JP7474077B2 - Martensitic Stainless Steels for Laser Welding - Google Patents

Martensitic Stainless Steels for Laser Welding Download PDF

Info

Publication number
JP7474077B2
JP7474077B2 JP2020040805A JP2020040805A JP7474077B2 JP 7474077 B2 JP7474077 B2 JP 7474077B2 JP 2020040805 A JP2020040805 A JP 2020040805A JP 2020040805 A JP2020040805 A JP 2020040805A JP 7474077 B2 JP7474077 B2 JP 7474077B2
Authority
JP
Japan
Prior art keywords
less
weld
laser welding
martensitic stainless
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040805A
Other languages
Japanese (ja)
Other versions
JP2021143354A (en
Inventor
光司 高野
雅之 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2020040805A priority Critical patent/JP7474077B2/en
Publication of JP2021143354A publication Critical patent/JP2021143354A/en
Application granted granted Critical
Publication of JP7474077B2 publication Critical patent/JP7474077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、レーザー溶接される高硬度・高耐食性材に関して、溶接割れがなく高硬度・高耐食性を具備した、レーザー溶接用のマルテンサイト系ステンレス鋼に関するものである。 The present invention relates to high-hardness, high-corrosion-resistant materials to be laser welded, and to martensitic stainless steel for laser welding that is free of weld cracks and has high hardness and high corrosion resistance.

500Hv以上の高硬度・高耐食性マルテンサイト系ステンレス鋼は、耐摩耗性,疲労強度、耐食性等、優れた耐久性特性からインフラや自動車等の塩化物や粗悪燃料が存在する厳しい腐食環境で使用される部品で幅広く使用されるようになってきた。これまで冷間成形や熱間成型で部品に使用されてきたが、近年、溶接部品でも適用が検討されている。特に、近年では鋼部品の部品加工において生産性が高いレーザー溶接が多用されるようになっており、高硬度・高耐食性マルテンサイト系ステンレス鋼においてもレーザー溶接のニーズが高い。しかしながら、溶接割れを回避しながら、溶接部および溶接HAZ部の耐食性と高硬度を維持することが難しい。 High-hardness, high-corrosion-resistant martensitic stainless steels with a hardness of 500 Hv or more have excellent durability properties, such as wear resistance, fatigue strength, and corrosion resistance, and are therefore widely used in parts used in severe corrosive environments such as infrastructure and automobiles, where chlorides and inferior fuels are present. Until now, they have been used in parts that have been cold-formed or hot-formed, but in recent years, their use in welded parts has also been considered. In particular, laser welding, which has high productivity, has come to be used frequently in the processing of steel parts in recent years, and there is a high demand for laser welding in high-hardness, high-corrosion-resistant martensitic stainless steels. However, it is difficult to maintain the corrosion resistance and high hardness of welds and weld HAZ parts while avoiding weld cracking.

マルテンサイト系ステンレス鋼のレーザー溶接について、溶接部の欠陥低減および靭性向上を目的にレーザー溶接方法の適正化および溶接後の切削の技術が提案されている(特許文献1)。しかしながら、溶接部の耐久性に関する技術の開示がない。 With regard to laser welding of martensitic stainless steel, technology has been proposed for optimizing the laser welding method and cutting after welding with the aim of reducing defects in the weld and improving the toughness (Patent Document 1). However, no technology has been disclosed regarding the durability of the weld.

マルテンサイト系ステンレス鋼のレーザー溶接部の耐食性について、約13%Crマルテンサイト系ステンレス鋼のC含有量を0.05%以下としてレーザー溶接条件を最適化することにより、レーザー溶接にて溶接割れなく、溶接部の耐食性を確保できることが開示されている(特許文献2,3)。しかしながら、C量が低く、500Hv以上の高硬度状態での耐食性確保を予見できない。 Regarding the corrosion resistance of laser welds of martensitic stainless steel, it has been disclosed that by optimizing the laser welding conditions by setting the C content of approximately 13% Cr martensitic stainless steel to 0.05% or less, it is possible to ensure corrosion resistance of the welds without weld cracks during laser welding (Patent Documents 2 and 3). However, the C content is low, and it is not possible to foresee ensuring corrosion resistance in a high hardness state of 500 Hv or more.

一方、マルテンサイト系ステンレス鋼の成分調整と共にδフェライトを抑制して界面に析出するCr炭化物の析出を抑制する組織制御により高硬度と高耐食性を両立できることを提案している(特許文献4)。しかしながら、レーザー溶接にてδフェライトを抑制すると溶接割れが発生する。 On the other hand, it has been proposed that high hardness and high corrosion resistance can be achieved by controlling the structure of martensitic stainless steel by adjusting the components and suppressing δ-ferrite, thereby suppressing the precipitation of Cr carbides at the interface (Patent Document 4). However, suppressing δ-ferrite in laser welding causes weld cracks.

