 38%.
After inserting the carbon fiber composite material sheet into a mold whose temperature is adjusted to 160 ° C., a polypropylene resin for lining (Prime Polymer Prime Polypro (registered trademark) J106G solidification temperature 100 ° C.) is injected at the same time as clamping. Clips, bosses, and ribs having the shapes shown in FIGS. 2 and 3 were injection molded. After injection of the backing resin, the mold was cooled to 50 ° C. and the mold was opened while a pressure of 30 ton (80 kg / cm 2 ) was applied to the carbon fiber composite material sheet simultaneously with cooling of the mold to obtain a product. As shown in Table 1, the appearance was confirmed, but no resin sink on the surface was observed.

[実施例5]
炭素繊維として東邦テナックス社製 STS40−24KSを使用し、炭素繊維を16mmの長さにカット、散布と同時に、帝人化成社製のポリカーボネート パンライト(登録商標)固化温度150℃、を冷凍粉砕し、更に20メッシュ及び30メッシュにて分級したパウダー(平均粒子径1.0mm)を混合し、ホットプレスを行い、含浸シートを得た。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ1.0mmでVf=11%の炭素繊維複合材料シートを得た。炭素繊維複合材料シートを160℃に温度調節された金型内に挿入後、型締めと同時にABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、金型の冷却と同時に炭素繊維複合材料シートに30ton(80kg/cm)の圧力を加えたまま、金型を60℃まで冷却し型開きをして製品を得た。表1に示す通り外観を確認したが、表面の樹脂ヒケは見られなかった。
[Example 5]
STO40-24KS manufactured by Toho Tenax Co., Ltd. was used as the carbon fiber, and the carbon fiber was cut into a length of 16 mm, and at the same time, the polycarbonate Panlite (registered trademark) solidification temperature 150 ° C. manufactured by Teijin Chemicals was frozen and ground. Further, powders classified by 20 mesh and 30 mesh (average particle diameter: 1.0 mm) were mixed and hot pressed to obtain an impregnated sheet. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 1.0 mm and Vf = 11% as shown in FIG. After the carbon fiber composite material sheet is inserted into a mold whose temperature is adjusted to 160 ° C., ABS resin (Japan A & L Clastic (registered trademark) SXD220 solidification temperature 80 ° C.) is injected simultaneously with mold clamping. Clips, bosses and ribs having the shape shown in Fig. 1 were injection molded. After the injection of the backing resin, the mold was cooled to 60 ° C. and the mold was opened while a pressure of 30 ton (80 kg / cm 2 ) was applied to the carbon fiber composite material sheet simultaneously with cooling of the mold to obtain a product. As shown in Table 1, the appearance was confirmed, but no resin sink on the surface was observed.

[比較例1]
炭素繊維織物(東邦テナックス社製 W3101)とメタクリル樹脂(住友化学社製 スミペックス(登録商標)LG21固化温度100℃)を用いて炭素繊維織物200g/mをメタクリル樹脂フィルム300μmで挟み込んでホットプレスにより含浸シートを成形した。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.7mmであり、Vf=16%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを130℃に温度調節された金型内に挿入し、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、圧力をかけず金型温度60℃まで冷却して、型開きを行った。取り出した製品の表面の意匠性は金型表面を充分に転写したものであったが、一部分で裏打ちのクリップ、ボス、リブが原因と考えられる幅1mm〜6mmの大きさの樹脂ヒケが確認できた。
[Comparative Example 1]
A carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and a methacrylic resin (Sumipex (registered trademark) LG21 solidification temperature 100 ° C. manufactured by Sumitomo Chemical Co., Ltd.) are used to sandwich 200 g / m 2 of carbon fiber fabric with a 300 μm methacrylic resin film and hot press. An impregnated sheet was formed. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.7 mm and Vf = 16% as shown in FIG.
The carbon fiber composite material sheet was inserted into a mold whose temperature was adjusted to 130 ° C., and ABS resin for lining (Japan A & L Clarastic (registered trademark) SXD220 solidification temperature 80 ° C.) was injected at the same time as clamping. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After injection of the backing resin, the mold was opened by cooling to a mold temperature of 60 ° C. without applying pressure. Although the design of the surface of the product taken out was sufficiently transferred from the mold surface, resin sink marks with a width of 1 mm to 6 mm, which are thought to be caused by clips, bosses, and ribs, can be confirmed. It was.

