JP6296797B2 - High strength cast steel material and manufacturing method thereof - Google Patents

High strength cast steel material and manufacturing method thereof Download PDF

Info

Publication number
JP6296797B2
JP6296797B2 JP2014001342A JP2014001342A JP6296797B2 JP 6296797 B2 JP6296797 B2 JP 6296797B2 JP 2014001342 A JP2014001342 A JP 2014001342A JP 2014001342 A JP2014001342 A JP 2014001342A JP 6296797 B2 JP6296797 B2 JP 6296797B2
Authority
JP
Japan
Prior art keywords
cast steel
strength
less
steel material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001342A
Other languages
Japanese (ja)
Other versions
JP2014156652A (en
Inventor
半田 卓雄
卓雄 半田
志民 劉
志民 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2014001342A priority Critical patent/JP6296797B2/en
Publication of JP2014156652A publication Critical patent/JP2014156652A/en
Application granted granted Critical
Publication of JP6296797B2 publication Critical patent/JP6296797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、特に特殊車両部品や建築・土木・橋梁などの構造部材及び金型に使用する、強度、延性、溶接性に優れた高強度鋳鋼材料およびその製造方法に関する。   The present invention relates to a high-strength cast steel material excellent in strength, ductility and weldability, and a method for producing the same, particularly for use in special vehicle parts, structural members such as buildings, civil engineering, and bridges, and dies.

近年、過酷な条件下で使用される車軸、サスペンション等の特殊車両の足回り部品や多様なデザインと大空間を創造するための建築構造物用金物部品および高寿命を求められる金型部材等を製造する際には、高強度でかつ延性に優れ、形状自由度の高い素材が求められている。これは、これらの最終製品の大型化に伴う総重量の増加を抑えるため、上記部品や部材を極力薄くして軽量化する必要があるためである。   In recent years, axle parts and suspension parts for special vehicles such as axles and suspensions used under harsh conditions, hardware parts for building structures to create various designs and large spaces, and mold members that require a long life In manufacturing, a material having high strength, excellent ductility, and a high degree of freedom in shape is required. This is because in order to suppress the increase in the total weight accompanying the increase in size of these final products, it is necessary to make the parts and members as thin and light as possible.

上記部品や部材の素材として用いられる鉄系構造用素材には、圧延鋼材、鍛鋼材、および鋳鋼材があるが、高度な要求がある用途には一般に圧延鋼材や鍛鋼材が適用される。これは、鋳鋼材は同一強度の圧延鋼材や鍛鋼材と比較した場合、延性が低く、上記のような要求を満たすことが難しいからである。   There are rolled steel materials, forged steel materials, and cast steel materials as iron-based structural materials used as materials for the above-mentioned parts and members. Generally, rolled steel materials and forged steel materials are applied to applications that have high demands. This is because cast steel has low ductility when compared with rolled steel or forged steel of the same strength, and it is difficult to satisfy the above requirements.

一方、最近になって、上記部品や部材に対する軽量化要求がますます強くなる傾向にあり、これらを軽量化するために上記部品や部材に対して、さらに複雑な形状が求められるようになってきている。しかしながら、圧延鋼材や鍛鋼材は、その製造プロセスの関係から、得ようとする部品や部品の形状の自由度が制限されるため、このような要求に十分に対応できないという問題が顕在化してきている。   On the other hand, recently, the demand for weight reduction of the above parts and members has been increasing, and in order to reduce the weight of these parts and members, more complex shapes have been required. ing. However, since rolled steel and forged steel materials are limited in the degree of freedom of the parts to be obtained and the shape of the parts due to the manufacturing process, the problem of not being able to sufficiently meet such requirements has become apparent. Yes.

このような背景から、近年、複雑な形状が得られる鋳鋼材を高強度化および高延性化する技術が提案されている。例えば特許文献1では、焼入性倍数や溶接性指数により成分組成を限定した鋳鋼材が提案されている。特許文献2では、ベイナイトパラメータや高じん性倍数、炭素当量、溶接割れ感受性により成分組成を限定した鋳鋼材が提案されている。また、特許文献3では、特定組成鋳鋼をオーステンパー処理した高強度・高靭性鋳鋼が提案されている。さらに、本発明の出願人による特許文献4では、強度および焼入れ性向上に有効で、かつ延性や溶接性に及ぼす悪影響の小さいNiを添加することにより高強度強靭性の鋳鋼材を実現している。   Against this background, in recent years, techniques have been proposed for increasing the strength and ductility of cast steel materials that can obtain complex shapes. For example, Patent Document 1 proposes a cast steel material whose component composition is limited by a hardenability multiple or weldability index. Patent Document 2 proposes a cast steel material whose component composition is limited by bainite parameters, high toughness multiple, carbon equivalent, and weld crack sensitivity. Patent Document 3 proposes a high strength and high toughness cast steel obtained by austempering a specific composition cast steel. Further, in Patent Document 4 by the applicant of the present invention, a cast steel material having high strength and toughness is realized by adding Ni that is effective in improving strength and hardenability and has a small adverse effect on ductility and weldability. .