特許第3797105号公報Patent No. 3797105 特許第3033483号公報Patent No. 3033483 特許第3064851号公報Patent No. 3064851 特許第3340225号公報Japanese Patent No. 3340225

本発明者は、上記の背景技術に記載の公知の技術または組み合わせでは、塩化物や酸が存在する厳しい腐食環境下で使用されるレーザー溶接された500Hv以上の高硬度マルテンサイト系ステンレス鋼製部品において、溶接割れを抑制して高硬度と耐食性を両立することができないことを知見した。 The inventors have found that the known techniques or combinations described in the Background Art above are unable to suppress weld cracking and achieve both high hardness and corrosion resistance in laser-welded martensitic stainless steel components with a hardness of 500 Hv or more that are used in severe corrosive environments in which chlorides and acids are present.

本発明の解決すべき課題は、塩化物や粗悪燃料が存在する腐食環境の厳しい環境下で使用されるマルテンサイト系ステンレス鋼製部品において、レーザー溶接で溶接割れなく所定形状の部品に加工でき、溶接部近傍を含めて高硬度と高耐食性を付与して耐久性を改善することのできる、レーザー溶接用のマルテンサイト系ステンレス鋼を提供することを課題とするものである。 The problem to be solved by the present invention is to provide a martensitic stainless steel for laser welding that can be processed into a part of a specified shape by laser welding without weld cracks, and that can improve durability by imparting high hardness and high corrosion resistance, including to the vicinity of the weld, for martensitic stainless steel parts used in severe corrosive environments where chlorides and inferior fuels are present.

本発明者等は、上記課題を解決するために500Hv以上の高硬度が得られるマルテンサイト系ステンレス鋼において種々検討した結果、レーザー溶接時にδフェライトが所定量生成するように成分調整することで高硬度材でもレーザー溶接時に割れなく接合が可能になり、且つ、Mo,W,Nb,V量を適量含有させることで溶接HAZ部の軟化を抑制して高硬度を確保し、溶接部のCr炭窒化物の析出を抑制してレーザー溶接部近傍の高耐食性を著しく向上する知見を得た。すわなち、レーザー溶接部において、耐溶接割れ、500Hv以上の高硬度、耐塩化物環境下での耐食性の全てを満足するものである。 In order to solve the above problems, the inventors conducted various studies on martensitic stainless steels that can achieve a high hardness of 500 Hv or more. As a result, they discovered that by adjusting the composition so that a specified amount of δ ferrite is generated during laser welding, even high-hardness materials can be joined without cracking during laser welding, and that by adding appropriate amounts of Mo, W, Nb, and V, softening of the weld HAZ is suppressed to ensure high hardness, and precipitation of Cr carbonitrides in the weld is suppressed, significantly improving high corrosion resistance in the vicinity of the laser weld. In other words, the laser weld satisfies all of the following requirements: resistance to weld cracking, high hardness of 500 Hv or more, and corrosion resistance in chloride environments.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、
C:0.15~0.60%、
Si:0.1~3.0%、
Mn:0.1~5.0%、
S:0.01%以下、
P:0.05%以下、
Ni:0.1~5.0%、
Cr:10.5~16.0%、
N:0.01~0.15%、
Al:0.002~1.0%を含有し、
Mo:0.05~3.0%、
W:0.05~3.0%
の内、1種類以上を含有し、
V:0.01~1.0%、
Nb:0.01~0.45%
の内、1種類以上を含有し、
残部Feおよび不純物からなる化学成分を有し、
(a)式で表されるD値が0~10であり、
(b)式で表されるM値が0.3~5.5であることを特徴とするレーザー溶接用のマルテンサイト系ステンレス鋼。
D=(Cr+0.5Si+2.5Al)-(25C+18N+Ni+0.1Mn)+(1.2Mo+2W+3V+3Nb)-6 ・・・・・・・・・(a)
M=Mo+W+10(V+Nb) ・・・・・・・・・・・(b)
上記式で、元素記号は当該元素の含有量(質量%)を意味する。
(2)前記Feの一部に変えて、更に質量%で、
Cu:3.0%以下、
Co:3.0%以下
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする前記(1)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
(3)前記Feの一部に変えて、更に質量%で、
Ti:0.45%以下、
Ta:0.45%以下の内、1種類以上を含有することを特徴とする前記(1)または(2)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
(4)前記Feの一部に変えて、更に質量%で、
Mg:0.01%以下、
Ca:0.01%以下、
Hf:0.01%以下、
REM:0.05%以下の内、1種類以上を含有することを特徴とする前記(1)~(3)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1) In mass%,
C: 0.15 to 0.60%,
Si: 0.1 to 3.0%,
Mn: 0.1 to 5.0%,
S: 0.01% or less,
P: 0.05% or less,
Ni: 0.1 to 5.0%,
Cr: 10.5 to 16.0%,
N: 0.01 to 0.15%,
Al: 0.002 to 1.0%;
Mo: 0.05 to 3.0%,
W: 0.05 to 3.0%
Contains one or more of the following:
V: 0.01 to 1.0%,
Nb: 0.01 to 0.45%
Contains one or more of the following:
The balance has a chemical composition of Fe and impurities,
(a) the D value represented by the formula is 0 to 10;
A martensitic stainless steel for laser welding, characterized in that the M value represented by formula (b) is 0.3 to 5.5.
D = (Cr + 0.5Si + 2.5Al) - (25C + 18N + Ni + 0.1Mn) + (1.2Mo + 2W + 3V + 3Nb) - 6 ... (a)
M = Mo + W + 10 (V + Nb) .................................................... (b)
In the above formula, the element symbol indicates the content (mass %) of the corresponding element.
(2) Part of the Fe is replaced with further mass%:
Cu: 3.0% or less,
Co: 3.0% or less B: 0.01% or less
Sn: 0.3% or less,
The martensitic stainless steel for laser welding according to (1) above, characterized in that it contains one or more of the following: Sb: 0.3% or less.
(3) Part of the Fe is replaced with further mass%:
Ti: 0.45% or less,
The martensitic stainless steel for laser welding according to (1) or (2), characterized in that it contains one or more of the following: Ta: 0.45% or less.
(4) Part of the Fe is replaced with further mass%:
Mg: 0.01% or less,
Ca: 0.01% or less,
Hf: 0.01% or less,
The martensitic stainless steel for laser welding according to any one of (1) to (3) above, characterized in that it contains one or more of the following: REM: 0.05% or less.