[比較例2]
炭素繊維織物(東邦テナックス社製 W3101)とメタクリル樹脂(住友化学社製 スミペックス(登録商標)LG21固化温度100℃)を用いて炭素繊維織物200g/mをメタクリル樹脂フィルム300μmで挟み込んでホットプレスにより含浸シートを成形した。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.7mmであり、Vf=16%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを130℃に温度調節された金型内に挿入し、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、冷却と同時に炭素繊維複合材料シートに30ton(80kg/cm)の圧力を加え、金型温度130℃にて型開きを行った。取り出した製品は形状が安定せず、取り出し直後形状が崩れてしまい、2分後には、裏打ちのクリップ、ボス、リブが原因と考えられる幅2mm〜14mmの大きさの樹脂ヒケが確認できた。
[Comparative Example 2]
A carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and a methacrylic resin (Sumipex (registered trademark) LG21 solidification temperature 100 ° C. manufactured by Sumitomo Chemical Co., Ltd.) are used to sandwich 200 g / m 2 of carbon fiber fabric with a 300 μm methacrylic resin film and hot press. An impregnated sheet was formed. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.7 mm and Vf = 16% as shown in FIG.
The carbon fiber composite material sheet was inserted into a mold whose temperature was adjusted to 130 ° C., and ABS resin for lining (Japan A & L Clarastic (registered trademark) SXD220 solidification temperature 80 ° C.) was injected at the same time as clamping. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After injection of the backing resin, simultaneously with cooling, a pressure of 30 ton (80 kg / cm 2 ) was applied to the carbon fiber composite material sheet, and the mold was opened at a mold temperature of 130 ° C. The shape of the taken-out product was not stable, and the shape collapsed immediately after taking-out, and after 2 minutes, resin sink marks with a width of 2 mm to 14 mm that could be attributed to the backing clip, boss, and rib were confirmed.

[比較例3]
炭素繊維織物(東邦テナックス社製 W3101)とメタクリル樹脂(住友化学社製 スミペックス(登録商標)LG21固化温度100℃)を用いて炭素繊維織物200g/mをメタクリル樹脂フィルム300μmで挟み込んでホットプレスにより含浸シートを成形した。その後コールドプレスにより賦形を行い、図1に示す形状の厚さ0.7mmであり、Vf=16%の炭素繊維複合材料シートを得た。
炭素繊維複合材料シートを78℃に温度調節された金型内に挿入し、型締めと同時に裏打ち用のABS樹脂(日本A&L クララスチック(登録商標)SXD220固化温度80℃)を射出し、図2、図3に示す形状のクリップ、ボス、リブを射出成形した。裏打ち樹脂の射出後、炭素繊維複合材料シートに30ton(80kg/cm)の圧力を加えたまま、金型を60℃まで冷却し型開きをする。取り出した製品の表面の意匠性は充分に金型表面を転写したものではなく、裏打ちのクリップ、ボス、リブが原因と考えられる幅1mm〜4mmの大きさの樹脂ヒケも確認された。
以下表1に実施例と比較例の成形体表面の成形結果をまとめた。
[Comparative Example 3]
A carbon fiber fabric (W3101 manufactured by Toho Tenax Co., Ltd.) and a methacrylic resin (Sumipex (registered trademark) LG21 solidification temperature 100 ° C. manufactured by Sumitomo Chemical Co., Ltd.) are used to sandwich 200 g / m 2 of carbon fiber fabric with a 300 μm methacrylic resin film and hot press. An impregnated sheet was formed. Thereafter, it was shaped by a cold press to obtain a carbon fiber composite material sheet having a thickness of 0.7 mm and Vf = 16% as shown in FIG.
The carbon fiber composite material sheet was inserted into a mold whose temperature was adjusted to 78 ° C., and ABS resin for lining (Nihon A & L Clastic (registered trademark) SXD220 solidification temperature 80 ° C.) was injected at the same time as clamping. A clip, boss, and rib having the shape shown in FIG. 3 were injection molded. After injection of the backing resin, the mold is cooled to 60 ° C. and the mold is opened while a pressure of 30 ton (80 kg / cm 2 ) is applied to the carbon fiber composite material sheet. The design of the surface of the taken-out product did not sufficiently transfer the surface of the mold, and resin sink marks having a width of 1 mm to 4 mm, which are thought to be caused by the backed clips, bosses, and ribs, were also confirmed.
Table 1 below summarizes the molding results of the molded body surfaces of the examples and comparative examples.