特許第3509634号公報Japanese Patent No. 3509634 特許第3536001号公報Japanese Patent No. 3553601 特開2003−306741号公報JP 2003-306741 A 特許第4790512号公報Japanese Patent No. 4790512

ところで、上記用途の部品や部材としては、軽量化のために極力薄肉化してもなお100mmを超えるような厚さが必要なものも存在し、このような厚肉の部品や部材を構成する鋳鋼材料に対して引張強さが900MPa以上でかつ伸びが10%以上の高強度および高延性が求められている。また、材料コストが比較的安価であることや、材料としての靭性が高くかつ実用材料に欠かせない溶接性を良好にするために室温衝撃吸収エネルギーを27J以上とすることも要求される。   By the way, as parts and members for the above applications, there are those that still need a thickness exceeding 100 mm even if they are made as thin as possible for weight reduction, and cast steel constituting such thick parts and members. There is a demand for high strength and high ductility of a material having a tensile strength of 900 MPa or more and an elongation of 10% or more. In addition, the material cost is relatively low, and the room temperature impact absorption energy is required to be 27 J or more in order to improve the weldability that is high in toughness as a material and is indispensable for a practical material.

しかし、上記特許文献1および特許文献2の材料はいずれも引張強さが700MPa前後であり、また、特許文献4では、1000MPa超の引張強さを実現しているが、高価なNiを3〜4%添加する必要があるために材料コストが増加し、その適用には制限があった。さらに、これら従来技術では、焼入れのみによって高強度を得るため、焼入れ深さに限界があり、厚肉製品内部での強度低下が避けられない。   However, the materials of Patent Document 1 and Patent Document 2 both have a tensile strength of around 700 MPa, and Patent Document 4 achieves a tensile strength of more than 1000 MPa. Since it was necessary to add 4%, the material cost increased, and its application was limited. Furthermore, in these prior arts, since high strength is obtained only by quenching, there is a limit to the quenching depth, and a decrease in strength inside the thick product is inevitable.

さらに、特許文献3では、900MPa超の引張強さと10%程度の伸びを実現しているが、オーステンパー処理が必須であり、適用可能な部品や部材のサイズは比較的小さなものに限定され、100mm以上の厚肉の部品や部材に適用することは困難である。   Further, in Patent Document 3, a tensile strength of over 900 MPa and an elongation of about 10% are realized, but austempering is essential, and the size of applicable parts and members is limited to relatively small ones, It is difficult to apply to thick parts and members of 100 mm or more.

このように、100mmを超えるような厚肉の部品や部材に適用して、900MPa以上の引張強さと10%以上の伸び、および27J以上の室温衝撃吸収エネルギーを得ることができ、かつ比較的安価である鋳鋼材料を得る技術は未だ実現されていない。   Thus, when applied to thick parts and members exceeding 100 mm, a tensile strength of 900 MPa or more, an elongation of 10% or more, and a room temperature impact absorption energy of 27 J or more can be obtained, and it is relatively inexpensive. The technology for obtaining such cast steel material has not yet been realized.

本発明はかかる事情に鑑みてなされたものであって、厚肉製品においても、高い強度と適度な延性を併せ持ち、しかも靭性や溶接性にも優れ、さらに比較的安価である高強度鋳鋼材料およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a high strength cast steel material that has both high strength and appropriate ductility, is excellent in toughness and weldability, and is relatively inexpensive, even in a thick product. It aims at providing the manufacturing method.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の事項を組み合わせることが有効であることを見出した。
(i)Cuを適量添加し、その析出に伴う強化作用によって高強度を得る。
(ii)厚肉製品において、溶体化処理後の急冷(焼入れに相当)時に起きる表層に比べ内部の強度が低くなる質量効果を析出強化によって緩和する。
(iii)V+Moの添加によって、高温時効を可能にし、高強度と適度な延性を同時に得る。
(iv)S量に応じたCaを添加して、硫化物の形態を制御して延性を改善する。
As a result of intensive studies to solve the above problems, the present inventors have found that it is effective to combine the following matters.
(I) An appropriate amount of Cu is added, and high strength is obtained by the strengthening action accompanying the precipitation.
(Ii) In thick products, the mass effect that reduces the internal strength compared to the surface layer that occurs during rapid cooling (corresponding to quenching) after solution treatment is mitigated by precipitation strengthening.
(Iii) The addition of V + Mo enables high temperature aging, and simultaneously obtains high strength and moderate ductility.
(Iv) Add Ca according to the amount of S to control the form of the sulfide to improve ductility.

本発明は、これらの知見に基づいてなされたもので、以下の(1)〜(5)を提供する。   The present invention has been made based on these findings and provides the following (1) to (5).

(1) 質量%で、
C :0.05〜0.2%、
Si:0.1〜0.5%、
Mn:0.5〜1.5%、
P :0.015%以下、
S :0.015%以下、
Cu:1.5〜3%、
Ni:0.5〜1.5%、
Mo:0.3〜0.5%、
V :0.1〜0.25%、
Ca:0.01〜0.05%、
を含有し、かつ
CaおよびSの含有量が質量%で
S×2.5≦Ca≦S×4.5
の関係を満足し、
MoおよびVの含有量が質量%で
0.3%≦V+0.53×Mo≦0.4%
の関係を満足し、
残部がFeおよび不可避的不純物からなることを特徴とする高強度鋳鋼材料。
(1) In mass%,
C: 0.05 to 0.2%
Si: 0.1 to 0.5%,
Mn: 0.5 to 1.5%
P: 0.015% or less,
S: 0.015% or less,
Cu: 1.5-3%,
Ni: 0.5 to 1.5%,
Mo: 0.3 to 0.5%,
V: 0.1-0.25%,
Ca: 0.01 to 0.05%,
And the content of Ca and S is mass% S × 2.5 ≦ Ca ≦ S × 4.5
Satisfied with the relationship
When the content of Mo and V is mass%, 0.3% ≦ V + 0.53 × Mo ≦ 0.4%
Satisfied with the relationship
A high-strength cast steel material characterized in that the balance consists of Fe and inevitable impurities.