本発明によれば、マルテンサイト系ステンレス鋼において、金属組織と析出物の制御のために適正な成分調整を施すことで、レーザー溶接時の溶接割れを抑制し、溶接部近傍の高硬度と高耐食性を大幅に改善でき、レーザー溶接で加工される耐久性部品に好適な材料を提供する。 According to the present invention, by adjusting the composition of martensitic stainless steel appropriately to control the metal structure and precipitates, it is possible to suppress weld cracks during laser welding and significantly improve the high hardness and high corrosion resistance near the weld, providing a material suitable for durable parts processed by laser welding.

以下に本発明の各要件について説明する。なお、以下の説明における(%)は特に断りのない限り、質量(%)である。 Each of the requirements of the present invention will be explained below. In the following explanation, (%) means mass (%) unless otherwise specified.

《鋼の必須成分組成》
公知で開示されている低C系のマルテンサイト系ステンレス鋼では工業的に耐摩耗性や耐疲労強度を確保できない。本発明では、一般的に耐摩耗性や耐疲労強度に有効な500Hv以上の部品が対象であり、焼入れ状態で少なくとも500Hv以上を発揮する高硬度マルテンサイト系ステンレス鋼がベースとなる。
<Essential composition of steel>
The publicly known and disclosed low-C martensitic stainless steels cannot ensure industrially sufficient wear resistance and fatigue strength. The present invention is intended for parts with a hardness of 500 Hv or more, which is generally effective for wear resistance and fatigue strength, and is based on a high-hardness martensitic stainless steel that exhibits at least 500 Hv in a quenched state.

Cは、母材の焼入れ後、またはレーザー溶接部や溶接HAZ部の硬さを500Hv以上にするため0.15%以上含有させる。しかしながら、0.60%を超えて添加すると粗大なCr炭化物が生成して、溶接割れ性や耐食性を劣化させる。そのため、0.60%以下に限定する。好ましくは、0.20%超、0.50%以下である。 C is added at 0.15% or more to make the hardness of the base material 500Hv or more after hardening, or in laser welds and weld HAZs. However, adding more than 0.60% produces coarse Cr carbides, which deteriorates weld crack resistance and corrosion resistance. Therefore, it is limited to 0.60% or less. Preferably, it is more than 0.20% and 0.50% or less.

Nは、レーザー溶接HAZ部の軟化を抑制して耐食性を確保するために0.01%以上含有させる。しかしながら、0.15%を超えて含有させるとブローホールのために溶接割れ(溶接欠陥)が生じる。そのため、0.15%以下に限定する。好ましくは、0.02~0.12%の範囲である。 N is contained at 0.01% or more to suppress softening of the laser weld HAZ and ensure corrosion resistance. However, if it is contained at more than 0.15%, weld cracks (weld defects) will occur due to blowholes. Therefore, it is limited to 0.15% or less. The preferred range is 0.02 to 0.12%.

Siは、レーザー溶接部の溶融部での脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.1%以上含有させる。しかしながら、3.0%を超えて含有させると脆化して溶接割れ(溶接欠陥)が生じる。そのため、3.0%以下に限定する。好ましくは、0.2~2.0%の範囲である。 Si is contained at 0.1% or more to promote deoxidation in the molten zone of laser welds and suppress weld cracks (weld defects). However, if it is contained at more than 3.0%, it becomes embrittled and weld cracks (weld defects) occur. Therefore, it is limited to 3.0% or less. The preferred range is 0.2 to 2.0%.

