JP2006312772A - Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well - Google Patents

Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well Download PDF

Info

Publication number
JP2006312772A
JP2006312772A JP2005136329A JP2005136329A JP2006312772A JP 2006312772 A JP2006312772 A JP 2006312772A JP 2005136329 A JP2005136329 A JP 2005136329A JP 2005136329 A JP2005136329 A JP 2005136329A JP 2006312772 A JP2006312772 A JP 2006312772A
Authority
JP
Japan
Prior art keywords
stainless steel
martensitic stainless
content
less
oil well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005136329A
Other languages
Japanese (ja)
Inventor
Hideki Takabe
秀樹 高部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005136329A priority Critical patent/JP2006312772A/en
Priority to CNA200610077037XA priority patent/CN1861832A/en
Priority to US11/418,054 priority patent/US20070012385A1/en
Publication of JP2006312772A publication Critical patent/JP2006312772A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a martensitic stainless steel for an oil well, which has adequate SSC resistance under coexistence of Cl<SP>-</SP>, wet CO<SB>2</SB>and a very small amount of H<SB>2</SB>S, and has superior low-temperature toughness as well. <P>SOLUTION: The martensitic stainless steel for the oil well comprises 0.16-0.22% C, 0.1-0.8% Si, 0.25-1.00% Mn, 0.025% or less P, 0.010% or less S, 12.0-13.5% Cr, 0.010% or less Al, 0-0.2% Ni, 0-0.10% Cu, 0-0.20% Mo, 0-0.050% Ti, 0.01-0.1% N, and the balance Fe with impurities. The steel may include a specific amount of one or more elements of Nb and V and/or one or more elements among Ca, Mg, La and Ce. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、油井用マルテンサイト系ステンレス鋼及び油井用マルテンサイト系ステンレス鋼管の製造方法に関し、詳しくは、硫化水素(H2S)や炭酸ガス(CO2)、塩化物イオン(Cl-)等の腐食性物質を含む厳しい腐食環境にある寒冷地域で使用するのに適した油井用マルテンサイト系ステンレス鋼及び油井用マルテンサイト系ステンレス鋼管の製造方法に関する。更に詳しくは、寒冷地域において、石油や天然ガスの生産設備用、炭酸ガス除去設備用及び地熱発電設備用並びに、油井や天然ガス井で使用されるシームレス鋼管、電縫鋼管及びレーザー溶接鋼管等の油井管用として用いるのに適した、油井用マルテンサイト系ステンレス鋼及び油井用マルテンサイト系ステンレス鋼管の製造方法に関する。 The present invention relates to a method for producing a martensitic stainless steel for oil wells and a martensitic stainless steel pipe for oil wells, and more specifically, hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), chloride ions (Cl ), and the like. The present invention relates to a method for producing a martensitic stainless steel for oil wells and a martensitic stainless steel pipe for oil wells that are suitable for use in cold regions with severe corrosive environments containing corrosive substances. More specifically, in cold regions, such as oil and natural gas production facilities, carbon dioxide removal facilities and geothermal power generation facilities, and seamless steel pipes, ERW steel pipes and laser welded steel pipes used in oil wells and natural gas wells. The present invention relates to a method for manufacturing a martensitic stainless steel for oil wells and a martensitic stainless steel pipe for oil wells suitable for use in oil well pipes.

近年、石油又は天然ガスを採取するための井戸の環境は益々苛酷の度合いを深めてきており、硫化水素や炭酸ガスといった腐食性のガスを含む油井やガス井の開発が盛んに行われるようになってきた。   In recent years, the environment of wells for extracting oil or natural gas has become increasingly severe, and the development of oil wells and gas wells containing corrosive gases such as hydrogen sulfide and carbon dioxide has been actively promoted. It has become.

このため、上記のような苛酷な環境にある石油や天然ガスの採掘に使用される油井管は、腐食による材料の劣化が大きな問題となっている。   For this reason, in oil well pipes used for the extraction of oil and natural gas in the harsh environment as described above, material deterioration due to corrosion has become a major problem.

すなわち、炭酸ガスを含まない油井やガス井用の鋼管としては、一般に炭素鋼や低合金鋼を素材とするものが用いられているが、炭酸ガスを多量に含む油井やガス井用の鋼管は、炭素鋼や低合金鋼を素材とする場合には充分な耐食性を確保することができず、このため、合金元素の含有量を高めた鋼を素材とする鋼管が用いられるようになってきた。   That is, as steel pipes for oil wells and gas wells that do not contain carbon dioxide, those made of carbon steel or low alloy steel are generally used, but steel pipes for oil wells or gas wells that contain a large amount of carbon dioxide are used. When carbon steel or low alloy steel is used as a raw material, sufficient corrosion resistance cannot be ensured. For this reason, steel pipes made of steel with a high content of alloy elements have been used. .

具体的には、炭酸ガスを多量に含む油井用鋼管の素材として、JISに規定されたSUS420J1に代表されるような13Cr系のマルテンサイト系ステンレス鋼が多く用いられている。   Specifically, a 13Cr martensitic stainless steel represented by SUS420J1 defined in JIS is often used as a material for oil well steel pipes containing a large amount of carbon dioxide.

ところが、SUS420J1に代表されるような13Cr系のマルテンサイト系ステンレス鋼は、硫化水素に対する耐食性が芳しくなく、炭酸ガスと硫化水素を同時に含むような環境下では硫化物応力割れ(以下、硫化物応力割れを「SSC」という。)が発生しやすいので、その使用が制限されているのが実状である。   However, 13Cr martensitic stainless steel represented by SUS420J1 has poor corrosion resistance against hydrogen sulfide, and sulfide stress cracking (hereinafter referred to as sulfide stress) in an environment containing carbon dioxide and hydrogen sulfide at the same time. In fact, cracks are referred to as “SSC”) and their use is limited.

一方、最近では寒冷地域においても塩化物イオン、湿潤炭酸ガス及び微量の硫化水素を同時に含む油井やガス井の開発が活発になっており、したがって、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素の共存下で良好な耐SSC性を有するだけではなく、低温靱性にも優れた鋼に対する要求が高まっている。   On the other hand, the development of oil wells and gas wells that simultaneously contain chloride ions, wet carbon dioxide gas and a small amount of hydrogen sulfide has also been actively developed in cold regions. There is an increasing demand for steels that not only have good SSC resistance in the presence of C, but also have excellent low-temperature toughness.

このため、特許文献1に、質量%で、12〜13.5%のCrを含む油井管用鋼が開示されている。   For this reason, Patent Document 1 discloses an oil well pipe steel containing 12 to 13.5% Cr by mass%.