(2)上記(1)において、前記CaをNi−Ca合金によって添加することを特徴とする高強度鋳鋼材料。 (2) The high-strength cast steel material according to (1), wherein the Ca is added by a Ni—Ca alloy.

(3)上記(1)または(2)において、C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で示される炭素当量の値が、質量%で0.6%以下であることを特徴とする高強度鋳鋼材料。
(3) In the above (1) or (2), C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
A high-strength cast steel material having a carbon equivalent value of 0.6% or less by mass%.

(4)上記(1)〜(3)のいずれかにおいて、肉厚が200mm以下で、900MPa以上の引張強さと、10%以上の伸びと、27J以上の室温衝撃吸収エネルギーを同時に満足することを特徴とする高強度鋳鋼材料。   (4) In any one of the above (1) to (3), the thickness is 200 mm or less, the tensile strength is 900 MPa or more, the elongation is 10% or more, and the room temperature impact absorption energy is 27 J or more. Characteristic high strength cast steel material.

(5)上記(1)〜(3)のいずれかに記載の成分組成を有する鋳鋼素材を、850〜1000℃で加熱後、その温度から150℃まで、平均冷却速度5℃/秒以上の速度で冷却し、450〜650℃で1〜2時間の時効処理を施すことを特徴とする高強度鋳鋼材料の製造方法。   (5) After heating the cast steel material having the component composition according to any one of (1) to (3) above at 850 to 1000 ° C., from the temperature to 150 ° C., an average cooling rate of 5 ° C./second or more. And a aging treatment is performed at 450 to 650 ° C. for 1 to 2 hours.

本発明によれば、比較的安価な合金組成および簡易な熱処理により、厚肉部品または部材においても、優れた強度と延性を兼備し、靭性や溶接性も良好な鋳鋼材料およびその製造方法を提供することができ、その効果はきわめて顕著である。   According to the present invention, a relatively inexpensive alloy composition and a simple heat treatment provide a cast steel material that has excellent strength and ductility, and has good toughness and weldability, even for thick parts or members, and a method for producing the same. The effect is very remarkable.

鋳鋼品の機械的性質を評価するための供試材形状を示す図である。It is a figure which shows the test material shape for evaluating the mechanical property of a cast steel product. 溶接性評価のための溶接部開先形状を示す図である。It is a figure which shows the weld part groove shape for weldability evaluation. 溶接材の継ぎ手付近のマクロ組織を示す写真である。It is a photograph which shows the macro structure near the joint of a welding material.

以下、本発明を鋼の化学成分および製造方法の限定理由について詳細に説明する。なお、特に断わらない限り成分における%表示は質量%である。   Hereinafter, the present invention will be described in detail with respect to the chemical components of steel and the reasons for limitation of the production method. In addition, unless otherwise indicated, the% display in a component is the mass%.

[化学成分]
C:0.05〜0.2%
Cは鋳鋼材の強度及び焼入れ硬さ向上に有効な元素である。また、VやMoと結びついて炭化物を形成し、焼戻し軟化抵抗性を向上させ、高温時効による強度低下を相殺する他、溶接熱影響部の機械的性質の低下を防止する。しかし、その含有量が0.05%未満では900MPa以上の引張強さを得ることができず、また0.2%を超えると延性が低下するとともに溶接割れが発生しやすくなる。したがって、C含有量を0.05〜0.2%の範囲とする。
[Chemical composition]
C: 0.05 to 0.2%
C is an element effective for improving the strength and quenching hardness of cast steel. Moreover, it combines with V and Mo to form carbides, improves the temper softening resistance, offsets the strength decrease due to high temperature aging, and prevents the mechanical properties of the weld heat affected zone from decreasing. However, if the content is less than 0.05%, a tensile strength of 900 MPa or more cannot be obtained, and if it exceeds 0.2%, the ductility is lowered and weld cracks are likely to occur. Therefore, the C content is in the range of 0.05 to 0.2%.

Si:0.1〜0.5%
Siは脱酸及び湯流れ性改善を目的として添加する元素である。しかし、その含有量が0.1%未満では溶鋼の湯流れ性が低く、鋳造品質の劣化を招く。また、Siは遷移温度を高温側に移動させて靭性を低下させ、その含有量が0.5%超では脆化が大きくなる。したがって、Si含有量を0.1〜0.5%の範囲とする。
Si: 0.1 to 0.5%
Si is an element added for the purpose of deoxidation and improvement of hot water flowability. However, if the content is less than 0.1%, the molten steel has low flowability, resulting in deterioration of casting quality. Further, Si moves the transition temperature to the high temperature side to reduce toughness, and if its content exceeds 0.5%, embrittlement increases. Therefore, the Si content is in the range of 0.1 to 0.5%.