Mnは、レーザー溶接部の溶融部での脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.1%以上含有させる。しかしながら、5.0%を超えて添加すると残留オーステナイトが生成して溶接部の高硬度500Hv以上を確保できなくなる。そのため、5.0%以下に限定する。好ましくは、0.2~3.0%である。 Mn is added at 0.1% or more to promote deoxidation in the molten zone of laser welds and suppress weld cracks (weld defects). However, if added in excess of 5.0%, residual austenite is generated and it becomes impossible to ensure a high hardness of 500Hv or more in the welds. Therefore, it is limited to 5.0% or less. Preferably, it is 0.2 to 3.0%.

Sは、溶接割れを助長し、耐食性を劣化させる元素であるため、含有量を0.01%以下に限定する。好ましくは、0.007%以下である。 Since S promotes weld cracking and deteriorates corrosion resistance, its content is limited to 0.01% or less. Preferably, it is 0.007% or less.

Pは、粒界偏析して溶接割れ性を助長する元素であるため、含有量を0.05%以下に限定する。好ましくは、0.035%以下である。 Since P is an element that segregates at grain boundaries and promotes weld cracking, its content is limited to 0.05% or less. Preferably, it is 0.035% or less.

Niは、マルテンサイト系ステンレス鋼の靭性を向上させて、溶接割れを抑制するため0.1%以上含有させる。しかしながら、5.0%を超えて添加すると残留オーステナイトが生成して溶接部の高硬度500Hv以上を確保できなくなる。そのため、5.0%以下に限定する。好ましくは、0.2~3.0%である。 Ni is added at 0.1% or more to improve the toughness of martensitic stainless steel and suppress weld cracking. However, if it is added in excess of 5.0%, retained austenite is generated and it becomes impossible to ensure a high hardness of 500Hv or more at the weld. Therefore, it is limited to 5.0% or less. The preferred range is 0.2 to 3.0%.

Crは、ステンレス鋼の耐食性の機能を得るための基本元素であり、10.5%以上を含有させる。しかしながら、16.0%を超えて含有させると、溶接部の高硬度500Hv以上を確保できなくなる。そのため、16.0%以下に限定する。好ましくは、11.0~15.0%である。 Cr is a basic element for imparting corrosion resistance to stainless steel, and is contained at 10.5% or more. However, if it is contained at more than 16.0%, it will not be possible to ensure a high hardness of 500Hv or more at the weld. Therefore, it is limited to 16.0% or less. The preferred range is 11.0 to 15.0%.

Alは、レーザー溶接部の溶融部の脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.002%以上含有させる。しかしながら、1.0%を超えて含有させると粗大介在物生成のために溶接割れ(溶接欠陥)が生じる。そのため、1.0%以下に限定する。好ましくは0.005~0.2の範囲である。 Al is contained at 0.002% or more to promote deoxidation of the molten zone of laser welds and suppress weld cracks (weld defects). However, if it is contained at more than 1.0%, coarse inclusions will form, causing weld cracks (weld defects). Therefore, it is limited to 1.0% or less. The preferred range is 0.005 to 0.2.

Mo、Wは、耐食性を向上させる元素であり、また、レーザー溶接後のCr炭窒化物の生成を抑制して耐食性を確保するために、Mo、Wの1種類以上をそれぞれ0.05%以上含有させる。しかしながら、3.0%を超えて含有させると靭性が劣化して溶接割れを助長させる。そのため、3.0%以下に限定する。 Mo and W are elements that improve corrosion resistance, and in order to suppress the formation of Cr carbonitrides after laser welding and ensure corrosion resistance, at least one of Mo and W is contained at 0.05% each. However, if the content exceeds 3.0%, toughness deteriorates and weld cracks are promoted. Therefore, the content is limited to 3.0% or less.

V,Nbは、レーザー溶接後のCr炭窒化物の生成を抑制して耐食性を確保するために、V,Nbの1種類以上をそれぞれ0.01%以上含有させる。しかしながら、Vは1.0%を超えて、Nbは0.45%を含有させると粗大析出部が生成して溶接割れを助長させる。そのため、Vは1.0%以下、Nbは0.45%以下に限定する。 At least one of V and Nb is contained at 0.01% each in order to suppress the formation of Cr carbonitrides after laser welding and ensure corrosion resistance. However, if V exceeds 1.0% and Nb is contained at 0.45%, coarse precipitates will form and promote weld cracking. Therefore, V is limited to 1.0% or less and Nb to 0.45% or less.

前記(a)式で表されるD値は、レーザー溶接時の溶融・急冷凝固部のδフェライト生成量に影響を及ぼし、P、S等の不純物をトラップするδフェライトを生成させて溶接割れを防止するために0以上とする。しかしながら、10を超えると溶接部の高硬度500Hv以上を確保できなくなる。そのため、10以下に限定する。好ましくは2.0~7.0の範囲である。 The D value expressed by the formula (a) affects the amount of δ ferrite generated in the melted and rapidly solidified parts during laser welding, and is set to 0 or more in order to generate δ ferrite that traps impurities such as P and S and prevents weld cracks. However, if it exceeds 10, it will not be possible to ensure a high hardness of 500 Hv or more in the weld. Therefore, it is limited to 10 or less. It is preferably in the range of 2.0 to 7.0.