特開昭60−52525号公報JP-A-60-52525

本発明の目的は、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素の共存下で良好な耐SSC性を有するとともに低温靱性にも優れ、寒冷地域の硫化水素、炭酸ガス及び塩化物イオンを含んだ環境下においても十分使用可能な、高靱性でかつ高い耐SSC性を有する油井用のマルテンサイト系ステンレス鋼及び油井用マルテンサイト系ステンレス鋼管の製造方法を提供することである。   The object of the present invention is to have good SSC resistance in the coexistence of chloride ions, wet carbon dioxide gas and a small amount of hydrogen sulfide, and excellent low temperature toughness, including hydrogen sulfide, carbon dioxide gas and chloride ions in cold regions. Another object of the present invention is to provide a method for producing a martensitic stainless steel for oil wells and a martensitic stainless steel pipe for oil wells having high toughness and high SSC resistance that can be sufficiently used even in an environment.

前述の特許文献1で開示された油井管用鋼は、必ずしも優れた低温靱性を確保できるものではない。   The oil well pipe steel disclosed in Patent Document 1 described above cannot always ensure excellent low temperature toughness.

すなわち、特許文献1で開示された油井管用鋼においては、耐SSC性や耐ピッティング性を高めるために、Niの含有量が質量%で、0.10%以下に制限されている。したがって、その油井管用鋼は、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素の共存下で良好な耐SSC性を有するものの、十分な低温靱性を確保できるものではなかった。   That is, in the oil well pipe steel disclosed in Patent Document 1, the Ni content is limited to 0.10% or less by mass% in order to improve SSC resistance and pitting resistance. Therefore, although the oil well tubular steel has good SSC resistance in the presence of chloride ions, wet carbon dioxide gas and a small amount of hydrogen sulfide, it cannot secure sufficient low temperature toughness.

このため、本発明者らは、耐炭酸ガス腐食性を確保するためにCrを質量%で、12.5%以上含み、強度を降伏強度(YS)で558〜655MPaと変化させた種々のマルテンサイト系ステンレス鋼について、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素が共存する環境下でのSSC感受性について種々調査、研究を重ね、また、低温靱性についても調査、研究を行った。その結果、先ず、下記(a)〜(c)の知見を得た。   For this reason, the present inventors have made various martensites containing 12.5% or more of Cr by mass% and yield strength (YS) of 558 to 655 MPa in order to ensure carbon dioxide corrosion resistance. For site-based stainless steel, various investigations and studies were conducted on SSC susceptibility in an environment where chloride ions, wet carbon dioxide and a small amount of hydrogen sulfide coexist, and low-temperature toughness was also investigated and studied. As a result, first, the following findings (a) to (c) were obtained.

(a)前記したCrを質量%で、12.5%以上含むマルテンサイト系ステンレス鋼において、Ni含有量が質量%で、0.10%を超える場合にも、良好な耐SSC性が得られることがある。   (A) In the martensitic stainless steel containing 12.5% or more by mass% of the Cr described above, good SSC resistance can be obtained even when the Ni content is mass% and exceeds 0.10%. Sometimes.

(b)前記マルテンサイト系ステンレス鋼において、Ni含有量が質量%で、0.10%以下であっても、良好な低温靱性が得られる場合がある。   (B) In the martensitic stainless steel, good low temperature toughness may be obtained even when the Ni content is mass% and is 0.10% or less.

(c)Niの含有量を質量%で、0.10%を超えて高めただけでは、前記マルテンサイト系ステンレス鋼の低温靱性は必ずしも良好にならない。   (C) The low temperature toughness of the martensitic stainless steel is not necessarily improved only by increasing the Ni content by mass%, exceeding 0.10%.

そこで次に、前記環境下での耐SSC性及び、低温靱性に及ぼす鋼の化学組成と焼戻し後の組織、なかでも析出物について更に詳細な調査を行った。その結果、下記(d)〜(g)の知見を得た。   Therefore, a more detailed investigation was then conducted on the chemical composition of steel and the structure after tempering, particularly the precipitates, which affect the SSC resistance and low temperature toughness in the environment. As a result, the following findings (d) to (g) were obtained.

(d)前記マルテンサイト系ステンレス鋼のAlの含有量が、質量%で、0.010%以下であれば、焼戻し組織中に存在する主な析出物はM236及びMC(但し、「M」は金属元素を意味する。)である。 (D) If the content of Al in the martensitic stainless steel is mass% and not more than 0.010%, the main precipitates present in the tempered structure are M 23 C 6 and MC (however, “ “M” means a metal element.)

(e)前記マルテンサイト系ステンレス鋼のAl及びNiの含有量が、それぞれ、質量%で、0.010%以下及び、0.10%を超えて0.2%以下である場合には、前記環境において良好な耐SSC性が得られる。しかも、その低温靱性は極めて良好である。   (E) When the contents of Al and Ni in the martensitic stainless steel are mass%, 0.010% or less, and more than 0.10% and 0.2% or less, Good SSC resistance is obtained in the environment. Moreover, its low temperature toughness is very good.

(f)前記マルテンサイト系ステンレス鋼のAl及びNiの含有量が、それぞれ、質量%で、0.010%以下及び、0.10%以下である場合には、前記環境において良好な耐SSC性が得られる。しかも、その低温靱性はNiの含有量が低いにも拘わらず良好である。   (F) When the contents of Al and Ni in the martensitic stainless steel are 0.010% or less and 0.10% or less, respectively, in mass%, good SSC resistance in the environment Is obtained. Moreover, the low temperature toughness is good despite the low Ni content.

(g)前記マルテンサイト系ステンレス鋼のAlの含有量が、質量%で、0.010%を超える場合、焼戻し組織中に存在する主な析出物はM236及びAlNである。そして、この場合には、たとえNiの含有量が質量%で、0.10%を超えて0.2%以下であってもその低温靱性は劣っている。 (G) When the content of Al in the martensitic stainless steel is mass% and exceeds 0.010%, the main precipitates present in the tempered structure are M 23 C 6 and AlN. In this case, even if the Ni content is mass% and exceeds 0.10% and is 0.2% or less, the low temperature toughness is inferior.

本発明は、上記の知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

本発明の要旨は、下記(1)〜(4)に示す油井用マルテンサイト系ステンレス鋼及び(5)に示す油井用マルテンサイト系ステンレス鋼管の製造方法にある。   The gist of the present invention resides in a method for producing a martensitic stainless steel for oil wells shown in the following (1) to (4) and a martensitic stainless steel pipe for oil wells shown in (5).