Mn:0.5〜1.5%
Mnは鋳鋼材の強度向上に有効な元素であり、脱酸効果も有する。しかし、その含有量が0.5%未満ではその効果が少なく、1.5%を超えると延性が低下するとともに炭素当量が増加し、溶接性の劣化が大きくなる。したがって、Mn含有量を0.5〜1.5%の範囲とする。
Mn: 0.5 to 1.5%
Mn is an element effective for improving the strength of cast steel and has a deoxidizing effect. However, if the content is less than 0.5%, the effect is small, and if it exceeds 1.5%, the ductility is lowered and the carbon equivalent is increased, so that the weldability is greatly deteriorated. Therefore, the Mn content is in the range of 0.5 to 1.5%.

Cu:1.5〜3%
CuはFe合金に添加すると、その溶解度が温度によって大きく変化するため、高温で均質化した後、時効処理することにより、強度を高める効果がある。しかし、その含有量が1.5%未満では強度向上効果が小さく、900MPa以上の引張強さが得られず、また、3%を超えると延性が低下して10%以上の伸びが得られなくなる。したがって、Cu含有量を1.5〜3%の範囲とする。
Cu: 1.5 to 3%
When Cu is added to an Fe alloy, its solubility greatly varies depending on the temperature. Therefore, after Cu is homogenized at a high temperature and then subjected to an aging treatment, there is an effect of increasing strength. However, if the content is less than 1.5%, the effect of improving the strength is small, a tensile strength of 900 MPa or more cannot be obtained, and if it exceeds 3%, the ductility decreases and an elongation of 10% or more cannot be obtained. . Therefore, the Cu content is set to a range of 1.5 to 3%.

Ni:0.5〜1.5%
Niは鋳鋼材の強度向上に有効であり、かつ延性や溶接性に及ぼす悪影響が非常に小さく、また、靱性を改善する効果が大きいため添加する。しかし、その含有量が0.5%未満ではその効果が不十分で、1.5%を超えると材料コストの増大が無視できなくなる。したがって、Ni含有量を0.5〜1.5%の範囲とする。
Ni: 0.5 to 1.5%
Ni is added because it is effective in improving the strength of cast steel, has a very small adverse effect on ductility and weldability, and has a large effect of improving toughness. However, if the content is less than 0.5%, the effect is insufficient, and if it exceeds 1.5%, an increase in material cost cannot be ignored. Therefore, the Ni content is in the range of 0.5 to 1.5%.

Mo:0.3〜0.5%
Moは鋳鋼材の焼入れ性を高め、強度向上に有効な元素である。また、Cと結びついて炭化物を形成し、二次硬化して強度を保つため、時効温度を高くすることができ、結果として延性を向上させることが可能になる。しかし、その含有量が0.3%未満ではその効果が少なく、0.5%を超えると冷却速度が遅い厚肉部にフェライトを析出させ、強度が低下するとともに炭素当量が増加し溶接性を低下させる。したがって、Mo含有量を0.3〜0.5%の範囲とする。
Mo: 0.3-0.5%
Mo is an element that improves the hardenability of the cast steel material and is effective in improving the strength. Moreover, since it combines with C to form a carbide and secondarily cures to maintain strength, the aging temperature can be increased, and as a result, ductility can be improved. However, if the content is less than 0.3%, the effect is small, and if it exceeds 0.5%, ferrite precipitates in the thick wall portion where the cooling rate is slow, the strength decreases, the carbon equivalent increases, and the weldability increases. Reduce. Therefore, the Mo content is set to a range of 0.3 to 0.5%.

V:0.1〜0.25%
VはMoと類似の効果があり、Cと結びついて炭化物を形成し、強度を保つため、時効温度を高くすることができ、延性の向上が可能になる。しかし、その含有量が0.1%未満ではその効果が不十分で、0.25%超では延性が低下する。したがって、V含有量を0.1〜0.25%の範囲とする。
V: 0.1-0.25%
V has an effect similar to that of Mo and is combined with C to form a carbide and maintain strength. Therefore, the aging temperature can be increased and ductility can be improved. However, if the content is less than 0.1%, the effect is insufficient, and if it exceeds 0.25%, the ductility decreases. Therefore, the V content is in the range of 0.1 to 0.25%.

P:0.015%以下
S:0.015%以下
PおよびSは母材の靱性に大きな影響を及ぼす元素である。それぞれ0.015%を超えて含有されると母材の靱性を著しく低下させる。したがってPおよびSの含有量を0.015%以下とする。
P: 0.015% or less S: 0.015% or less P and S are elements that greatly affect the toughness of the base material. If each content exceeds 0.015%, the toughness of the base material is significantly reduced. Therefore, the P and S contents are set to 0.015% or less.

Ca:0.01〜0.05%
CaはSと結びついて高融点硫化物を形成し、低融点のFeSやMnSが結晶粒界に生成するのを防止し、延性を向上させる効果がある。Sを0.015%以下含有する場合において、Ca含有量が0.01%未満ではその効果が小さく、0.05%を超えるとS含有量に対して過剰になり、材料費の増大を招く。したがって、Ca含有量を0.01〜0.05%の範囲とする。
Ca: 0.01 to 0.05%
Ca combines with S to form a high melting point sulfide, and has the effect of preventing low melting point FeS and MnS from forming at the grain boundaries and improving ductility. In the case where S is contained in an amount of 0.015% or less, the effect is small if the Ca content is less than 0.01%, and if it exceeds 0.05%, the S content becomes excessive and the material cost increases. . Therefore, the Ca content is in the range of 0.01 to 0.05%.

