JP2021143354A - Martensitic stainless steel for laser welding - Google Patents

Martensitic stainless steel for laser welding Download PDF

Info

Publication number
JP2021143354A
JP2021143354A JP2020040805A JP2020040805A JP2021143354A JP 2021143354 A JP2021143354 A JP 2021143354A JP 2020040805 A JP2020040805 A JP 2020040805A JP 2020040805 A JP2020040805 A JP 2020040805A JP 2021143354 A JP2021143354 A JP 2021143354A
Authority
JP
Japan
Prior art keywords
less
stainless steel
laser welding
corrosion resistance
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020040805A
Other languages
Japanese (ja)
Other versions
JP7474077B2 (en
Inventor
光司 高野
Koji Takano
光司 高野
雅之 東城
Masayuki Tojo
雅之 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2020040805A priority Critical patent/JP7474077B2/en
Publication of JP2021143354A publication Critical patent/JP2021143354A/en
Application granted granted Critical
Publication of JP7474077B2 publication Critical patent/JP7474077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a martensitic stainless steel that has excellent weld crack resistance, corrosion resistance, and high hardness property of a laser weld-zone.SOLUTION: Provided is a martensitic stainless steel for laser welding that has a chemical composition containing, in mass%, C: 0.15 to 0.60%, Si: 0.1 to 3.0%, Mn: 0.1 to 5.0%, S: 0.01% or less, P: 0.05% or less, Ni: 0.1 to 5.0% or less, Cr: 10.5 to 16.0%, N: 0.01 to 0.15%, and Al: 0.002 to 1.0%, containing one or more of Mo: 0.05 to 3.0% and W: 0.05 to 3.0%, containing one or more of V: 0.01 to 1.0% and Nb: 0.01 to 0.45%, and the balance being Fe and unavoidable impurities, and in which the D value is 0 to 10 and the M value is 0.3 to 5.5.SELECTED DRAWING: None

Description

本発明は、レーザー溶接される高硬度・高耐食性材に関して、溶接割れがなく高硬度・高耐食性を具備した、レーザー溶接用のマルテンサイト系ステンレス鋼に関するものである。 The present invention relates to a martensitic stainless steel for laser welding, which has high hardness and high corrosion resistance without welding cracks with respect to a high hardness and high corrosion resistance material to be laser welded.

500Hv以上の高硬度・高耐食性マルテンサイト系ステンレス鋼は、耐摩耗性,疲労強度、耐食性等、優れた耐久性特性からインフラや自動車等の塩化物や粗悪燃料が存在する厳しい腐食環境で使用される部品で幅広く使用されるようになってきた。これまで冷間成形や熱間成型で部品に使用されてきたが、近年、溶接部品でも適用が検討されている。特に、近年では鋼部品の部品加工において生産性が高いレーザー溶接が多用されるようになっており、高硬度・高耐食性マルテンサイト系ステンレス鋼においてもレーザー溶接のニーズが高い。しかしながら、溶接割れを回避しながら、溶接部および溶接HAZ部の耐食性と高硬度を維持することが難しい。 Martensitic stainless steel with high hardness and high corrosion resistance of 500 Hv or more is used in severe corrosion environments where chlorides and inferior fuels such as infrastructure and automobiles are present due to its excellent durability characteristics such as wear resistance, fatigue strength, and corrosion resistance. It has come to be widely used in various parts. Until now, it has been used for parts in cold molding and hot molding, but in recent years, its application to welded parts has also been studied. In particular, in recent years, laser welding with high productivity has been widely used in the processing of steel parts, and there is a high need for laser welding even for martensitic stainless steel with high hardness and high corrosion resistance. However, it is difficult to maintain the corrosion resistance and high hardness of the welded portion and the welded HAZ portion while avoiding weld cracks.

マルテンサイト系ステンレス鋼のレーザー溶接について、溶接部の欠陥低減および靭性向上を目的にレーザー溶接方法の適正化および溶接後の切削の技術が提案されている(特許文献1)。しかしながら、溶接部の耐久性に関する技術の開示がない。 Regarding laser welding of martensitic stainless steel, a technique of optimizing the laser welding method and cutting after welding has been proposed for the purpose of reducing defects and improving toughness of the welded portion (Patent Document 1). However, there is no disclosure of technology regarding the durability of welds.

マルテンサイト系ステンレス鋼のレーザー溶接部の耐食性について、約13%Crマルテンサイト系ステンレス鋼のC含有量を0.05%以下としてレーザー溶接条件を最適化することにより、レーザー溶接にて溶接割れなく、溶接部の耐食性を確保できることが開示されている(特許文献2,3)。しかしながら、C量が低く、500Hv以上の高硬度状態での耐食性確保を予見できない。 Regarding the corrosion resistance of the laser welded part of martensite-based stainless steel, by optimizing the laser welding conditions with the C content of about 13% Cr martensite-based stainless steel set to 0.05% or less, welding cracks will not occur during laser welding. , It is disclosed that the corrosion resistance of the welded portion can be ensured (Patent Documents 2 and 3). However, the amount of C is low, and it is not possible to foresee ensuring corrosion resistance in a high hardness state of 500 Hv or more.