前記(b)式で表されるM値は、レーザー溶接時のCr炭窒化物の生成量に影響を及ぼす。Cr炭窒化物の生成を抑制して耐食性を確保するためにM値を0.3以上とする。しかしながら、4.0を超えると靭性が劣化して溶接割れを助長させる。そのため、5.5以下に限定する。好ましくは、0.5~4.0の範囲である。 The M value expressed by the formula (b) above affects the amount of Cr carbonitrides formed during laser welding. In order to suppress the formation of Cr carbonitrides and ensure corrosion resistance, the M value is set to 0.3 or more. However, if it exceeds 4.0, toughness deteriorates and weld cracks are promoted. Therefore, it is limited to 5.5 or less. The preferred range is 0.5 to 4.0.

《選択的含有成分》
本発明のステンレス鋼は、上述してきた元素以外は、Feおよび不純物からなる化学成分から構成される。さらに、前記成分組成に加え、Feの一部に替えて、選択的に以下に示す元素を含有しても良い。
Optional Ingredients
The stainless steel of the present invention is composed of chemical components consisting of Fe and impurities other than the elements mentioned above. Furthermore, in addition to the above-mentioned composition, the following elements may be selectively contained in place of a portion of Fe.

Cuは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、3.0%を超えて含有させても、その効果は飽和し、残留オーステナイトが生成して溶接部の500Hv以上の高硬度が確保できなくなるばかりか、溶接割れが劣化する。そのため、含有量は3.0%以下とする。好ましくは、1.5%以下である。 Cu may be added as necessary to improve the corrosion resistance of the product. However, if it is added in excess of 3.0%, the effect saturates and residual austenite is generated, making it impossible to ensure a high hardness of 500 Hv or more at the weld, and also causing deterioration in weld cracking. Therefore, the content is set to 3.0% or less. Preferably, it is 1.5% or less.

Coは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、それぞれ3.0%を超えて含有させても、その効果は飽和し、残留オーステナイトやフェライトが生成して溶接部の500Hv以上の高硬度を確保できなくなる。そのため、含有量は3.0%以下とする。好ましくは、2.0%以下である。 Co may be added as necessary to improve the toughness and corrosion resistance of the product. However, if the content exceeds 3.0%, the effect saturates and residual austenite and ferrite are generated, making it impossible to ensure a high hardness of 500 Hv or more in the weld. Therefore, the content is set to 3.0% or less. Preferably, it is 2.0% or less.

Bは、製品および溶接部の靭性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.01%を超えて含有させても、その効果は飽和するし、逆に粗大なボライドを生成して溶接割れを助長し、耐食性を劣化させるため、含有量は0.01%以下とする。好ましくは、0.006%以下である。 B may be added as necessary to improve the toughness of the product and welds. However, if it is added in excess of 0.01%, the effect saturates and, conversely, it generates coarse borides that promote weld cracking and deteriorate corrosion resistance, so the content should be 0.01% or less. Preferably, it is 0.006% or less.

Sn,Sbは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、それぞれ0.3%を超えて含有させても、その効果は飽和するし、溶接割れを助長するため、含有量は0.3%以下とする。好ましくは、0.1%以下である。 Sn and Sb may be added as necessary to improve the corrosion resistance of the product. However, if each is added in excess of 0.3%, the effect saturates and they promote weld cracking, so the content should be 0.3% or less. Preferably, it should be 0.1% or less.

Tiは、靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.45%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して溶接割れを助長するため、含有量は0.45%以下とする。好ましくは、0.3%以下である。 Ti may be added as necessary to improve toughness and corrosion resistance. However, if it is added in excess of 0.45%, the effect will saturate and, conversely, it will generate coarse carbonitrides that promote weld cracking, so the content should be 0.45% or less. Preferably, it should be 0.3% or less.

Taは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.45%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して溶接割れを助長するため、含有量は0.45%以下とする。好ましくは0.3%以下、より好ましくは、0.1%以下である。 Ta may be added as necessary to improve the toughness and corrosion resistance of the product. However, if it is added in excess of 0.45%, the effect will saturate and, conversely, it will generate coarse carbonitrides that promote weld cracking, so the content should be 0.45% or less. It is preferably 0.3% or less, and more preferably 0.1% or less.

Mg,Ca,Hfは、脱酸生成物の熱力学的な安定度を増加して軟化焼鈍時の軟質化に効果があるため、必要に応じて含有させてもよい。しかしながら、それぞれ0.01%を超えて添加しても、その効果は飽和するし、逆に粗大な酸化物を生成して溶接割れを助長するため、含有量を0.01%以下とする。好ましくは、0.005%以下である。 Mg, Ca, and Hf may be added as necessary, as they increase the thermodynamic stability of the deoxidation products and are effective in softening the steel during softening annealing. However, if each of these elements is added in excess of 0.01%, the effect saturates and, conversely, they generate coarse oxides that promote weld cracking, so the content is set to 0.01% or less. Preferably, it is 0.005% or less.