S×2.5≦Ca≦S×4.5
さらに、Ca含有量をS量に応じて調整することが好ましい。しかし、Ca<S×2.5ではCaの効果が小さくなる傾向があり、Ca>S×4.5では効果が飽和し、さらに、介在物の生成および巻込みのおそれがあるとともに材料費が高くなる傾向にある。したがって、Ca含有量は、S×2.5≦Ca≦S×4.5の範囲とする。
S × 2.5 ≦ Ca ≦ S × 4.5
Furthermore, it is preferable to adjust Ca content according to S amount. However, when Ca <S × 2.5, the effect of Ca tends to be small, and when Ca> S × 4.5, the effect is saturated. Furthermore, there is a risk of inclusion formation and entrainment, and the material cost is high. It tends to be higher. Therefore, the Ca content is in the range of S × 2.5 ≦ Ca ≦ S × 4.5.

なお、CaはCa含有合金で添加され、Ca−Si等によって添加することもできるが、Caは酸素との反応性が高く、高歩留まりで添加するためには、95%Ni−5%Ca等のNi−Ca合金で添加することが好ましい。   Ca is added as a Ca-containing alloy and can be added by Ca-Si or the like. However, Ca is highly reactive with oxygen, and 95% Ni-5% Ca or the like is used in order to add at a high yield. It is preferable to add the Ni-Ca alloy.

0.3%≦V+0.53×Mo≦0.4%
前記のように、V及びMoはCと結びついて炭化物を形成することにより強度を向上させる効果があり、それぞれ単独の範囲を定めたが、好ましくは、V+0.53Moが0.3%以上で大きな強度向上効果が得られ、また、V+0.53Moが0.4%を超えると延性が低下する傾向にある。したがって、0.3%≦V+0.53Mo≦0.4%の範囲とする。
0.3% ≦ V + 0.53 × Mo ≦ 0.4%
As described above, V and Mo are combined with C to form carbides and have an effect of improving strength, and each has a single range. Preferably, V + 0.53Mo is 0.3% or more and is large. A strength improvement effect is obtained, and when V + 0.53Mo exceeds 0.4%, the ductility tends to decrease. Therefore, the range is 0.3% ≦ V + 0.53Mo ≦ 0.4%.

C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14≦0.6%
C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14で示される炭素当量は溶接性を評価する値である。炭素当量が0.6%を超えると硬化性が大きくなるため、低温割れの発生や溶接部の延性低下などを防止するには特別な熱管理が必要になる。したがって、炭素当量は0.6%以下とすることが好ましい。なお、必要に応じて、本発明組成範囲で溶接構造用鋳鋼品(JIS G5102)鋼種と同等の炭素当量に調整することも可能である。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 ≦ 0.6%
The carbon equivalent represented by C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 is a value for evaluating weldability. When the carbon equivalent exceeds 0.6%, the curability increases, and special thermal management is required to prevent the occurrence of cold cracking and the deterioration of the ductility of the weld. Therefore, the carbon equivalent is preferably 0.6% or less. In addition, it is also possible to adjust to a carbon equivalent equivalent to the cast steel product for welded structure (JIS G5102) within the composition range of the present invention as necessary.

なお、上記組成を有する合金成分の残部は、Feおよび不可避不純物である。   The balance of the alloy component having the above composition is Fe and inevitable impurities.

[製造条件]
850〜1000℃で加熱後急冷(平均冷却速度5℃/秒)
加熱温度が850℃未満では、基地中へのCuの固溶が完全でなく、十分な強度向上が得られず、1000℃を超えると、Cuの固溶量はそれ以上増加しないばかりか、組織が粗大化して材料の靭性が低下する。また、時効処理効果を十分得るには、処理前にCuが基地中に過飽和に固溶している必要があり、そのために加熱後の冷却を急冷とする。具体的には、冷却開始温度から150℃までの平均冷却速度が5℃/秒未満では粗大なCu粒子の析出が起こり、所望の引張強さが得られない。したがって冷却開始温度850〜1000℃から150℃までの平均冷却速度を5℃/秒以上の急冷と規定する。冷却条件は処理物の大きさにより調整することが好ましく、たとえば肉厚150mm以下では空冷または油冷、肉厚150mm超では油冷または水冷とすればよい。
[Production conditions]
Rapid cooling after heating at 850-1000 ° C (average cooling rate 5 ° C / sec)
If the heating temperature is less than 850 ° C., the solid solution of Cu in the matrix is not complete and sufficient strength improvement cannot be obtained. If the heating temperature exceeds 1000 ° C., the solid solution amount of Cu does not increase any more, and the structure Becomes coarse and the toughness of the material decreases. Further, in order to obtain a sufficient effect of aging treatment, Cu needs to be dissolved in a supersaturated state in the matrix before the treatment, and for this reason, the cooling after heating is rapidly cooled. Specifically, when the average cooling rate from the cooling start temperature to 150 ° C. is less than 5 ° C./second, precipitation of coarse Cu particles occurs, and a desired tensile strength cannot be obtained. Therefore, the average cooling rate from the cooling start temperature of 850 to 1000 ° C. to 150 ° C. is defined as rapid cooling of 5 ° C./second or more. The cooling conditions are preferably adjusted according to the size of the processed material. For example, air cooling or oil cooling may be used when the wall thickness is 150 mm or less, and oil cooling or water cooling may be used when the wall thickness exceeds 150 mm.