1 リブ形状1
2 リブ形状2
3 ボス形状
4 取り付けクリップ
5 ランナー
6 ゲート
1 Rib shape 1
2 Rib shape 2
3 Boss shape 4 Mounting clip 5 Runner 6 Gate

Claims (5)

厚さ0.1mm〜3mmの繊維強化複合材料シートに、裏打樹脂が射出成形またはプレス成形によって成形された、以下の1〜3の工程を含む一体成形物の製造方法。
1 熱可塑性樹脂の軟化温度以上に加熱した金型中に繊維強化複合材料シートを挿入し
2 金型中に裏打樹脂の注入を行い、
3 圧力を付与しつつ、金型を熱可塑性樹脂の固化温度以下に冷却し、一体成形物を得る
A method for producing an integrally molded article comprising the following steps 1 to 3, wherein a backing resin is molded by injection molding or press molding on a fiber-reinforced composite material sheet having a thickness of 0.1 mm to 3 mm.
1 Insert the fiber reinforced composite material sheet into the mold heated above the softening temperature of the thermoplastic resin, 2 Inject the backing resin into the mold,
3 While applying pressure, cool the mold below the solidification temperature of the thermoplastic resin to obtain an integrally molded product
繊維強化複合材料シートにおける強化繊維が炭素繊維であり、炭素繊維が連続繊維または不連続繊維である請求項1に記載の一体成形物の製造方法。   The method for producing an integrally molded product according to claim 1, wherein the reinforcing fibers in the fiber-reinforced composite material sheet are carbon fibers, and the carbon fibers are continuous fibers or discontinuous fibers. 繊維強化複合材料シートが、熱可塑性樹脂を含浸し製品形状に賦形させたものである請求項1または2に記載の一体成形物の製造方法。   The method for producing an integrally molded article according to claim 1 or 2, wherein the fiber-reinforced composite material sheet is impregnated with a thermoplastic resin and shaped into a product shape. 付属パーツ形成部がランナーによって繋がっている金型を使用する請求項1〜3のいずれかに記載の一体成形物の製造方法。   The manufacturing method of the integral molded product in any one of Claims 1-3 which uses the metal mold | die with which the attached part formation part is connected by the runner. シェアエッジ構造を有しかつ、クリアランスが0.03mm〜0.1mm未満である金型を使用して成形する請求項1〜4のいずれかに記載の一体成形物の製造方法。   The manufacturing method of the integral molded product in any one of Claims 1-4 shape | molded using the metal mold | die which has a share edge structure and a clearance is 0.03 mm-less than 0.1 mm.
JP2011075071A 2011-03-30 2011-03-30 Method for manufacturing lined fiber-reinforced composite material Withdrawn JP2012206446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075071A JP2012206446A (en) 2011-03-30 2011-03-30 Method for manufacturing lined fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075071A JP2012206446A (en) 2011-03-30 2011-03-30 Method for manufacturing lined fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2012206446A true JP2012206446A (en) 2012-10-25