一方、マルテンサイト系ステンレス鋼の成分調整と共にδフェライトを抑制して界面に析出するCr炭化物の析出を抑制する組織制御により高硬度と高耐食性を両立できることを提案している(特許文献4)。しかしながら、レーザー溶接にてδフェライトを抑制すると溶接割れが発生する。 On the other hand, it has been proposed that both high hardness and high corrosion resistance can be achieved by adjusting the composition of martensitic stainless steel and controlling the structure by suppressing δ-ferrite and suppressing the precipitation of Cr carbides deposited on the interface (Patent Document 4). However, if δ-ferrite is suppressed by laser welding, welding cracks occur.

特許第3797105号公報Japanese Patent No. 3797105 特許第3033483号公報Japanese Patent No. 3033483 特許第3064851号公報Japanese Patent No. 3064851 特許第3340225号公報Japanese Patent No. 3340225

本発明者は、上記の背景技術に記載の公知の技術または組み合わせでは、塩化物や酸が存在する厳しい腐食環境下で使用されるレーザー溶接された500Hv以上の高硬度マルテンサイト系ステンレス鋼製部品において、溶接割れを抑制して高硬度と耐食性を両立することができないことを知見した。 In the known techniques or combinations described in the above background techniques, the present inventor has laser welded high hardness martensitic stainless steel parts of 500 Hv or higher used in a severe corrosive environment in the presence of chlorides and acids. It was found that it is not possible to suppress welding cracks and achieve both high hardness and corrosion resistance.

本発明の解決すべき課題は、塩化物や粗悪燃料が存在する腐食環境の厳しい環境下で使用されるマルテンサイト系ステンレス鋼製部品において、レーザー溶接で溶接割れなく所定形状の部品に加工でき、溶接部近傍を含めて高硬度と高耐食性を付与して耐久性を改善することのできる、レーザー溶接用のマルテンサイト系ステンレス鋼を提供することを課題とするものである。 The problem to be solved by the present invention is that a martensite-based stainless steel part used in a harsh environment in which chloride and inferior fuel are present can be processed into a part having a predetermined shape by laser welding without welding cracks. An object of the present invention is to provide a martensite-based stainless steel for laser welding, which can impart high hardness and high corrosion resistance including the vicinity of a welded portion to improve durability.

本発明者等は、上記課題を解決するために500Hv以上の高硬度が得られるマルテンサイト系ステンレス鋼において種々検討した結果、レーザー溶接時にδフェライトが所定量生成するように成分調整することで高硬度材でもレーザー溶接時に割れなく接合が可能になり、且つ、Mo,W,Nb,V量を適量含有させることで溶接HAZ部の軟化を抑制して高硬度を確保し、溶接部のCr炭窒化物の析出を抑制してレーザー溶接部近傍の高耐食性を著しく向上する知見を得た。すわなち、レーザー溶接部において、耐溶接割れ、500Hv以上の高硬度、耐塩化物環境下での耐食性の全てを満足するものである。 As a result of various studies on martensite-based stainless steel capable of obtaining a high hardness of 500 Hv or more in order to solve the above problems, the present inventors have adjusted the components so that a predetermined amount of δ ferrite is generated during laser welding. Even hard materials can be joined without cracking during laser welding, and by containing appropriate amounts of Mo, W, Nb, and V, softening of the welded HAZ portion is suppressed to ensure high hardness, and Cr coal in the welded portion. We obtained the findings that the precipitation of nitrides is suppressed and the high corrosion resistance near the laser weld is significantly improved. That is, the laser welded portion satisfies all of the welding crack resistance, the high hardness of 500 Hv or more, and the corrosion resistance in a chloride resistant environment.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、
C:0.15〜0.60%、
Si:0.1〜3.0%、
Mn:0.1〜5.0%、
S:0.01%以下、
P:0.05%以下、
Ni:0.1〜5.0%、
Cr:10.5〜16.0%、
N:0.01〜0.15%、
Al:0.002〜1.0%を含有し、
Mo:0.05〜3.0%、
W:0.05〜3.0%
の内、1種類以上を含有し、
V:0.01〜1.0%、
Nb:0.01〜0.45%
の内、1種類以上を含有し、
残部Feおよび不純物からなる化学成分を有し、
(a)式で表されるD値が0〜10であり、
(b)式で表されるM値が0.3〜5.5であることを特徴とするレーザー溶接用のマルテンサイト系ステンレス鋼。
D=(Cr+0.5Si+2.5Al)−(25C+18N+Ni+0.1Mn)+(1.2Mo+2W+3V+3Nb)−6 ・・・・・・・・・(a)
M=Mo+W+10(V+Nb) ・・・・・・・・・・・(b)
上記式で、元素記号は当該元素の含有量(質量%)を意味する。
(2)前記Feの一部に変えて、更に質量%で、
Cu:3.0%以下、
Co:3.0%以下
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする前記(1)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
(3)前記Feの一部に変えて、更に質量%で、
Ti:0.45%以下、
Ta:0.45%以下の内、1種類以上を含有することを特徴とする前記(1)または(2)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
(4)前記Feの一部に変えて、更に質量%で、
Mg:0.01%以下、
Ca:0.01%以下、
Hf:0.01%以下、
REM:0.05%以下の内、1種類以上を含有することを特徴とする前記(1)〜(3)に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) By mass%
C: 0.15 to 0.60%,
Si: 0.1 to 3.0%,
Mn: 0.1 to 5.0%,
S: 0.01% or less,
P: 0.05% or less,
Ni: 0.1 to 5.0%,
Cr: 10.5 to 16.0%,
N: 0.01-0.15%,
Al: Containing 0.002 to 1.0%,
Mo: 0.05-3.0%,
W: 0.05 to 3.0%
Contains one or more of
V: 0.01-1.0%,
Nb: 0.01 to 0.45%
Contains one or more of
It has a chemical component consisting of the balance Fe and impurities,
The D value represented by the equation (a) is 0 to 10, and the value is 0 to 10.
A martensitic stainless steel for laser welding, characterized in that the M value represented by the formula (b) is 0.3 to 5.5.
D = (Cr + 0.5Si + 2.5Al)-(25C + 18N + Ni + 0.1Mn) + (1.2Mo + 2W + 3V + 3Nb) -6 ... (a)
M = Mo + W + 10 (V + Nb) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (B)
In the above formula, the element symbol means the content (mass%) of the element.
(2) By changing to a part of the Fe and further by mass%,
Cu: 3.0% or less,
Co: 3.0% or less B: 0.01% or less,
Sn: 0.3% or less,
Sb: The martensitic stainless steel for laser welding according to (1) above, which contains one or more of 0.3% or less.
(3) By changing to a part of the Fe and further by mass%,
Ti: 0.45% or less,
Ta: The martensitic stainless steel for laser welding according to (1) or (2) above, which contains one or more of 0.45% or less.
(4) By changing to a part of the Fe and further by mass%,
Mg: 0.01% or less,
Ca: 0.01% or less,
Hf: 0.01% or less,
REM: The martensitic stainless steel for laser welding according to (1) to (3) above, which contains one or more of 0.05% or less.