(1)質量%で、C:0.16〜0.22%、Si:0.1〜0.8%、Mn:0.25〜1.00%、P:0.025%以下、S:0.010%以下、Cr:12.0〜13.5%、Al:0.010%以下、Ni:0〜0.2%、Cu:0〜0.10%、Mo:0〜0.20%、Ti:0〜0.050%及びN:0.01〜0.1%を含有し、残部はFe及び不純物からなることを特徴とする油井用マルテンサイト系ステンレス鋼。   (1) By mass%, C: 0.16-0.22%, Si: 0.1-0.8%, Mn: 0.25-1.00%, P: 0.025% or less, S: 0.010% or less, Cr: 12.0 to 13.5%, Al: 0.010% or less, Ni: 0 to 0.2%, Cu: 0 to 0.10%, Mo: 0 to 0.20 %, Ti: 0 to 0.050% and N: 0.01 to 0.1%, the balance being made of Fe and impurities, martensitic stainless steel for oil wells.

(2)Feの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上を含有する上記(1)に記載の油井用マルテンサイト系ステンレス鋼。   (2) The oil well according to the above (1), which contains at least one selected from Nb: 0.020 to 0.045% and V: 0.01 to 0.2% instead of part of Fe For martensitic stainless steel.

(3)Feの一部に代えて、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有する上記(1)に記載の油井用マルテンサイト系ステンレス鋼。   (3) Instead of a part of Fe, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to The martensitic stainless steel for oil wells according to the above (1), which contains one or more selected from 0.005%.

(4)Feの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上並びに、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有する上記(1)に記載の油井用マルテンサイト系ステンレス鋼。   (4) Instead of part of Fe, one or more selected from Nb: 0.020 to 0.045% and V: 0.01 to 0.2%, and Ca: 0.0002 to 0.005 %, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005% and Ce: one or more selected from 0.0002 to 0.005% Martensitic stainless steel for oil wells.

(5)上記(1)から(4)までのいずれかに記載の化学組成を有するマルテンサイト系ステンレス鋼管を、920〜1050℃の温度域に加熱した後空冷し、次いで、625℃以上Ac1点以下の温度で焼戻しすることを特徴とする油井用マルテンサイト系ステンレス鋼管の製造方法。 (5) The martensitic stainless steel pipe having the chemical composition according to any one of (1) to (4) above is heated to a temperature range of 920 to 1050 ° C. and then air-cooled, and then at least 625 ° C. Ac 1 A method for producing a martensitic stainless steel pipe for oil wells, characterized by tempering at a temperature below the point.

なお、上記の「空冷」には、いわゆる「強制空冷」だけではなく大気中での「放冷」を含む。   The “air cooling” includes not only so-called “forced air cooling” but also “cooling” in the atmosphere.

以下、上記 (1)〜(4)の「油井用マルテンサイト系ステンレス鋼」に係る発明及び(5)の「油井用マルテンサイト系ステンレス鋼管の製造方法」に係る発明を、それぞれ、「本発明(1)」〜「本発明(5)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions according to the above (1) to (4) “martensitic stainless steel for oil wells” and the invention related to “manufacturing method of martensitic stainless steel pipe for oil wells” are respectively referred to as “present invention”. (1) ”to“ present invention (5) ”. Also, it may be collectively referred to as “the present invention”.

本発明の油井用マルテンサイト系ステンレス鋼は、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素の共存下で良好な耐SSC性を有するとともに低温靱性にも優れるので、寒冷地域にある硫化水素、炭酸ガス及び塩化物イオンを含んだ環境で使用することができる。また、本発明の油井用マルテンサイト系ステンレス鋼管の製造方法によれば、上記の苛酷な環境下での使用に十分耐える鋼管を容易に製造することができる。   Since the martensitic stainless steel for oil wells of the present invention has good SSC resistance and excellent low-temperature toughness in the presence of chloride ions, wet carbon dioxide and a small amount of hydrogen sulfide, hydrogen sulfide in a cold region, It can be used in an environment containing carbon dioxide and chloride ions. Further, according to the method for producing a martensitic stainless steel pipe for oil wells of the present invention, a steel pipe that can sufficiently withstand use in the above-mentioned severe environment can be easily produced.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成
C:0.16〜0.22%
Cは、鋼に所望の強度を付与するために必要な元素である。また、Cは、空冷によって鋼の組織を容易にマルテンサイトにして、耐SSC性を高める作用も有する。高強度材で耐SSC性を向上させるためには鋼の組織をマルテンサイト組織(95%以上が望ましい)とすることが望ましいが、Cは、オーステナイト形成元素であるため、Cの含有量を多くすることで容易にマルテンサイトの割合を高めることができる。しかしながら、Cの含有量が0.16%未満では、前記の各効果が得難い。一方、0.22%を超えて含有させると靱性の著しい低下を招く。したがって、Cの含有量を0.16〜0.22%とした。
(A) Chemical composition C: 0.16-0.22%
C is an element necessary for imparting desired strength to steel. C also has the effect of improving the SSC resistance by easily converting the steel structure into martensite by air cooling. In order to improve the SSC resistance with a high-strength material, it is desirable that the steel has a martensite structure (preferably 95% or more). However, since C is an austenite forming element, the content of C is increased. By doing so, the ratio of martensite can be easily increased. However, when the C content is less than 0.16%, it is difficult to obtain the above effects. On the other hand, if the content exceeds 0.22%, the toughness is significantly reduced. Therefore, the content of C is set to 0.16 to 0.22%.

Si:0.1〜0.8%
Siは、脱酸作用を有する。しかしながら、その含有量が0.1%未満では添加効果に乏しい。一方、その含有量が0.8%を超えると、靱性が低下するとともに熱間加工性の低下を招く。したがって、Siの含有量を0.1〜0.8%とした。なお、上限は0.4%とすることがより好ましい。
Si: 0.1 to 0.8%
Si has a deoxidizing action. However, if the content is less than 0.1%, the effect of addition is poor. On the other hand, when the content exceeds 0.8%, toughness is lowered and hot workability is lowered. Therefore, the Si content is set to 0.1 to 0.8%. The upper limit is more preferably 0.4%.