450〜650℃で1〜2時間の時効処理
上記加熱・急冷後、適当な温度に保持することにより、過飽和に固溶したCuが微細な粒子として組織中に析出して材料を硬化させ、引張強さが増加する。450℃未満では析出完了までの時間が長時間となり、650℃を超えると引張強さが低下し始めるので、時効温度を450〜650℃と規定する。また、保持時間が1時間未満では、低温時効においてCu微粒子の析出量が少なく所望の引張強さが得られず、2時間を超えると高温時効において過時効となり引張強さが低下するので、時効処理の保持時間を1〜2時間と規定する。
Aging treatment at 450 to 650 ° C. for 1 to 2 hours After the heating and quenching, Cu held in a supersaturated state is precipitated as fine particles in the structure by holding at an appropriate temperature to harden the material, and tensile Strength increases. When the temperature is lower than 450 ° C., the time until the completion of precipitation becomes long. When the temperature exceeds 650 ° C., the tensile strength starts to decrease. Therefore, the aging temperature is defined as 450 to 650 ° C. In addition, if the holding time is less than 1 hour, the amount of Cu fine particles precipitated is low and the desired tensile strength cannot be obtained in low temperature aging. The holding time of the treatment is defined as 1 to 2 hours.

このようにして得られる本発明の高強度鋳鋼材料は、肉厚が200mm以下で、900MPa以上の引張強さと、10%以上の伸びと、27J以上の室温衝撃吸収エネルギーを同時に満足する特性を得ることができる。   The high-strength cast steel material of the present invention thus obtained has a thickness of 200 mm or less, a tensile strength of 900 MPa or more, an elongation of 10% or more, and a property that satisfies room temperature shock absorption energy of 27 J or more at the same time. be able to.

以下、本発明の実施例について説明する。
表1に示す各化学組成の鋳鋼材を高周波誘導炉で大気溶解し、図1に示すJIS G0307の図1bに準拠した試験体1を鋳造した。さらに、No.10組成材については試験体1に加え、試験体2(幅200mm×肉厚200mm/100mm/50mm/25mmの階段状試験体)および試験体3(50mm×150mm×300mmの板状試験体)を鋳造した。いずれも鋳型にはCOプロセス珪砂型を用いた。
Examples of the present invention will be described below.
Cast steel materials having respective chemical compositions shown in Table 1 were melted in the atmosphere in a high frequency induction furnace, and a test body 1 conforming to FIG. 1b of JIS G0307 shown in FIG. 1 was cast. Furthermore, no. For 10 composition materials, in addition to test body 1, test body 2 (width 200 mm × thickness 200 mm / 100 mm / 50 mm / 25 mm stepped test body) and test body 3 (50 mm × 150 mm × 300 mm plate-shaped test body) Casted. In either case, a CO 2 process silica sand mold was used as a mold.

まず、No.7組成材(試験体1)を用いて機械的性質におよぼす熱処理条件の影響を調べた。   First, no. The influence of the heat treatment conditions on the mechanical properties was examined using 7 composition materials (test body 1).

熱処理試験条件と引張試験結果を表2に示す。なお、ここでは、表2に示す加熱温度から150℃以下まで冷却し、冷却開始温度から150℃までの平均冷却速度が水冷および空冷では5℃/秒以上であり、炉冷では5℃/秒未満であった。熱処理条件が本発明の範囲内である条件C、D、G、H、J、Lにおいては、時効温度が450℃以上で伸びが10%以上となり、また時効温度が650℃以下において900MPa以上の引張強さが得られ、強度と延性のバランスが良い。これは、時効温度に応じて固溶していたVおよびMoが微細な炭化物として析出し、過時効による軟化を相殺するためである。   Table 2 shows the heat treatment test conditions and the tensile test results. Here, cooling is performed from the heating temperature shown in Table 2 to 150 ° C. or lower, and the average cooling rate from the cooling start temperature to 150 ° C. is 5 ° C./second or more in water cooling and air cooling, and 5 ° C./second in furnace cooling. Was less than. In conditions C, D, G, H, J, and L in which the heat treatment conditions are within the scope of the present invention, the aging temperature is 450 ° C. or more and the elongation is 10% or more, and the aging temperature is 650 ° C. or less and 900 MPa or more. Tensile strength is obtained, and the balance between strength and ductility is good. This is because V and Mo, which were dissolved in accordance with the aging temperature, are precipitated as fine carbides to offset softening due to overaging.

一方、熱処理条件が本発明の範囲外である条件A、B、E、F、I、K、Mは、いずれも引張強さ900MPa以上と伸び10%以上を同時に満足することはできなかった。   On the other hand, none of the conditions A, B, E, F, I, K, and M in which the heat treatment conditions were outside the scope of the present invention could simultaneously satisfy the tensile strength of 900 MPa or more and the elongation of 10% or more.

次に、各組成材の試験体1を900℃で2時間保持した後に水冷し、引き続き650℃で2時間保持の時効処理を行って引張試験片(直径10mm、評点間距離50mm)とシャルピー衝撃試験片(2mmVノッチ)に機械加工し、常温で材料試験を行ってJIS規格素材の機械的性質におよぼす化学組成の影響を調べた。   Next, the specimen 1 of each composition was held at 900 ° C. for 2 hours and then cooled with water, followed by aging treatment at 650 ° C. for 2 hours to obtain a tensile test piece (diameter 10 mm, distance between grades 50 mm) and Charpy impact. A test piece (2 mm V notch) was machined and a material test was performed at room temperature to examine the influence of chemical composition on the mechanical properties of JIS standard materials.