本発明によれば、マルテンサイト系ステンレス鋼において、金属組織と析出物の制御のために適正な成分調整を施すことで、レーザー溶接時の溶接割れを抑制し、溶接部近傍の高硬度と高耐食性を大幅に改善でき、レーザー溶接で加工される耐久性部品に好適な材料を提供する。 According to the present invention, in martensite-based stainless steel, by appropriately adjusting the components for controlling the metallographic structure and deposits, welding cracks during laser welding are suppressed, and high hardness and high vicinity of the welded portion are achieved. A material that can significantly improve corrosion resistance and is suitable for durable parts processed by laser welding is provided.

以下に本発明の各要件について説明する。なお、以下の説明における(%)は特に断りのない限り、質量(%)である。 Each requirement of the present invention will be described below. In the following description, (%) is mass (%) unless otherwise specified.

《鋼の必須成分組成》
公知で開示されている低C系のマルテンサイト系ステンレス鋼では工業的に耐摩耗性や耐疲労強度を確保できない。本発明では、一般的に耐摩耗性や耐疲労強度に有効な500Hv以上の部品が対象であり、焼入れ状態で少なくとも500Hv以上を発揮する高硬度マルテンサイト系ステンレス鋼がベースとなる。
<< Essential composition of steel >>
The publicly disclosed low-C martensitic stainless steel cannot industrially secure wear resistance and fatigue resistance. In the present invention, parts having 500 Hv or more, which are generally effective in abrasion resistance and fatigue resistance, are targeted, and high-hardness martensitic stainless steel exhibiting at least 500 Hv or more in a hardened state is used as a base.

Cは、母材の焼入れ後、またはレーザー溶接部や溶接HAZ部の硬さを500Hv以上にするため0.15%以上含有させる。しかしながら、0.60%を超えて添加すると粗大なCr炭化物が生成して、溶接割れ性や耐食性を劣化させる。そのため、0.60%以下に限定する。好ましくは、0.20%超、0.50%以下である。 C is contained in an amount of 0.15% or more after quenching of the base metal, or in order to make the hardness of the laser welded portion and the welded HAZ portion 500 Hv or more. However, if it is added in excess of 0.60%, coarse Cr carbides are generated, which deteriorates weld crackability and corrosion resistance. Therefore, it is limited to 0.60% or less. Preferably, it is more than 0.20% and 0.50% or less.

Nは、レーザー溶接HAZ部の軟化を抑制して耐食性を確保するために0.01%以上含有させる。しかしながら、0.15%を超えて含有させるとブローホールのために溶接割れ(溶接欠陥)が生じる。そのため、0.15%以下に限定する。好ましくは、0.02〜0.12%の範囲である。 N is contained in an amount of 0.01% or more in order to suppress softening of the laser welded HAZ portion and ensure corrosion resistance. However, if it is contained in excess of 0.15%, welding cracks (welding defects) occur due to blow holes. Therefore, it is limited to 0.15% or less. It is preferably in the range of 0.02 to 0.12%.