Family

ID=47186630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075071A Withdrawn JP2012206446A (en) 2011-03-30 2011-03-30 Method for manufacturing lined fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2012206446A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156861A1 (en) * 2013-03-25 2014-10-02 Art&Tech株式会社 Nonwoven fabric, sheet, film, multilayer sheet, molded article, and method for producing nonwoven fabric
JP2015107642A (en) * 2013-12-03 2015-06-11 ザ・ボーイング・カンパニーTheBoeing Company Thermoplastic composite support structures with integral fittings and method
WO2018113505A1 (en) * 2016-12-21 2018-06-28 比亚迪股份有限公司 Casing and manufacturing method thereof, and electronic product
KR101898990B1 (en) * 2016-04-20 2018-09-18 덕양산업 주식회사 Manufacturing method of vehicle door inner panel
US10479005B2 (en) 2015-10-29 2019-11-19 Asahi Kasei Kabushiki Kaisha Composite molded article and method for producing the same
US20200198193A1 (en) * 2017-08-31 2020-06-25 Toray Industries, Inc. Integrally molded body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156861A1 (en) * 2013-03-25 2014-10-02 Art&Tech株式会社 Nonwoven fabric, sheet, film, multilayer sheet, molded article, and method for producing nonwoven fabric
JP2014223780A (en) * 2013-03-25 2014-12-04 Art&Tech株式会社 Multilayer sheet and molded article
JP2014224333A (en) * 2013-03-25 2014-12-04 Art&Tech株式会社 Nonwoven fabric, sheet or film, molding, and method for producing nonwoven fabric
CN105102705A (en) * 2013-03-25 2015-11-25 美术工艺株式会社 Nonwoven fabric, sheet, film, multilayer sheet, molded article, and method for producing nonwoven fabric
JP2015107642A (en) * 2013-12-03 2015-06-11 ザ・ボーイング・カンパニーTheBoeing Company Thermoplastic composite support structures with integral fittings and method
US10479005B2 (en) 2015-10-29 2019-11-19 Asahi Kasei Kabushiki Kaisha Composite molded article and method for producing the same
KR101898990B1 (en) * 2016-04-20 2018-09-18 덕양산업 주식회사 Manufacturing method of vehicle door inner panel
WO2018113505A1 (en) * 2016-12-21 2018-06-28 比亚迪股份有限公司 Casing and manufacturing method thereof, and electronic product
TWI696413B (en) * 2016-12-21 2020-06-11 大陸商比亞迪股份有限公司 A shell and preparation method and electronic products
US20200198193A1 (en) * 2017-08-31 2020-06-25 Toray Industries, Inc. Integrally molded body
US11794385B2 (en) * 2017-08-31 2023-10-24 Toray Industries, Inc. Integrally molded body

Similar Documents

Publication Publication Date Title
JP2012206446A (en) Method for manufacturing lined fiber-reinforced composite material
CN102470614B (en) For the manufacture of the injection moulding process of parts
EP2763831B1 (en) Compression overmolding process and device therefor
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
JP5819896B2 (en) Manufacturing method of fiber reinforced member
WO2014162873A1 (en) Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
CN108472840B (en) Method for manufacturing structure
JP2013502332A5 (en) INJECTION MOLDING METHOD FOR MANUFACTURING COMPONENTS, AUTOMOBILE PARTS, AND USE THEREOF
JP2013176876A (en) Manufacturing method of molding
CN203864106U (en) Semi-finished product made of prepreg, three-dimensional preformed body and overmolded part
CN105014870B (en) A kind of preparation method of carbon fibre composite auto parts and components
US10414445B2 (en) Hybrid component for a vehicle
US10654202B2 (en) Resin molding and method for producing the same
JP2015178241A (en) Method of producing fiber-reinforced resin material
CN108724602B (en) Resin molded article and method for producing same
CN106687271B (en) Method for producing a multi-shell composite component with an integrated reinforcing structure and multi-shell composite component produced therefrom
KR20180060504A (en) Door of vehicle and a method for producing the same
US10933568B2 (en) Resin molding and method for producing the same
KR20190025658A (en) Method of manufacturing a functionalized three-dimensional shaped body
CN105690804B (en) The method and application thereof of plug-in unit made of cladding molding prepreg
JP2006001021A (en) Appearance part and its manufacturing method
CN105538592A (en) Preparation method for novel carbon fiber composite automobile parts
KR101589110B1 (en) Method for manufacturing car panel
JP2019084736A (en) Resin molding and method for producing the same
JP2018130854A (en) Manufacturing method of resin molded article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603