REMは、脱酸生成物の熱力学的な安定度を増加して軟化焼鈍時の軟質化に効果があるため、必要に応じて含有させてもよい。しかしながら、0.05%を超えて添加しても、その効果は飽和するし、逆に粗大な酸化物を生成して溶接割れを助長するため、含有量を0.05%以下とする。好ましくは、0.005%以下である。REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で含有させてもよいし、混合物であってもよい。 REM increases the thermodynamic stability of deoxidation products and is effective in softening during softening annealing, so it may be added as needed. However, if added in excess of 0.05%, the effect saturates and, conversely, coarse oxides are generated, promoting weld cracking, so the content is set to 0.05% or less. Preferably, it is 0.005% or less. REM (rare earth elements) refers to the general term for two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu), as generally defined. They may be added alone or as a mixture.

本発明のステンレス鋼が含有する不純物について、代表的な不純物としては、Zn,Bi,Pb,Ge,Se,Ag,Se,Te等が挙げられ、通常、鉄鋼の製造プロセスで不純物として、0.1%程度の範囲で混入する。
不純物である酸素は鋼中で主に介在物として存在するが、通常の精錬で製造されるステンレス鋼の酸素含有レベルは0.001~0.015%である。
また、任意添加元素について、代表的なものを上記(2)~(5)で規定しているが、本明細書中に記載されていない元素であっても、本発明の効果を損なわない範囲で含有させることができる。
Representative impurities contained in the stainless steel of the present invention include Zn, Bi, Pb, Ge, Se, Ag, Se, Te, etc., and these are usually mixed in at about 0.1% as impurities during the steel manufacturing process.
The impurity oxygen exists in steel mainly as inclusions, and the oxygen content of stainless steel produced by conventional refining is between 0.001 and 0.015%.
In addition, while representative optional elements are specified in (2) to (5) above, elements not listed in this specification may also be included within a range that does not impair the effects of the present invention.

以上説明した本発明によれば、レーザー溶接で接合・加工される高硬度部品用として、レーザー溶接時の割れを防止し、溶接部の高硬度と耐食性を両立できるマルテンサイト系ステンレス鋼を提供できる。
なお、本発明でマルテンサイト系ステンレス鋼とは、焼入れ時のマルテンサイト変態により硬化する鋼であり、本発明においては、例えば、1050℃から空冷で焼入れした時に金属組織の7割以上がマルテンサイト組織を示し、500Hv以上に硬化する鋼であることを意味する。
According to the present invention as described above, it is possible to provide a martensitic stainless steel for use in high-hardness parts that are joined and processed by laser welding, which can prevent cracking during laser welding and achieve both high hardness and corrosion resistance at the welded part.
In the present invention, martensitic stainless steel refers to a steel that hardens by martensitic transformation during quenching. In the present invention, this means, for example, a steel in which 70% or more of the metal structure exhibits a martensite structure when quenched from 1,050°C by air cooling, and which hardens to 500 Hv or more.

50kgの真空溶解炉にて表1に示す化学組成の鋼を1600℃で溶解した後、鋳型に鋳造した。その後、1200℃加熱後に3mm厚の板に熱間圧延して750℃―3hの軟化焼鈍を施し、2mm厚に冷間圧延を行い、40×40×2mm厚の試験片を切り出して表層#500研磨で仕上げ、レーザー溶接を実施した。レーザー溶接は、2枚の試験片の40mm片を突合せて接触面にファイバーレーザ(スポット径0.6mm,2.0kW,Arシールド)を1m/minの条件で照射して40mm長さを接合した。その後、溶接割れの有無、硬さ,耐食性を評価した。表2に評価結果について示す。 Steel with the chemical composition shown in Table 1 was melted at 1600°C in a 50 kg vacuum melting furnace and then cast into a mold. After heating to 1200°C, it was hot rolled into a 3 mm thick plate, softened annealed at 750°C for 3 hours, and cold rolled to a 2 mm thick plate. Test pieces measuring 40 x 40 x 2 mm were cut out and finished with surface polishing #500, and laser welding was performed. For laser welding, two 40 mm pieces of the test pieces were butted together and a fiber laser (spot diameter 0.6 mm, 2.0 kW, Ar shield) was irradiated to the contact surface at 1 m/min to join a 40 mm length. The presence or absence of weld cracks, hardness, and corrosion resistance were then evaluated. The evaluation results are shown in Table 2.