Siは、レーザー溶接部の溶融部での脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.1%以上含有させる。しかしながら、3.0%を超えて含有させると脆化して溶接割れ(溶接欠陥)が生じる。そのため、3.0%以下に限定する。好ましくは、0.2〜2.0%の範囲である。 Si is contained in an amount of 0.1% or more in order to promote deoxidation in the molten portion of the laser welded portion and suppress welding cracks (welding defects). However, if it is contained in excess of 3.0%, it becomes brittle and weld cracks (welding defects) occur. Therefore, it is limited to 3.0% or less. It is preferably in the range of 0.2 to 2.0%.

Mnは、レーザー溶接部の溶融部での脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.1%以上含有させる。しかしながら、5.0%を超えて添加すると残留オーステナイトが生成して溶接部の高硬度500Hv以上を確保できなくなる。そのため、5.0%以下に限定する。好ましくは、0.2〜3.0%である。 Mn is contained in an amount of 0.1% or more in order to promote deoxidation in the molten portion of the laser welded portion and suppress welding cracks (welding defects). However, if it is added in excess of 5.0%, retained austenite is generated and it becomes impossible to secure a high hardness of 500 Hv or more in the welded portion. Therefore, it is limited to 5.0% or less. Preferably, it is 0.2 to 3.0%.

Sは、溶接割れを助長し、耐食性を劣化させる元素であるため、含有量を0.01%以下に限定する。好ましくは、0.007%以下である。 Since S is an element that promotes welding cracks and deteriorates corrosion resistance, the content is limited to 0.01% or less. Preferably, it is 0.007% or less.

Pは、粒界偏析して溶接割れ性を助長する元素であるため、含有量を0.05%以下に限定する。好ましくは、0.035%以下である。 Since P is an element that segregates grain boundaries and promotes weld crackability, its content is limited to 0.05% or less. Preferably, it is 0.035% or less.

Niは、マルテンサイト系ステンレス鋼の靭性を向上させて、溶接割れを抑制するため0.1%以上含有させる。しかしながら、5.0%を超えて添加すると残留オーステナイトが生成して溶接部の高硬度500Hv以上を確保できなくなる。そのため、5.0%以下に限定する。好ましくは、0.2〜3.0%である。 Ni is contained in an amount of 0.1% or more in order to improve the toughness of martensitic stainless steel and suppress welding cracks. However, if it is added in excess of 5.0%, retained austenite is generated and it becomes impossible to secure a high hardness of 500 Hv or more in the welded portion. Therefore, it is limited to 5.0% or less. Preferably, it is 0.2 to 3.0%.

Crは、ステンレス鋼の耐食性の機能を得るための基本元素であり、10.5%以上を含有させる。しかしながら、16.0%を超えて含有させると、溶接部の高硬度500Hv以上を確保できなくなる。そのため、16.0%以下に限定する。好ましくは、11.0〜15.0%である。 Cr is a basic element for obtaining the function of corrosion resistance of stainless steel, and contains 10.5% or more. However, if it is contained in excess of 16.0%, it becomes impossible to secure a high hardness of 500 Hv or more in the welded portion. Therefore, it is limited to 16.0% or less. Preferably, it is 11.0 to 15.0%.

Alは、レーザー溶接部の溶融部の脱酸を促進して溶接割れ(溶接欠陥)を抑制するために0.002%以上含有させる。しかしながら、1.0%を超えて含有させると粗大介在物生成のために溶接割れ(溶接欠陥)が生じる。そのため、1.0%以下に限定する。好ましくは0.005〜0.2の範囲である。 Al is contained in an amount of 0.002% or more in order to promote deoxidation of the molten portion of the laser welded portion and suppress welding cracks (welding defects). However, if the content exceeds 1.0%, welding cracks (welding defects) occur due to the formation of coarse inclusions. Therefore, it is limited to 1.0% or less. It is preferably in the range of 0.005 to 0.2.

Mo、Wは、耐食性を向上させる元素であり、また、レーザー溶接後のCr炭窒化物の生成を抑制して耐食性を確保するために、Mo、Wの1種類以上をそれぞれ0.05%以上含有させる。しかしながら、3.0%を超えて含有させると靭性が劣化して溶接割れを助長させる。そのため、3.0%以下に限定する。 Mo and W are elements that improve corrosion resistance, and in order to suppress the formation of Cr carbonitride after laser welding and ensure corrosion resistance, one or more types of Mo and W are each 0.05% or more. Incorporate. However, if it is contained in excess of 3.0%, the toughness deteriorates and weld cracking is promoted. Therefore, it is limited to 3.0% or less.

V,Nbは、レーザー溶接後のCr炭窒化物の生成を抑制して耐食性を確保するために、V,Nbの1種類以上をそれぞれ0.01%以上含有させる。しかしながら、Vは1.0%を超えて、Nbは0.45%を含有させると粗大析出部が生成して溶接割れを助長させる。そのため、Vは1.0%以下、Nbは0.45%以下に限定する。 V and Nb contain one or more of V and Nb in an amount of 0.01% or more, respectively, in order to suppress the formation of Cr carbonitride after laser welding and ensure corrosion resistance. However, when V exceeds 1.0% and Nb contains 0.45%, coarse precipitates are formed and weld cracks are promoted. Therefore, V is limited to 1.0% or less, and Nb is limited to 0.45% or less.