Mn:0.25〜1.00%
Mnは、オーステナイト域を広げ、また、強度や靱性を向上させる作用を有する。しかし、その含有量が0.25%未満では前記の作用に所望の効果が得られない。一方、Mnの含有量が1.00%を超えると、炭酸ガス腐食感受性が著しく増大して耐炭酸ガス腐食性が低下する。したがって、Mnの含有量を0.25〜1.00%とした。
Mn: 0.25 to 1.00%
Mn has the effect of expanding the austenite region and improving strength and toughness. However, if the content is less than 0.25%, a desired effect cannot be obtained in the above action. On the other hand, when the Mn content exceeds 1.00%, the carbon dioxide corrosion resistance is remarkably increased, and the carbon dioxide corrosion resistance is lowered. Therefore, the content of Mn is set to 0.25 to 1.00%.

P:0.025%以下
Pは、鋼の不純物であり、靱性及び耐SSC性の低下をもたらし、特に、その含有量が0.025%を超えると、靱性及び耐SSC性の低下が著しくなる。したがって、Pの含有量を0.025%以下とした。なお、Pの含有量は可及的に少なくすることが望ましい。
P: 0.025% or less P is an impurity of steel, resulting in a decrease in toughness and SSC resistance. In particular, when its content exceeds 0.025%, the decrease in toughness and SSC resistance becomes significant. . Therefore, the content of P is set to 0.025% or less. It is desirable to reduce the P content as much as possible.

S:0.010%以下
Sは、鋼の不純物であり、靱性及び耐SSC性の低下をもたらし、特に、その含有量が0.010%を超えると、靱性及び耐SSC性の低下が著しくなる。したがって、Sの含有量を0.010%以下とした。なお、Sの含有量は可及的に少なくすることが望ましい。
S: 0.010% or less S is an impurity of steel and causes a decrease in toughness and SSC resistance. In particular, when its content exceeds 0.010%, the decrease in toughness and SSC resistance becomes significant. . Therefore, the content of S is set to 0.010% or less. It is desirable to reduce the S content as much as possible.

Cr:12.0〜13.5%
Crは、耐炭酸ガス腐食性を高める作用を有する。しかし、その含有量が12.0%未満では十分な耐炭酸ガス腐食性を確保できない。一方、Crの含有量が13.5%を超えると、δ−フェライトの生成率が高くなるので、空冷によって耐SSC性に好ましいマルテンサイトの割合が高い組織、特に、95%以上のマルテンサイト組織を得ることができなくなる。したがって、Crの含有量を12.0〜13.5%とした。なお、Cr含有量の下限は12.3%とすることがより好ましく、上限は13.2%とすることがより好ましい。
Cr: 12.0 to 13.5%
Cr has the effect of increasing the carbon dioxide gas corrosion resistance. However, if the content is less than 12.0%, sufficient carbon dioxide gas corrosion resistance cannot be ensured. On the other hand, if the Cr content exceeds 13.5%, the rate of formation of δ-ferrite increases, and therefore a structure having a high ratio of martensite preferable for SSC resistance by air cooling, particularly a martensite structure of 95% or more. You will not be able to get. Therefore, the content of Cr is set to 12.0 to 13.5%. The lower limit of the Cr content is more preferably 12.3%, and the upper limit is more preferably 13.2%.

Al:0.010%以下
Alの含有量が多くなると焼戻し組織中に存在する主な析出物がM236及びAlNとなり、耐SSC性の低下をきたす。特に、Alの含有量が0.010%を超えると、耐SSC性の低下が著しくなる。また、この場合には、たとえNiの含有量が0.10%を超えて0.2%以下であってもその低温靱性は劣っている。一方、Alの含有量が0.010%以下であれば、焼戻し組織中に存在する主な析出物はM236及びMCである。そして、Al含有量が0.010%以下で、しかも、Niの含有量が0.10%を超えて0.2%以下である場合には、良好な耐SSC性と極めて良好な低温靱性が得られる。なお、Al含有量が0.010%以下の場合には、Niの含有量が0.10%以下であっても良好な低温靱性が得られる。
Al: 0.010% or less When the Al content increases, the main precipitates present in the tempered structure become M 23 C 6 and AlN, and the SSC resistance decreases. In particular, when the Al content exceeds 0.010%, the SSC resistance is significantly lowered. In this case, even if the Ni content is more than 0.10% and 0.2% or less, the low-temperature toughness is inferior. On the other hand, if the Al content is 0.010% or less, the main precipitates present in the tempered structure are M 23 C 6 and MC. When the Al content is 0.010% or less and the Ni content is more than 0.10% and 0.2% or less, good SSC resistance and very good low temperature toughness are obtained. can get. When the Al content is 0.010% or less, good low temperature toughness can be obtained even if the Ni content is 0.10% or less.

したがって、Alの含有量は不純物レベルに抑えるのがよく、0.010%以下とした。なお、Alの含有量は0.005%以下とすることが好ましく、0.003%以下とすれば一層好ましい。   Therefore, the Al content is preferably suppressed to the impurity level and is set to 0.010% or less. The Al content is preferably 0.005% or less, and more preferably 0.003% or less.

Ni:0〜0.2%
Niの添加は任意である。添加すれば、強度及び低温靱性を高める作用を有する。しかし、Niの含有量が多くなるとSSC感受性が増大し、特に、Niの含有量が0.2%を超えると、SSC感受性が著しく大きくなるので、耐SSC性が低下する。したがって、Niの含有量を0〜0.2%とした。なお、前記の効果を確実に得るには、Niを0.10%を超えて含有させることが好ましい。
Ni: 0 to 0.2%
The addition of Ni is optional. If added, it has the effect of increasing strength and low temperature toughness. However, when the Ni content increases, the SSC sensitivity increases. In particular, when the Ni content exceeds 0.2%, the SSC sensitivity increases remarkably, so that the SSC resistance decreases. Therefore, the content of Ni is set to 0 to 0.2%. In addition, in order to acquire the said effect reliably, it is preferable to contain Ni exceeding 0.10%.

Cu:0〜0.10%
Cuの添加は任意である。添加すれば、高温領域での耐全面腐食性を高める作用がある。しかし、Cuの含有量が多くなり、特に0.10%を超えると、局部腐食に対する感受性(ピッティング感受性)が高くなる。したがって、Cuの含有量を0〜0.10%とした。
Cu: 0 to 0.10%
Addition of Cu is optional. If added, it has the effect of enhancing the general corrosion resistance in a high temperature region. However, if the Cu content increases, and particularly exceeds 0.10%, the sensitivity to local corrosion (pitting sensitivity) increases. Therefore, the Cu content is set to 0 to 0.10%.