試験体1の材料試験結果を表3に示す。No.1〜11は本発明鋳鋼であり、いずれも900MPa以上の引張強さと10%以上の伸びおよび27J以上の室温衝撃吸収エネルギーを同時に満足する鋳鋼となっていることが確認された。一方、No.12〜21で示される比較材は成分組成が本発明の範囲外であるため、以下に詳述するように、所望の特性を満たせない結果となった。   Table 3 shows the material test results of the test body 1. No. Nos. 1 to 11 are cast steels of the present invention, all of which were confirmed to be cast steels that simultaneously satisfy a tensile strength of 900 MPa or more, an elongation of 10% or more, and a room temperature impact absorption energy of 27 J or more. On the other hand, no. Since the comparative material shown by 12-21 has a component composition outside the scope of the present invention, as described in detail below, the desired properties were not satisfied.

No.12、14、16、20の引張強さは900MPa以上であるが、それぞれC量、Cu量、V+0.53×Moの量、炭素当量が多過ぎたため伸びが10%未満で、かつ室温衝撃吸収エネルギーが27J未満であった。また、No.21はCが、No.13はCuが、No.15はV+0.53×Moがそれぞれ本発明範囲より低かったため引張強さが不足した。 No. The tensile strength of 12, 14, 16, and 20 is 900 MPa or more, but the C amount, Cu amount, V + 0.53 × Mo amount, and carbon equivalent are too much, so the elongation is less than 10%, and room temperature shock absorption The energy was less than 27J. No. 21 is C. No. 13 is Cu. No. 15 had insufficient tensile strength because V + 0.53 × Mo was lower than the range of the present invention.

No.17はNiが本発明範囲より少ないため、室温衝撃吸収エネルギーが27J未満であった。No.18、No.19は元素単独では本発明範囲の組成であるが、No.18はCa≧S×2.5を満足せず、No.19はCa≦S×4.5を満足せず過剰であったためともに伸びおよび室温衝撃吸収エネルギーが不足した。   No. Since No. 17 had less Ni than the range of the present invention, room temperature impact absorption energy was less than 27J. No. 18, no. No. 19 is a composition within the scope of the present invention when the element is used alone. No. 18 does not satisfy Ca ≧ S × 2.5. No. 19 did not satisfy Ca ≦ S × 4.5 and was excessive, so that both the elongation and room temperature shock absorption energy were insufficient.

次に、No.10組成材の試験体2を900℃で2時間保持した後に水冷し、引き続き650℃で2時間保持の時効処理を行って所定位置から素材を切り出し、引張試験片(直径10mm、評点間距離50mm)とシャルピー衝撃試験片(2mmVノッチ)に機械加工し、常温で材料試験を行って機械的性質におよぼす素材肉厚の影響を調べた。   Next, no. Ten specimens of composition 2 were held at 900 ° C. for 2 hours, then cooled with water, subsequently subjected to aging treatment at 650 ° C. for 2 hours to cut out the material from a predetermined position, and a tensile test piece (diameter 10 mm, distance between scores 50 mm) ) And a Charpy impact test piece (2 mmV notch), and a material test was performed at room temperature to examine the influence of the material thickness on the mechanical properties.

肉厚と機械的性質の関係を調べた結果を表4に示す。この表に示すように、肉厚200mmにおいても、900MPa以上の引張強さと10%以上の伸びおよび27J以上の室温衝撃吸収エネルギーを同時に満足する鋳鋼となっている。   Table 4 shows the results of examining the relationship between the wall thickness and the mechanical properties. As shown in this table, even at a wall thickness of 200 mm, the cast steel simultaneously satisfies a tensile strength of 900 MPa or more, an elongation of 10% or more, and a room temperature impact absorption energy of 27 J or more.

No.10組成材の試験体3を900℃で2時間保持した後に水冷し、引き続き650℃で2時間保持の時効処理を行い、図2に示す開先形状の溶接試験片に機械加工した。この溶接試験片を用いて表5の溶接条件で突合せ継手溶接を実施した。   No. Ten specimens of composition 3 were held at 900 ° C. for 2 hours, then cooled with water, subsequently subjected to aging treatment at 650 ° C. for 2 hours, and machined into a welded specimen having a groove shape shown in FIG. Butt joint welding was carried out using the weld specimens under the welding conditions shown in Table 5.

溶接のままの状態で溶接継手付近のマクロ組織を観察した結果を図3に示す。この図に示すように、割れ等の溶接欠陥は認められず、良好な溶接性を有することが確認された。   FIG. 3 shows the result of observing the macro structure near the weld joint in the state of welding. As shown in this figure, no welding defects such as cracks were observed, and it was confirmed that the film had good weldability.

図2に示す溶接継手部が引張試験片平行部中央になるように、また、溶接熱影響部が衝撃試験片の切欠き位置となるように素材を切り出し、引張試験片(直径10mm、評点間距離50mm)とシャルピー衝撃試験片(2mmVノッチ)に機械加工した。常温で溶接部の機械的性質を調べ、溶接性を評価した。   The material is cut out so that the weld joint shown in FIG. 2 is in the center of the parallel part of the tensile test piece and the weld heat affected zone is at the notch position of the impact test piece, and the tensile test piece (diameter 10 mm, between the scores) Distance 50 mm) and Charpy impact test piece (2 mm V notch). The weld properties were evaluated by examining the mechanical properties of the weld at room temperature.