前記(a)式で表されるD値は、レーザー溶接時の溶融・急冷凝固部のδフェライト生成量に影響を及ぼし、P、S等の不純物をトラップするδフェライトを生成させて溶接割れを防止するために0以上とする。しかしながら、10を超えると溶接部の高硬度500Hv以上を確保できなくなる。そのため、10以下に限定する。好ましくは2.0〜7.0の範囲である。 The D value represented by the above equation (a) affects the amount of δ-ferrite produced in the molten / quenching solidified portion during laser welding, and δ-ferrite that traps impurities such as P and S is generated to generate weld cracks. Set to 0 or more to prevent. However, if it exceeds 10, it becomes impossible to secure a high hardness of 500 Hv or more of the welded portion. Therefore, it is limited to 10 or less. It is preferably in the range of 2.0 to 7.0.

前記(b)式で表されるM値は、レーザー溶接時のCr炭窒化物の生成量に影響を及ぼす。Cr炭窒化物の生成を抑制して耐食性を確保するためにM値を0.3以上とする。しかしながら、4.0を超えると靭性が劣化して溶接割れを助長させる。そのため、5.5以下に限定する。好ましくは、0.5〜4.0の範囲である。 The M value represented by the above equation (b) affects the amount of Cr carbonitride produced during laser welding. The M value is set to 0.3 or more in order to suppress the formation of Cr carbonitride and secure the corrosion resistance. However, if it exceeds 4.0, the toughness deteriorates and weld cracking is promoted. Therefore, it is limited to 5.5 or less. Preferably, it is in the range of 0.5 to 4.0.

《選択的含有成分》
本発明のステンレス鋼は、上述してきた元素以外は、Feおよび不純物からなる化学成分から構成される。さらに、前記成分組成に加え、Feの一部に替えて、選択的に以下に示す元素を含有しても良い。
<< Selective ingredients >>
The stainless steel of the present invention is composed of chemical components composed of Fe and impurities other than the elements described above. Further, in addition to the above-mentioned component composition, the following elements may be selectively contained in place of a part of Fe.

Cuは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、3.0%を超えて含有させても、その効果は飽和し、残留オーステナイトが生成して溶接部の500Hv以上の高硬度が確保できなくなるばかりか、溶接割れが劣化する。そのため、含有量は3.0%以下とする。好ましくは、1.5%以下である。 Cu may be contained if necessary in order to improve the corrosion resistance of the product. However, even if the content exceeds 3.0%, the effect is saturated, retained austenite is generated, and not only the high hardness of 500 Hv or more of the welded portion cannot be secured, but also the weld crack deteriorates. Therefore, the content is set to 3.0% or less. Preferably, it is 1.5% or less.

Coは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、それぞれ3.0%を超えて含有させても、その効果は飽和し、残留オーステナイトやフェライトが生成して溶接部の500Hv以上の高硬度を確保できなくなる。そのため、含有量は3.0%以下とする。好ましくは、2.0%以下である。 Co may be contained if necessary in order to improve the toughness and corrosion resistance of the product. However, even if each of them is contained in excess of 3.0%, the effect is saturated and retained austenite and ferrite are generated, and it becomes impossible to secure a high hardness of 500 Hv or more in the welded portion. Therefore, the content is set to 3.0% or less. Preferably, it is 2.0% or less.

Bは、製品および溶接部の靭性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.01%を超えて含有させても、その効果は飽和するし、逆に粗大なボライドを生成して溶接割れを助長し、耐食性を劣化させるため、含有量は0.01%以下とする。好ましくは、0.006%以下である。 B may be contained if necessary in order to improve the toughness of the product and the welded portion. However, even if it is contained in excess of 0.01%, the effect is saturated, and conversely, coarse bolide is generated, welding cracks are promoted, and corrosion resistance is deteriorated. Therefore, the content is 0.01% or less. And. Preferably, it is 0.006% or less.

Sn,Sbは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、それぞれ0.3%を超えて含有させても、その効果は飽和するし、溶接割れを助長するため、含有量は0.3%以下とする。好ましくは、0.1%以下である。 Sn and Sb may be contained as necessary in order to improve the corrosion resistance of the product. However, even if each content exceeds 0.3%, the effect is saturated and welding cracks are promoted, so the content is set to 0.3% or less. Preferably, it is 0.1% or less.

Tiは、靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.45%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して溶接割れを助長するため、含有量は0.45%以下とする。好ましくは、0.3%以下である。 Ti may be contained if necessary in order to improve toughness and corrosion resistance. However, even if the content exceeds 0.45%, the effect is saturated, and conversely, coarse carbonitride is generated to promote weld cracking, so the content is set to 0.45% or less. Preferably, it is 0.3% or less.