Mo:0〜0.20%
Moの添加は任意である。添加すれば、高温領域での耐全面腐食性を向上させる作用がある。しかし、Moの含有量が多くなり、特に0.20%を超えると、空冷前の加熱によってδ−フェライトの生成が多くなるため、強度低下をきたすとともに局部腐食に対する感受性(ピッティング感受性)が高くなる。したがって、Moの含有量を0〜0.20%とした。
Mo: 0 to 0.20%
The addition of Mo is optional. If added, it has the effect of improving the general corrosion resistance in a high temperature region. However, when the Mo content increases, especially when it exceeds 0.20%, δ-ferrite is generated by heating before air cooling, resulting in a decrease in strength and high susceptibility to local corrosion (pitting sensitivity). Become. Therefore, the content of Mo is set to 0 to 0.20%.

Ti:0〜0.050%
Tiの添加は任意である。添加すれば、鋼中のNをTiNとして固定して遊離Nを少なくする作用を有する。しかし、Tiの含有量が多くなり、特に0.050%を超えると、靱性が低下する。したがって、Tiの含有量を0〜0.050%とした。
Ti: 0 to 0.050%
The addition of Ti is optional. If added, N in the steel is fixed as TiN and has the effect of reducing free N. However, when the Ti content is increased, especially when it exceeds 0.050%, the toughness decreases. Therefore, the content of Ti is set to 0 to 0.050%.

N:0.01〜0.1%
Nは、オーステナイト形成元素であるため、Nの含有量を多くすることで容易にマルテンサイトの割合を高めることができ、これによって耐SSC性を高める作用を有する。しかしながら、その含有量が0.01%未満ではその効果が得難い。一方、Nの含有量が多くなりすぎるとCrの窒化物を多量に形成するため耐炭酸ガス腐食性が低下し、特に、Nの含有量が0.1%を超えると、耐炭酸ガス腐食性の低下が著しくなる。したがって、Nの含有量を0.01〜0.1%とした。なお、N含有量の上限は0.05%とすることがより好ましく、0.04%とすれば一層好ましい。
N: 0.01 to 0.1%
Since N is an austenite forming element, the ratio of martensite can be easily increased by increasing the content of N, thereby having the effect of increasing the SSC resistance. However, if the content is less than 0.01%, it is difficult to obtain the effect. On the other hand, if the N content is excessively large, a large amount of Cr nitride is formed, so that the carbon dioxide corrosion resistance is lowered. In particular, if the N content exceeds 0.1%, the carbon dioxide corrosion resistance is reduced. The reduction of the becomes remarkable. Therefore, the N content is set to 0.01 to 0.1%. The upper limit of the N content is more preferably 0.05%, and even more preferably 0.04%.

上記の理由から、本発明(1)に係る油井用マルテンサイト系ステンレス鋼は、上述した範囲のCからNまでの元素を含み、残部はFe及び不純物からなることと規定した。   For the reasons described above, the oil well martensitic stainless steel according to the present invention (1) is defined to contain the elements from C to N in the above-mentioned range, with the balance being Fe and impurities.

なお、本発明に係る油井用マルテンサイト系ステンレス鋼は、必要に応じて、Feの一部に代えて、後述する第1群及び第2群のうちの少なくとも1群のうちから選んだ1種以上の元素を任意添加元素として添加し、含有させてもよい。   In addition, the martensitic stainless steel for oil wells according to the present invention is one type selected from at least one of a first group and a second group, which will be described later, instead of a part of Fe if necessary. The above elements may be added and included as optional additional elements.

以下、任意添加元素に関して説明する。   Hereinafter, the optional additive element will be described.

第1群:Nb:0.020〜0.045%及びV:0.01〜0.2%
Nbは、鋼の強度を高めるのに有効な元素である。しかし、その含有量が0.020%未満では前記の効果が不十分である。一方、Nbの含有量が0.045%を超えると、前記の効果が飽和したり、δ−フェライトの生成のために却って強度の低下をきたす。したがって、添加する場合のNbの含有量を0.020〜0.045%とした。
First group: Nb: 0.020-0.045% and V: 0.01-0.2%
Nb is an element effective for increasing the strength of steel. However, if the content is less than 0.020%, the above effect is insufficient. On the other hand, if the content of Nb exceeds 0.045%, the above effect is saturated or the strength is lowered due to the formation of δ-ferrite. Therefore, when Nb is added, the content of Nb is set to 0.020 to 0.045%.

Vは、鋼の強度を高めるのに有効な元素である。しかし、その含有量が0.01%未満では前記の効果が不十分である。一方、Vの含有量が0.2%を超えると、前記の効果が飽和したり、δ−フェライトの生成のために却って強度の低下をきたす。したがって、添加する場合のVの含有量を0.01〜0.2%とした。   V is an element effective for increasing the strength of steel. However, if the content is less than 0.01%, the above effect is insufficient. On the other hand, if the content of V exceeds 0.2%, the above effects are saturated, or the strength is lowered due to the formation of δ-ferrite. Therefore, when V is added, the content of V is set to 0.01 to 0.2%.

なお、上記のNb及びVはいずれか1種のみ或いは2種の複合で添加することができる。   In addition, said Nb and V can be added only in any 1 type or 2 types of composite.

第2群:Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%
Caは、鋼の熱間加工性を高めるのに有効な元素である。しかしながら、その含有量が0.0002%未満では前記の効果が得られない。一方、Caの含有量が0.005%を超えると、粗大な酸化物が生成して耐SSC性が低下する。したがって、添加する場合のCaの含有量を0.0002〜0.005%とした。
Second group: Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to 0.005%
Ca is an element effective for enhancing the hot workability of steel. However, if the content is less than 0.0002%, the above effect cannot be obtained. On the other hand, if the Ca content exceeds 0.005%, a coarse oxide is generated and the SSC resistance is lowered. Therefore, when Ca is added, the content of Ca is set to 0.0002 to 0.005%.

Mgは、鋼の熱間加工性を高めるのに有効な元素である。しかしながら、その含有量が0.0002%未満では前記の効果が得られない。一方、Mgの含有量が0.005%を超えると、粗大な酸化物が生成して耐SSC性が低下する。したがって、添加する場合のMgの含有量を0.0002〜0.005%とした。   Mg is an element effective for enhancing the hot workability of steel. However, if the content is less than 0.0002%, the above effect cannot be obtained. On the other hand, if the Mg content exceeds 0.005%, a coarse oxide is generated and the SSC resistance is lowered. Therefore, the content of Mg when added is set to 0.0002 to 0.005%.