Figure 0007474077000001
Figure 0007474077000001

Figure 0007474077000002
Figure 0007474077000002

Figure 0007474077000003
Figure 0007474077000003

Figure 0007474077000004
Figure 0007474077000004

Figure 0007474077000005
Figure 0007474077000005

溶接割れの評価は、拡大鏡で溶接部近傍を観察して割れ長さを測定して評価した。割れ長さの総長が1mm未満の場合を〇、0.5mm未満の場合を◎とし、1mm以上の場合を×として判断した。 Weld cracks were evaluated by observing the area near the weld with a magnifying glass and measuring the crack length. If the total crack length was less than 1 mm, it was marked as ◯, if it was less than 0.5 mm, it was marked as ◎, and if it was 1 mm or more, it was marked as ×.

溶接部近傍の硬さの評価は、溶接長手方向に垂直断面を検査面として埋め込み研磨し、溶融部、溶接HAZ部(溶融ラインから0.2,0.4mm,0.6mm部)のHv硬さ(荷重200g)を測定した。溶接HAZ部の硬さは3測定箇所の平均値とした。 To evaluate the hardness near the weld, a cross section perpendicular to the longitudinal direction of the weld was embedded and polished as the inspection surface, and the Hv hardness (load 200 g) of the fusion zone and weld HAZ (0.2 mm, 0.4 mm, and 0.6 mm from the fusion line) was measured. The hardness of the weld HAZ was taken as the average value of the three measurement points.

耐食性の評価は、レーザー溶接部の表層を#500研磨してJIS Z 2371の塩水噴霧試験を48h実施して発銹状況で評価した。無発銹の場合を◎、点錆発銹の場合を〇、流れ錆発銹の場合を×として評価した。 Corrosion resistance was evaluated by polishing the surface of the laser welded part with #500 polishing and conducting a 48-hour salt spray test in accordance with JIS Z 2371 to evaluate the rusting condition. No rusting was evaluated as ◎, spot rusting was evaluated as ◯, and flow rusting was evaluated as ×.

粗大な酸化物の評価について、前記の埋込み研磨した検査面を光学顕微鏡にて観察し、長径が20μm以上の粗大な酸化物がある場合、表2の備考欄に「粗大酸化物」と記載した。 To evaluate coarse oxides, the embedded and polished test surface was observed under an optical microscope, and if coarse oxides with a major axis of 20 μm or more were present, they were noted as "coarse oxides" in the remarks column of Table 2.

表2の本発明例1~34は、いずれも溶接部の硬さが500Hv以上の高硬度を示し、優れた耐溶接割れ性,耐食性を示す。 All of the invention examples 1 to 34 in Table 2 have high weld hardness of 500 Hv or more, and exhibit excellent weld crack resistance and corrosion resistance.

一方、比較例1~37は、本発明の成分範囲から外れており、500Hv以上の高硬度特性、溶接割れ性,耐食性の全てを満足することができない。 On the other hand, Comparative Examples 1 to 37 are outside the composition range of the present invention and are unable to satisfy all of the high hardness characteristics of 500 Hv or more, weld crack resistance, and corrosion resistance.

以上の各実施例から明らかなように、本発明により、レーザー溶接時の耐溶接割れ性とレーザー溶接部の500Hv以上の高硬度特性、耐食性に優れるレーザー溶接に好適なマルテンサイト系ステンレス鋼を提供することができ、腐食の厳しい環境下で使用される高硬度部品の耐久性を大幅に向上することができ、産業上極めて有用である。 As is clear from the above examples, the present invention can provide martensitic stainless steel suitable for laser welding, which has excellent resistance to weld cracking during laser welding, high hardness of 500 Hv or more at the laser weld, and excellent corrosion resistance, and can significantly improve the durability of high-hardness parts used in severely corrosive environments, making it extremely useful in industry.

Claims (4)