Taは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.45%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して溶接割れを助長するため、含有量は0.45%以下とする。好ましくは0.3%以下、より好ましくは、0.1%以下である。 Ta may be contained if necessary in order to improve the toughness and corrosion resistance of the product. However, even if the content exceeds 0.45%, the effect is saturated, and conversely, coarse carbonitride is generated to promote weld cracking, so the content is set to 0.45% or less. It is preferably 0.3% or less, more preferably 0.1% or less.

Mg,Ca,Hfは、脱酸生成物の熱力学的な安定度を増加して軟化焼鈍時の軟質化に効果があるため、必要に応じて含有させてもよい。しかしながら、それぞれ0.01%を超えて添加しても、その効果は飽和するし、逆に粗大な酸化物を生成して溶接割れを助長するため、含有量を0.01%以下とする。好ましくは、0.005%以下である。 Mg, Ca, and Hf may be contained as necessary because they increase the thermodynamic stability of the deoxidized product and are effective in softening during softening and annealing. However, even if each is added in excess of 0.01%, the effect is saturated, and conversely, coarse oxides are generated to promote weld cracking, so the content is set to 0.01% or less. Preferably, it is 0.005% or less.

REMは、脱酸生成物の熱力学的な安定度を増加して軟化焼鈍時の軟質化に効果があるため、必要に応じて含有させてもよい。しかしながら、0.05%を超えて添加しても、その効果は飽和するし、逆に粗大な酸化物を生成して溶接割れを助長するため、含有量を0.05%以下とする。好ましくは、0.005%以下である。REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で含有させてもよいし、混合物であってもよい。 REM may be contained as needed because it increases the thermodynamic stability of the deoxidized product and is effective in softening during softening and annealing. However, even if it is added in excess of 0.05%, the effect is saturated, and conversely, coarse oxides are generated to promote weld cracking, so the content is set to 0.05% or less. Preferably, it is 0.005% or less. REM (rare earth element) is a general term for two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu), according to a general definition. It may be contained alone or as a mixture.

本発明のステンレス鋼が含有する不純物について、代表的な不純物としては、Zn,Bi,Pb,Ge,Se,Ag,Se,Te等が挙げられ、通常、鉄鋼の製造プロセスで不純物として、0.1%程度の範囲で混入する。
不純物である酸素は鋼中で主に介在物として存在するが、通常の精錬で製造されるステンレス鋼の酸素含有レベルは0.001〜0.015%である。
また、任意添加元素について、代表的なものを上記(2)〜(5)で規定しているが、本明細書中に記載されていない元素であっても、本発明の効果を損なわない範囲で含有させることができる。
Regarding the impurities contained in the stainless steel of the present invention, typical impurities include Zn, Bi, Pb, Ge, Se, Ag, Se, Te, etc., and usually, as impurities in the steel manufacturing process, 0. Mix in the range of about 1%.
Oxygen, which is an impurity, is mainly present as an inclusion in steel, but the oxygen content level of stainless steel produced by ordinary refining is 0.001 to 0.015%.
In addition, although typical optional additive elements are specified in (2) to (5) above, even elements not described in the present specification do not impair the effects of the present invention. Can be contained in.

以上説明した本発明によれば、レーザー溶接で接合・加工される高硬度部品用として、レーザー溶接時の割れを防止し、溶接部の高硬度と耐食性を両立できるマルテンサイト系ステンレス鋼を提供できる。
なお、本発明でマルテンサイト系ステンレス鋼とは、焼入れ時のマルテンサイト変態により硬化する鋼であり、本発明においては、例えば、1050℃から空冷で焼入れした時に金属組織の7割以上がマルテンサイト組織を示し、500Hv以上に硬化する鋼であることを意味する。
According to the present invention described above, it is possible to provide a martensitic stainless steel for high-hardness parts joined and processed by laser welding, which can prevent cracking during laser welding and can achieve both high hardness and corrosion resistance of the welded portion. ..
In the present invention, the martensite-based stainless steel is a steel that is hardened by martensite transformation during quenching. In the present invention, for example, when quenching from 1050 ° C. by air cooling, 70% or more of the metal structure is martensite. It shows the structure and means that it is a steel that hardens to 500 Hv or more.

50kgの真空溶解炉にて表1に示す化学組成の鋼を1600℃で溶解した後、鋳型に鋳造した。その後、1200℃加熱後に3mm厚の板に熱間圧延して750℃―3hの軟化焼鈍を施し、2mm厚に冷間圧延を行い、40×40×2mm厚の試験片を切り出して表層#500研磨で仕上げ、レーザー溶接を実施した。レーザー溶接は、2枚の試験片の40mm片を突合せて接触面にファイバーレーザ(スポット径0.6mm,2.0kW,Arシールド)を1m/minの条件で照射して40mm長さを接合した。その後、溶接割れの有無、硬さ,耐食性を評価した。表2に評価結果について示す。 The steel having the chemical composition shown in Table 1 was melted at 1600 ° C. in a 50 kg vacuum melting furnace and then cast into a mold. Then, after heating at 1200 ° C., a plate having a thickness of 1200 ° C. is hot-rolled and softened and annealed at 750 ° C. for 3 hours, and then cold-rolled to a thickness of 2 mm. Finished by polishing and laser welded. In laser welding, two 40 mm pieces of test pieces were butted against each other, and a fiber laser (spot diameter 0.6 mm, 2.0 kW, Ar shield) was irradiated on the contact surface under the condition of 1 m / min to join a 40 mm length. .. After that, the presence or absence of weld cracks, hardness, and corrosion resistance were evaluated. Table 2 shows the evaluation results.