Laは、鋼の熱間加工性を高めるのに有効な元素である。しかしながら、その含有量が0.0002%未満では前記の効果が得られない。一方、Laの含有量が0.005%を超えると、粗大な酸化物が生成して耐SSC性が低下する。したがって、添加する場合のLaの含有量を0.0002〜0.005%とした。   La is an element effective for improving the hot workability of steel. However, if the content is less than 0.0002%, the above effect cannot be obtained. On the other hand, when the content of La exceeds 0.005%, a coarse oxide is generated and the SSC resistance is lowered. Therefore, the La content when added is set to 0.0002 to 0.005%.

Ceも鋼の熱間加工性を高めるのに有効な元素である。しかしながら、その含有量が0.0002%未満では前記の効果が得られない。一方、Ceの含有量が0.005%を超えると、粗大な酸化物が生成して耐SSC性が低下する。したがって、添加する場合のCeの含有量を0.0002〜0.005%とした。   Ce is also an effective element for enhancing the hot workability of steel. However, if the content is less than 0.0002%, the above effect cannot be obtained. On the other hand, when the content of Ce exceeds 0.005%, a coarse oxide is generated and the SSC resistance is lowered. Therefore, the Ce content when added is 0.0002 to 0.005%.

上記のCa、Mg、La及びCeはいずれか1種のみ、又は2種以上の複合で添加することができる。なお、上記の元素のうちで特に添加するのが好ましい元素は、Ca及びLaである。   Said Ca, Mg, La, and Ce can be added only by any 1 type or 2 or more types of composite. Of the above elements, elements that are particularly preferably added are Ca and La.

上記の理由から、本発明(2)に係る油井用マルテンサイト系ステンレス鋼は、本発明(1)における油井用マルテンサイト系ステンレス鋼のFeの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上を含有することと規定した。   For the above reason, the martensitic stainless steel for oil well according to the present invention (2) is replaced with a part of Fe of the martensitic stainless steel for oil well according to the present invention (1), Nb: 0.020-0 0.045% and V: specified to contain one or more selected from 0.01 to 0.2%.

また、本発明(3)に係る油井用マルテンサイト系ステンレス鋼は、本発明(1)における油井用マルテンサイト系ステンレス鋼のFeの一部に代えて、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有することと規定した。   Further, in the martensitic stainless steel for oil wells according to the present invention (3), Ca: 0.0002 to 0.005% instead of a part of Fe of the martensitic stainless steel for oil wells in the present invention (1) Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: One or more selected from 0.0002 to 0.005%.

更に、本発明(4)に係る油井用マルテンサイト系ステンレス鋼は、本発明(1)における油井用マルテンサイト系ステンレス鋼のFeの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上並びに、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有することと規定した。   Furthermore, the martensitic stainless steel for oil wells according to the present invention (4) is replaced with a part of Fe of the martensitic stainless steel for oil wells according to the present invention (1), Nb: 0.020 to 0.045% And V: one or more selected from 0.01 to 0.2%, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.00. 005% and Ce: specified to contain one or more selected from 0.0002 to 0.005%.

(B)熱処理
寒冷地域の硫化水素、炭酸ガス及び塩化物イオンを含んだ環境下においても十分使用可能な油井用マルテンサイト系ステンレス鋼管は、例えば、前記(A)項に記載の化学組成を有するマルテンサイト系ステンレス鋼を素材とする鋼管を、「920〜1050℃の温度域に加熱した後空冷し、次いで、625℃以上Ac1点以下の温度で焼戻しする」ことを特徴とする前記の本発明(5)によって比較的容易に製造することができる。
(B) Heat treatment A martensitic stainless steel pipe for an oil well that can be sufficiently used even in an environment containing hydrogen sulfide, carbon dioxide gas, and chloride ions in a cold region has, for example, the chemical composition described in the above section (A). The above-mentioned book characterized in that a steel pipe made of martensitic stainless steel is “heated to a temperature range of 920 to 1050 ° C. and then air-cooled and then tempered at a temperature of 625 ° C. to Ac 1 point”. According to the invention (5), it can be manufactured relatively easily.

(B−1)空冷前の加熱温度
空冷前の加熱温度は、920〜1050℃とするのがよい。前記の加熱温度が920℃未満の場合には、カーバイドの溶け残りが存在して強度ばらつきが大きくなることがある。一方、1050℃を超える場合には、組織が粗粒化して、低温靱性が低下することがある。したがって、本発明(5)においては、空冷前の加熱温度を920〜1050℃とした。
(B-1) Heating temperature before air cooling The heating temperature before air cooling is preferably 920 to 1050 ° C. When the heating temperature is less than 920 ° C., the undissolved carbide may exist and the strength variation may increase. On the other hand, when it exceeds 1050 ° C., the structure becomes coarse and low-temperature toughness may decrease. Therefore, in this invention (5), the heating temperature before air cooling was 920-1050 degreeC.

(B−2)焼戻し温度
上記(B−1)の920〜1050℃の温度域に加熱してから空冷した後は、625℃以上Ac1点以下の温度で焼戻しを行うのがよい。高温での焼戻しは、空冷によって生成したマルテンサイトの内部応力を除去して、鋼材性能の向上をもたらす。特に、625℃以上での焼戻しによって良好な鋼材性能が得られる。しかしながら、焼戻し温度がAc1点を超える場合には、強度が大幅に変動することがある。したがって、本発明(5)においては、空冷後の焼戻し温度を625℃以上Ac1点以下とした。
(B-2) was cooled after heating to a temperature range of 920 to 1,050 ° C. tempering temperature above (B-1) is better to carry out the tempering at a temperature of less than 1 point 625 ° C. or higher Ac. Tempering at a high temperature removes the internal stress of martensite generated by air cooling, and improves the steel material performance. In particular, good steel performance can be obtained by tempering at 625 ° C. or higher. However, when the tempering temperature exceeds the Ac 1 point, the strength may fluctuate significantly. Therefore, in the present invention (5), the tempering temperature after air cooling is set to 625 ° C. or more and Ac 1 point or less.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する鋼1〜29を溶製して連続鋳造した。表1における鋼1〜23は、化学組成が本発明で規定する範囲内にある本発明例の鋼である。一方、鋼24〜29は本発明で規定する条件から外れた比較例の鋼である。   Steels 1 to 29 having the chemical composition shown in Table 1 were melted and continuously cast. Steels 1 to 23 in Table 1 are steels of the present invention examples whose chemical compositions are within the range defined by the present invention. On the other hand, steels 24 to 29 are steels of comparative examples that deviate from the conditions defined in the present invention.