表6に示すように破断位置は母材ではなく溶接金属であり、母材の強度低下は認められなかった。また、衝撃値の劣化も認められなかった。   As shown in Table 6, the fracture position was not the base metal but the weld metal, and no reduction in strength of the base metal was observed. Moreover, no deterioration of the impact value was observed.

Claims (5)

質量%で、
C :0.05〜0.2%、
Si:0.1〜0.5%、
Mn:0.5〜1.5%、
P :0.015%以下、
S :0.015%以下、
Cu:1.5〜3%、
Ni:0.5〜1.5%、
Mo:0.3〜0.5%、
V :0.1〜0.25%、
Ca:0.01〜0.05%
を含有し、かつ
CaおよびSの含有量が質量%で
S×2.5≦Ca≦S×4.5
の関係を満足し、
MoおよびVの含有量が質量%で
0.3%≦V+0.53×Mo≦0.4%
の関係を満足し、
残部がFeおよび不可避的不純物からなることを特徴とする高強度鋳鋼材料。
% By mass
C: 0.05 to 0.2%
Si: 0.1 to 0.5%,
Mn: 0.5 to 1.5%
P: 0.015% or less,
S: 0.015% or less,
Cu: 1.5-3%,
Ni: 0.5 to 1.5%,
Mo: 0.3 to 0.5%,
V: 0.1-0.25%,
Ca: 0.01 to 0.05%
And the content of Ca and S is mass% S × 2.5 ≦ Ca ≦ S × 4.5
Satisfied with the relationship
When the content of Mo and V is mass%, 0.3% ≦ V + 0.53 × Mo ≦ 0.4%
Satisfied with the relationship
A high-strength cast steel material characterized in that the balance consists of Fe and inevitable impurities.
前記CaをNi−Ca合金によって添加することを特徴とする請求項1に記載の高強度鋳鋼材料。 The high-strength cast steel material according to claim 1, wherein the Ca is added by a Ni-Ca alloy. C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で示される炭素当量の値が、質量%で0.6%以下であることを特徴とする請求項1または請求項2に記載の高強度鋳鋼材料。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
The high-strength cast steel material according to claim 1, wherein a carbon equivalent value represented by the formula is 0.6% or less by mass%.
肉厚が200mm以下で、900MPa以上の引張強さと、10%以上の伸びと、27J以上の室温衝撃吸収エネルギーを同時に満足することを特徴とする請求項1から請求項3のいずれか1項に記載の高強度鋳鋼材料。   The wall thickness is 200 mm or less, the tensile strength of 900 MPa or more, the elongation of 10% or more, and the room temperature shock absorption energy of 27 J or more are satisfied at the same time. The high-strength cast steel material described. 請求項1から請求項3のいずれか1項に記載の成分組成を有する鋳鋼素材を、850〜1000℃で加熱後、その温度から150℃まで、平均冷却速度5℃/秒以上の速度で冷却し、450〜650℃で1〜2時間の時効処理を施すことを特徴とする高強度鋳鋼材料の製造方法。   A cast steel material having the component composition according to any one of claims 1 to 3 is heated at 850 to 1000 ° C, and then cooled from the temperature to 150 ° C at an average cooling rate of 5 ° C / second or more. And aging treatment at 450 to 650 ° C. for 1 to 2 hours.
JP2014001342A 2013-01-16 2014-01-08 High strength cast steel material and manufacturing method thereof Active JP6296797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001342A JP6296797B2 (en) 2013-01-16 2014-01-08 High strength cast steel material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013005358 2013-01-16
JP2013005358 2013-01-16
JP2014001342A JP6296797B2 (en) 2013-01-16 2014-01-08 High strength cast steel material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014156652A JP2014156652A (en) 2014-08-28
JP6296797B2 true JP6296797B2 (en) 2018-03-20

Family

ID=51577708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001342A Active JP6296797B2 (en) 2013-01-16 2014-01-08 High strength cast steel material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6296797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921716B (en) * 2022-03-18 2023-03-17 中国船舶重工集团公司第七二五研究所 Structural Cu aging type high-strength cast steel and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842720B2 (en) * 2002-03-20 2006-11-08 株式会社神戸製鋼所 Cast steel for welding with excellent toughness
JP4790512B2 (en) * 2006-06-29 2011-10-12 日本鋳造株式会社 Structural high-strength cast steel

Also Published As

Publication number Publication date
JP2014156652A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5892289B2 (en) Manufacturing method of pearlite rail
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
KR101894426B1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP5445723B1 (en) Ultra high strength steel plate for welding
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP7016345B2 (en) Microalloy steel and its steel production method
JP6418418B2 (en) Steel material for large heat input welding
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP6296797B2 (en) High strength cast steel material and manufacturing method thereof
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP6153747B2 (en) Structural high-strength cast steel
JP4790512B2 (en) Structural high-strength cast steel
JP2016056454A (en) Method for producing thick high strength steel plate excellent in cold workability
JP4828284B2 (en) 60 kg steel excellent in weldability and weld heat-affected zone toughness and method for producing the same
KR20150124811A (en) Steel sheet for line pipe and method of manufacturing the same
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR101797369B1 (en) Steel for pressure vessel and method for manufacturing the same
KR20140141840A (en) Steel and method of manufacturing the same
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
JPH0835036A (en) Cast and forged steel product for building construction, excellent in refractoriness
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR101546147B1 (en) High strength steel plate and method for manufacturing the same
KR20140072246A (en) Steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250