質量%で、
C:0.15~0.60%、
Si:0.1%超、0.6以下
Mn:0.1~5.0%、
S:0.01%未満
P:0.05%以下、
Ni:0.2~5.0%、
Cr:10.7~16.0%、
N:0.02~0.15%、
Al:0.002~1.0%を含有し、
Mo:0.05~3.0%、
W:0.05~3.0%
の内、1種類以上を含有し、
V:0.01%超、1.0%以下
Nb:0.01~0.45%
の内、1種類以上を含有し、
残部Feおよび不純物からなる化学成分を有し、
(a)式で表されるD値が0以上、10未満であり、
(b)式で表されるM値が0.3~5.5であることを特徴とするレーザー溶接用のマルテンサイト系ステンレス鋼。
D=(Cr+0.5Si+2.5Al)-(25C+18N+Ni+0.1Mn)+(1.2Mo+2W+3V+3Nb)-6 ・・・・・・・・・・(a)
M=Mo+W+10(V+Nb) ・・・・・・・・・・・・(b)
上記式で、元素記号は当該元素の含有量(質量%)を意味する。
In mass percent,
C: 0.15 to 0.60%,
Si: more than 0.1% and not more than 0.6%;
Mn: 0.1 to 5.0%,
S: less than 0.01%,
P: 0.05% or less,
Ni: 0.2 to 5.0%,
Cr: 10.7 to 16.0%,
N: 0.02 to 0.15%,
Al: 0.002 to 1.0%;
Mo: 0.05 to 3.0%,
W: 0.05 to 3.0%
Contains one or more of the following:
V: more than 0.01%, 1.0% or less ,
Nb: 0.01 to 0.45%
Contains one or more of the following:
The balance has a chemical composition of Fe and impurities,
(a) the D value represented by the formula is 0 or more and less than 10;
A martensitic stainless steel for laser welding, characterized in that the M value represented by formula (b) is 0.3 to 5.5.
D = (Cr + 0.5Si + 2.5Al) - (25C + 18N + Ni + 0.1Mn) + (1.2Mo + 2W + 3V + 3Nb) - 6 (a)
M = Mo + W + 10 (V + Nb) ................................................... (b)
In the above formula, the element symbol indicates the content (mass %) of the corresponding element.
前記Feの一部に変えて、更に質量%で、
Cu:3.0%以下、
Co:3.0%以下、
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする請求項1に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
A part of the Fe is replaced with further mass%
Cu: 3.0% or less,
Co: 3.0% or less,
B: 0.01% or less,
Sn: 0.3% or less,
2. The martensitic stainless steel for laser welding according to claim 1, further comprising at least one of the following: Sb: 0.3% or less.
前記Feの一部に変えて、更に質量%で、
Ti:0.45%以下、
Ta:0.45%以下の内、1種類以上を含有することを特徴とする請求項1または請求項2に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
A part of the Fe is replaced with further mass%
Ti: 0.45% or less,
3. The martensitic stainless steel for laser welding according to claim 1, further comprising at least one of the following: Ta: 0.45% or less.
前記Feの一部に変えて、更に質量%で、
Mg:0.01%以下、
Ca:0.01%未満
Hf:0.01%以下、
REM:0.05%以下の内、1種類以上を含有することを特徴とする請求項1~請求項3のいずれか1項に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
A part of the Fe is replaced with further mass%
Mg: 0.01% or less,
Ca: less than 0.01%,
Hf: 0.01% or less,
The martensitic stainless steel for laser welding according to any one of claims 1 to 3, characterized in that it contains one or more of the following: REM: 0.05% or less.
JP2020040805A 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding Active JP7474077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040805A JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040805A JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Publications (2)

Publication Number Publication Date
JP2021143354A JP2021143354A (en) 2021-09-24
JP7474077B2 true JP7474077B2 (en) 2024-04-24

Family

ID=77767072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040805A Active JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Country Status (1)

Country Link
JP (1) JP7474077B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155341A (en) 2000-11-14 2002-05-31 Nippon Steel Corp Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel
JP2006312772A (en) 2005-05-09 2006-11-16 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well
CN106319343A (en) 2016-10-10 2017-01-11 宝钢不锈钢有限公司 Low-cost and high-strength stainless steel and manufacturing method of welding pipe thereof
JP2017507244A (en) 2014-01-16 2017-03-16 ウッデホルムス アーベーUddeholms Ab Stainless steel and stainless steel cutting tool body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218154A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp High strength ferritic heat resistant steel excellent in intermetallic compound precipitating embrittlement resistance
JPH1143719A (en) * 1997-07-22 1999-02-16 Nkk Corp Heat treatment for ferritic heat resistant steel excellent in high temperature strength and toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155341A (en) 2000-11-14 2002-05-31 Nippon Steel Corp Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel
JP2006312772A (en) 2005-05-09 2006-11-16 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well
JP2017507244A (en) 2014-01-16 2017-03-16 ウッデホルムス アーベーUddeholms Ab Stainless steel and stainless steel cutting tool body
CN106319343A (en) 2016-10-10 2017-01-11 宝钢不锈钢有限公司 Low-cost and high-strength stainless steel and manufacturing method of welding pipe thereof

Also Published As

Publication number Publication date
JP2021143354A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
KR100545621B1 (en) Electric welded steel tube for hollow stabilizer
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP5375981B2 (en) Wear-resistant welded steel pipe with excellent weld crack resistance and method for producing the same
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
WO2015022899A1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP2018053281A (en) Rectangular steel tube
TW201615864A (en) Martensitic stainless steel for brake disk and method for producing said steel
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP7474077B2 (en) Martensitic Stainless Steels for Laser Welding
CN110832102B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP2019127632A (en) Clad steel plate and method for producing the same
WO2006062053A1 (en) Low carbon free-cutting steel
JP2023028465A (en) Precipitation hardening martensitic stainless steel having excellent weldability, and method for producing the same
JP4161090B2 (en) High carbon steel plate with excellent punchability
CN112204161B (en) Steel material for steel piston
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP2019131842A (en) Steel pipe
JP6296797B2 (en) High strength cast steel material and manufacturing method thereof
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP5318638B2 (en) Machine structural steel with excellent machinability
JPH06299296A (en) Steel for high strength spring excellent in decarburizing resistance
JP2023127225A (en) Weld joint of martensitic stainless steel, weld structure and weld method
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP2004010967A (en) Ferritic stainless steel pipe with excellent fabrication quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150