Figure 2006312772
Figure 2006312772

次いで、各鋼の鋳片に熱間鍛造と熱間圧延を行って、外径が130mmで肉厚が18.24mmの鋼管を製造した。   Subsequently, the steel slab was subjected to hot forging and hot rolling to produce a steel pipe having an outer diameter of 130 mm and a wall thickness of 18.24 mm.

このようにして得た鋼管を、表2に示す温度に加熱して空冷と焼戻しを行った後、各種試験片を切り出して引張特性、靱性及び耐SSC性を調査した。   The steel pipe thus obtained was heated to the temperature shown in Table 2 and air-cooled and tempered, and then various test pieces were cut out and examined for tensile properties, toughness and SSC resistance.

1.引張特性
鋼管の肉厚中央部から、長手方向に直径が6.35mmで平行部長さが25.4mmの丸棒引張試験片を採取し、常温で引張試験を実施して降伏強度(YS)を測定した。
1. Tensile properties A round bar tensile test piece with a diameter of 6.35 mm and a parallel part length of 25.4 mm is taken from the center of the thickness of the steel pipe, and a tensile test is performed at room temperature to obtain the yield strength (YS). It was measured.

2.靱性
鋼管の肉厚中央部から、長手方向にJIS Z 2202(1998)に規定されている幅10mmのVノッチ試験片を採取し、−40℃でシャルピー衝撃試験を実施して吸収エネルギー(vE-40)を求めた。
2. Toughness V-notch specimens with a width of 10 mm as defined in JIS Z 2202 (1998) are collected in the longitudinal direction from the thickness center of the steel pipe, and the Charpy impact test is conducted at -40 ° C to absorb the absorbed energy (vE − 40 ).

3.耐SSC性
鋼管から、NACEのTM0177−96に規定されるC法試験片を採取し、硫化水素の分圧が30397.5Pa(0.3atm)で窒素ガスの分圧が70927.5Pa(0.7atm)の混合ガスを30℃の5%NaCl水溶液に吹き込んだ環境中で、NACEのC法試験を実施した。なお、先に測定したYSの100%を試験応力とした。耐SSC性は、試験時間が720時間の条件で試験した場合に、試験片に割れが発生するかしないかで評価した。
3. SSC resistance A C method test piece specified in NACE TM0177-96 was collected from a steel pipe, and the partial pressure of hydrogen sulfide was 30397.5 Pa (0.3 atm) and the partial pressure of nitrogen gas was 70927.5 Pa (0. The NACE C method test was conducted in an environment in which a mixed gas of 7 atm) was blown into a 5% NaCl aqueous solution at 30 ° C. In addition, 100% of YS measured previously was made into test stress. The SSC resistance was evaluated based on whether or not cracking occurred in the test piece when the test time was 720 hours.

表2に、上記の各試験結果を併せて示す。「耐SSC性」の欄は、試験片に割れが発生しなかったものを「○」、割れが発生したものを「×」で示した。   Table 2 also shows the results of the above tests. In the “SSC resistance” column, “◯” indicates that no crack occurred in the test piece, and “X” indicates that the crack occurred.

Figure 2006312772
Figure 2006312772

表2から、化学組成が本発明で規定する条件を満たす試験番号1〜25及び試験番号32〜35の場合には、強度−靱性バランスが良好であり、しかも、前記の条件でNACEのC法試験を実施した場合に割れは発生せず優れた耐SSC性を有していることが明らかである。そして、そのなかでも本発明(5)で規定する製造条件を満たす試験番号1〜25の場合には、強度−靱性バランス及び耐SSC性が良好であり、vE-40≧70Jと靱性がより一層良好であることが明らかである。 From Table 2, in the case of Test Nos. 1 to 25 and Test Nos. 32 to 35 that satisfy the conditions specified in the present invention in the chemical composition, the strength-toughness balance is good, and NACE method C under the above conditions It is clear that cracks do not occur when the test is carried out and that the SSC resistance is excellent. Among them, in the case of test numbers 1 to 25 satisfying the production conditions defined in the present invention (5), the strength-toughness balance and the SSC resistance are good, and the toughness is vE −40 ≧ 70 J and much more. It is clear that it is good.

これに対して、化学組成が本発明で規定する条件から外れた試験番号26〜31の場合には、前記の条件でNACEのC法試験を実施した場合にも割れが発生しており、耐SSC性に劣っていることが明らかである。   On the other hand, in the case of test numbers 26 to 31 where the chemical composition deviates from the conditions specified in the present invention, cracks occurred even when the NACE C method test was performed under the above conditions, It is clear that the SSC property is inferior.

本発明の油井用マルテンサイト系ステンレス鋼は、塩化物イオン、湿潤炭酸ガス及び微量の硫化水素の共存下で良好な耐SSC性を有するとともに低温靱性にも優れるので、寒冷地域にある硫化水素、炭酸ガス及び塩化物イオンを含んだ環境で使用することができる。また、本発明の油井用マルテンサイト系ステンレス鋼管の製造方法によれば、上記の苛酷な環境下での使用に十分耐える鋼管を容易に製造することができる。
Since the martensitic stainless steel for oil wells of the present invention has good SSC resistance and excellent low-temperature toughness in the presence of chloride ions, wet carbon dioxide and a small amount of hydrogen sulfide, hydrogen sulfide in a cold region, It can be used in an environment containing carbon dioxide and chloride ions. Further, according to the method for producing a martensitic stainless steel pipe for oil wells of the present invention, a steel pipe that can sufficiently withstand use in the above-mentioned severe environment can be easily produced.

Claims (5)