Figure 2021143354
Figure 2021143354

Figure 2021143354
Figure 2021143354

Figure 2021143354
Figure 2021143354

Figure 2021143354
Figure 2021143354

Figure 2021143354
Figure 2021143354

溶接割れの評価は、拡大鏡で溶接部近傍を観察して割れ長さを測定して評価した。割れ長さの総長が1mm未満の場合を〇、0.5mm未満の場合を◎とし、1mm以上の場合を×として判断した。 Weld cracks were evaluated by observing the vicinity of the weld with a magnifying glass and measuring the crack length. When the total length of the crack was less than 1 mm, it was judged as ◯, when it was less than 0.5 mm, it was judged as ⊚, and when it was 1 mm or more, it was judged as x.

溶接部近傍の硬さの評価は、溶接長手方向に垂直断面を検査面として埋め込み研磨し、溶融部、溶接HAZ部(溶融ラインから0.2,0.4mm,0.6mm部)のHv硬さ(荷重200g)を測定した。溶接HAZ部の硬さは3測定箇所の平均値とした。 To evaluate the hardness near the weld, the cross section perpendicular to the longitudinal direction of the weld is embedded and polished as an inspection surface, and the Hv hardness of the melt and the weld HAZ (0.2, 0.4 mm, 0.6 mm from the weld line) is hardened. (Load 200 g) was measured. The hardness of the welded HAZ portion was taken as the average value of the three measurement points.

耐食性の評価は、レーザー溶接部の表層を#500研磨してJIS Z 2371の塩水噴霧試験を48h実施して発銹状況で評価した。無発銹の場合を◎、点錆発銹の場合を〇、流れ錆発銹の場合を×として評価した。 The corrosion resistance was evaluated in the rusting condition by polishing the surface layer of the laser welded portion with # 500 and performing a salt spray test of JIS Z 2371 for 48 hours. The case of no rust was evaluated as ⊚, the case of spot rust was evaluated as 〇, and the case of flowing rust was evaluated as ×.

粗大な酸化物の評価について、前記の埋込み研磨した検査面を光学顕微鏡にて観察し、長径が20μm以上の粗大な酸化物がある場合、表2の備考欄に「粗大酸化物」と記載した。 Regarding the evaluation of coarse oxides, the above-mentioned embedded and polished inspection surface was observed with an optical microscope, and when there was a coarse oxide having a major axis of 20 μm or more, it was described as “coarse oxide” in the remarks column of Table 2. ..

表2の本発明例1〜34は、いずれも溶接部の硬さが500Hv以上の高硬度を示し、優れた耐溶接割れ性,耐食性を示す。 In Examples 1 to 34 of the present invention in Table 2, the hardness of the welded portion is as high as 500 Hv or more, and excellent weld cracking resistance and corrosion resistance are exhibited.

一方、比較例1〜37は、本発明の成分範囲から外れており、500Hv以上の高硬度特性、溶接割れ性,耐食性の全てを満足することができない。 On the other hand, Comparative Examples 1 to 37 are out of the component range of the present invention, and cannot satisfy all of the high hardness characteristics of 500 Hv or more, weld cracking property, and corrosion resistance.

以上の各実施例から明らかなように、本発明により、レーザー溶接時の耐溶接割れ性とレーザー溶接部の500Hv以上の高硬度特性、耐食性に優れるレーザー溶接に好適なマルテンサイト系ステンレス鋼を提供することができ、腐食の厳しい環境下で使用される高硬度部品の耐久性を大幅に向上することができ、産業上極めて有用である。 As is clear from each of the above examples, the present invention provides a martensitic stainless steel suitable for laser welding, which has excellent weld crack resistance during laser welding, high hardness characteristics of 500 Hv or more of the laser welded portion, and corrosion resistance. It is extremely useful industrially because it can significantly improve the durability of high-hardness parts used in severely corroded environments.

Claims (4)

質量%で、
C:0.15〜0.60%、
Si:0.1〜3.0%、
Mn:0.1〜5.0%、
S:0.01%以下、
P:0.05%以下、
Ni:0.1〜5.0%、
Cr:10.5〜16.0%、
N:0.01〜0.15%、
Al:0.002〜1.0%を含有し、
Mo:0.05〜3.0%、
W:0.05〜3.0%
の内、1種類以上を含有し、
V:0.01〜1.0%、
Nb:0.01〜0.45%
の内、1種類以上を含有し、
残部Feおよび不純物からなる化学成分を有し、
(a)式で表されるD値が0〜10であり、
(b)式で表されるM値が0.3〜5.5であることを特徴とするレーザー溶接用のマルテンサイト系ステンレス鋼。
D=(Cr+0.5Si+2.5Al)−(25C+18N+Ni+0.1Mn)+(1.2Mo+2W+3V+3Nb)−6 ・・・・・・・・・・(a)
M=Mo+W+10(V+Nb) ・・・・・・・・・・・・(b)
上記式で、元素記号は当該元素の含有量(質量%)を意味する。
By mass%
C: 0.15 to 0.60%,
Si: 0.1 to 3.0%,
Mn: 0.1 to 5.0%,
S: 0.01% or less,
P: 0.05% or less,
Ni: 0.1 to 5.0%,
Cr: 10.5 to 16.0%,
N: 0.01-0.15%,
Al: Containing 0.002 to 1.0%,
Mo: 0.05-3.0%,
W: 0.05 to 3.0%
Contains one or more of
V: 0.01-1.0%,
Nb: 0.01 to 0.45%
Contains one or more of
It has a chemical component consisting of the balance Fe and impurities,
The D value represented by the equation (a) is 0 to 10, and the value is 0 to 10.
A martensitic stainless steel for laser welding, characterized in that the M value represented by the formula (b) is 0.3 to 5.5.
D = (Cr + 0.5Si + 2.5Al)-(25C + 18N + Ni + 0.1Mn) + (1.2Mo + 2W + 3V + 3Nb) -6 ... (a)
M = Mo + W + 10 (V + Nb) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (B)
In the above formula, the element symbol means the content (mass%) of the element.
前記Feの一部に変えて、更に質量%で、
Cu:3.0%以下、
Co:3.0%以下
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする請求項1に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
By changing to a part of the Fe, and further by mass%,
Cu: 3.0% or less,
Co: 3.0% or less B: 0.01% or less,
Sn: 0.3% or less,
The martensitic stainless steel for laser welding according to claim 1, wherein Sb: contains one or more of 0.3% or less.
前記Feの一部に変えて、更に質量%で、
Ti:0.45%以下、
Ta:0.45%以下の内、1種類以上を含有することを特徴とする請求項1または請求項2に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
By changing to a part of the Fe, and further by mass%,
Ti: 0.45% or less,
The martensitic stainless steel for laser welding according to claim 1 or 2, wherein Ta: contains one or more of 0.45% or less.
前記Feの一部に変えて、更に質量%で、
Mg:0.01%以下、
Ca:0.01%以下、
Hf:0.01%以下、
REM:0.05%以下の内、1種類以上を含有することを特徴とする請求項1〜請求項3のいずれか1項に記載のレーザー溶接用のマルテンサイト系ステンレス鋼。
By changing to a part of the Fe, and further by mass%,
Mg: 0.01% or less,
Ca: 0.01% or less,
Hf: 0.01% or less,
REM: The martensitic stainless steel for laser welding according to any one of claims 1 to 3, wherein the martensitic stainless steel contains one or more of 0.05% or less.
JP2020040805A 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding Active JP7474077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040805A JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040805A JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Publications (2)

Publication Number Publication Date
JP2021143354A true JP2021143354A (en) 2021-09-24
JP7474077B2 JP7474077B2 (en) 2024-04-24

Family

ID=77767072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040805A Active JP7474077B2 (en) 2020-03-10 2020-03-10 Martensitic Stainless Steels for Laser Welding

Country Status (1)

Country Link
JP (1) JP7474077B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155341A (en) 2000-11-14 2002-05-31 Nippon Steel Corp Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel
JP2006312772A (en) 2005-05-09 2006-11-16 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well
JP2017507244A (en) 2014-01-16 2017-03-16 ウッデホルムス アーベーUddeholms Ab Stainless steel and stainless steel cutting tool body
CN106319343B (en) 2016-10-10 2021-08-17 宝钢德盛不锈钢有限公司 Low-cost high-strength stainless steel and welded pipe manufacturing method thereof

Also Published As

Publication number Publication date
JP7474077B2 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP6721077B2 (en) Abrasion resistant steel plate and method for producing abrasion resistant steel plate
JP6437062B2 (en) Duplex stainless steel and clad steel for clad steel
JP5145805B2 (en) Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
US10793937B2 (en) Steel for induction hardening
JP6027302B2 (en) High strength tempered spring steel
JPWO2013080518A1 (en) Ferritic stainless steel
TW201348463A (en) Ferritic stainless steel
KR20200103821A (en) Steel for parts subjected to carburization treatment
JP2013095928A (en) High tensile strength steel sheet excellent in toughness and manufacturing method thereof
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP6728612B2 (en) Bearing parts
WO2023022130A1 (en) Precipitation hardening martensitic stainless steel having excellent weldability, and method for producing same
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP7474077B2 (en) Martensitic Stainless Steels for Laser Welding
JP2019127633A (en) Clad steel plate and method for producing the same
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP6265048B2 (en) Case-hardened steel
JP7305379B2 (en) Metal wire for welding additive manufacturing by metal 3D printer
JP6816729B2 (en) Clad steel sheet and its manufacturing method
JP6750409B2 (en) Steel parts
JP2021038439A (en) Ferritic stainless steel bar, automobile fuel system component and automobile fuel system member
JP2019127630A (en) Clad steel plate and method for producing the same
JP2019127631A (en) Clad steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150