質量%で、C:0.16〜0.22%、Si:0.1〜0.8%、Mn:0.25〜1.00%、P:0.025%以下、S:0.010%以下、Cr:12.0〜13.5%、Al:0.010%以下、Ni:0〜0.2%、Cu:0〜0.10%、Mo:0〜0.20%、Ti:0〜0.050%及びN:0.01〜0.1%を含有し、残部はFe及び不純物からなることを特徴とする油井用マルテンサイト系ステンレス鋼。   In mass%, C: 0.16-0.22%, Si: 0.1-0.8%, Mn: 0.25-1.00%, P: 0.025% or less, S: 0.010 %: Cr: 12.0 to 13.5%, Al: 0.010% or less, Ni: 0 to 0.2%, Cu: 0 to 0.10%, Mo: 0 to 0.20%, Ti : 0 to 0.050% and N: 0.01 to 0.1%, the balance being composed of Fe and impurities, martensitic stainless steel for oil wells. Feの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上を含有する請求項1に記載の油井用マルテンサイト系ステンレス鋼。   The martensite system for oil wells according to claim 1, comprising at least one selected from Nb: 0.020 to 0.045% and V: 0.01 to 0.2% in place of a part of Fe. Stainless steel. Feの一部に代えて、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有する請求項1に記載の油井用マルテンサイト系ステンレス鋼。   Instead of a part of Fe, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to 0.005 The martensitic stainless steel for oil wells according to claim 1, comprising one or more selected from%. Feの一部に代えて、Nb:0.020〜0.045%及びV:0.01〜0.2%から選択される1種以上並びに、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%及びCe:0.0002〜0.005%から選択される1種以上を含有する請求項1に記載の油井用マルテンサイト系ステンレス鋼。   Instead of a part of Fe, one or more selected from Nb: 0.020 to 0.045% and V: 0.01 to 0.2%, and Ca: 0.0002 to 0.005%, Mg The marten for oil wells according to claim 1, comprising at least one selected from: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to 0.005%. Site-based stainless steel. 請求項1から4までのいずれかに記載の化学組成を有するマルテンサイト系ステンレス鋼管を、920〜1050℃の温度域に加熱した後空冷し、次いで、625℃以上Ac1点以下の温度で焼戻しすることを特徴とする油井用マルテンサイト系ステンレス鋼管の製造方法。
A martensitic stainless steel pipe having the chemical composition according to any one of claims 1 to 4 is heated to a temperature range of 920 to 1050 ° C and then air-cooled, and then tempered at a temperature of 625 ° C or more and Ac 1 point or less. A method for producing a martensitic stainless steel pipe for oil wells.
JP2005136329A 2005-05-09 2005-05-09 Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well Pending JP2006312772A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005136329A JP2006312772A (en) 2005-05-09 2005-05-09 Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well
CNA200610077037XA CN1861832A (en) 2005-05-09 2006-04-26 Martensitic stainless steel for oil well and its producing method
US11/418,054 US20070012385A1 (en) 2005-05-09 2006-05-05 Martensitic stainless steel for oil wells and method for manufacturing martensitic stainless steel pipe for oil wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136329A JP2006312772A (en) 2005-05-09 2005-05-09 Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well

Publications (1)

Publication Number Publication Date
JP2006312772A true JP2006312772A (en) 2006-11-16

Family

ID=37389359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136329A Pending JP2006312772A (en) 2005-05-09 2005-05-09 Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well

Country Status (3)

Country Link
US (1) US20070012385A1 (en)
JP (1) JP2006312772A (en)
CN (1) CN1861832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189945A (en) * 2007-01-31 2008-08-21 Jfe Steel Kk METHOD FOR MANUFACTURING THICK-WALL 13Cr-BASE STAINLESS STEEL PIPE
CN100497711C (en) * 2007-09-06 2009-06-10 东方电气集团东方汽轮机有限公司 Steel material for steam turbine final blade and heat treating process thereof
CN101886228B (en) * 2009-05-13 2012-02-01 中国科学院金属研究所 Low carbon martensite aged stainless steel with high strength high toughness and high decay resistance performances
CN103643156A (en) * 2013-11-21 2014-03-19 江苏天舜金属材料集团有限公司 More than 630 MPa level high strength steel bar and application method thereof in reinforced concrete
CN106319344A (en) * 2016-10-10 2017-01-11 抚顺圣兴高温合金研究所 Martensitic stainless steel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602918B (en) * 2013-11-18 2016-01-20 乐山力盾铸钢有限公司 A kind of High-strength wear-resistant corrosion-resistant antimagnetic stainless steel
CN104131234A (en) * 2014-05-04 2014-11-05 洛阳金合耐磨材料有限公司 Material special for large ball mill lining board and preparation method thereof
CN111424221B (en) * 2020-03-27 2021-06-29 浙江吉森金属科技有限公司 Stainless steel plate for lamination and manufacturing method thereof
CN111519093A (en) * 2020-04-30 2020-08-11 江苏金石铸锻有限公司 Low-temperature-resistant high-strength martensitic stainless steel forging material
CN111945069B (en) * 2020-08-18 2021-10-08 达力普石油专用管有限公司 High-alloy corrosion-resistant oil sleeve material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2336600C (en) * 1999-05-18 2004-11-23 Sumitomo Metal Industries, Ltd. Martensitic stainless steel for seamless steel pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189945A (en) * 2007-01-31 2008-08-21 Jfe Steel Kk METHOD FOR MANUFACTURING THICK-WALL 13Cr-BASE STAINLESS STEEL PIPE
CN100497711C (en) * 2007-09-06 2009-06-10 东方电气集团东方汽轮机有限公司 Steel material for steam turbine final blade and heat treating process thereof
CN101886228B (en) * 2009-05-13 2012-02-01 中国科学院金属研究所 Low carbon martensite aged stainless steel with high strength high toughness and high decay resistance performances
CN103643156A (en) * 2013-11-21 2014-03-19 江苏天舜金属材料集团有限公司 More than 630 MPa level high strength steel bar and application method thereof in reinforced concrete
CN106319344A (en) * 2016-10-10 2017-01-11 抚顺圣兴高温合金研究所 Martensitic stainless steel

Also Published As

Publication number Publication date
US20070012385A1 (en) 2007-01-18
CN1861832A (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP6304460B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4367412B2 (en) Martensitic stainless steel
JP2006312772A (en) Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
JP3700582B2 (en) Martensitic stainless steel for seamless steel pipes
EP2562284B1 (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE AND HAVING EXCELLENT INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE AT WELDING-HEAT-AFFECTED PORTION
JPWO2018155041A1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP2006037147A (en) Steel material for oil well pipe
JP6139479B2 (en) High strength stainless steel pipe manufacturing method and high strength stainless steel pipe
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JPWO2014112353A1 (en) Stainless steel seamless steel pipe for oil well and manufacturing method thereof
JP6045256B2 (en) High strength, high toughness, high corrosion resistance martensitic stainless steel
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2008297602A (en) Stainless steel pipe having superior pipe expandability for oil well, and manufacturing method therefor
WO2014069467A1 (en) Austenitic stainless steel
JP2002060893A (en) Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method
JP4273338B2 (en) Martensitic stainless steel pipe and manufacturing method thereof
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JP4978070B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
WO2006117926A1 (en) Stainless steel pipe for oil well excellent in enlarging characteristics
JP4701874B2 (en) Manufacturing method of steel pipe for oil well with excellent resistance to sulfide stress cracking
JP2006016637A (en) High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091209