JP7468610B2 - Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate - Google Patents

Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate Download PDF

Info

Publication number
JP7468610B2
JP7468610B2 JP2022203298A JP2022203298A JP7468610B2 JP 7468610 B2 JP7468610 B2 JP 7468610B2 JP 2022203298 A JP2022203298 A JP 2022203298A JP 2022203298 A JP2022203298 A JP 2022203298A JP 7468610 B2 JP7468610 B2 JP 7468610B2
Authority
JP
Japan
Prior art keywords
resin layer
rubber
elastic resin
conductor
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022203298A
Other languages
Japanese (ja)
Other versions
JP2023029399A (en
Inventor
禎宏 小川
剛史 正木
崇司 川守
タンイー シム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JP2023029399A publication Critical patent/JP2023029399A/en
Application granted granted Critical
Publication of JP7468610B2 publication Critical patent/JP7468610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明の一側面は、高い伸縮性を有することのできる配線基板、及びその製造方法に関する。本発明の別の側面は、上記配線基板を形成するために用いることのできる導体基板に関する。本発明の更に別の側面は、上記配線基板を用いたストレッチャブルデバイスに関する。 One aspect of the present invention relates to a wiring board that can have high stretchability, and a manufacturing method thereof. Another aspect of the present invention relates to a conductor substrate that can be used to form the wiring board. Yet another aspect of the present invention relates to a stretchable device that uses the wiring board.

近年、ウェアラブル機器及びヘルスケア関連機器等の分野において、例えば身体の曲面又は関節部に沿って使用できると共に、脱着しても接続不良が生じにくいためのフレキシブル性及び伸縮性が求められている。このような機器を構成するためには、高い伸縮性を持つ配線基板又は基材が求められる。 In recent years, in fields such as wearable devices and healthcare-related devices, there is a demand for flexibility and stretchability so that devices can be used, for example, along curved surfaces or joints of the body, and are less likely to cause connection problems when put on or taken off. To construct such devices, wiring boards or substrates with high stretchability are required.

特許文献1には、伸縮性の樹脂組成物を用いてメモリーチップ等の半導体素子を封止する方法が記載されている。特許文献1では、伸縮性の樹脂組成物の封止用途への適用が主として検討されている。 Patent Document 1 describes a method for encapsulating semiconductor elements such as memory chips using an elastic resin composition. Patent Document 1 primarily examines the application of the elastic resin composition to encapsulation purposes.

国際公開第2016/080346号International Publication No. 2016/080346

特許文献1に記載のように、封止材に伸縮性を持たせることで従来の封止材では困難であった伸縮性を有した部材の実現が可能となった。一方で、ベース基材は伸縮性を有していないため、より高い伸縮性を持たせることが困難であった。そのため、より高い伸縮性を有する配線基板が求められている。 As described in Patent Document 1, by imparting elasticity to the sealing material, it is possible to realize a member with elasticity that was difficult to achieve with conventional sealing materials. On the other hand, since the base material does not have elasticity, it is difficult to impart higher elasticity to it. Therefore, there is a demand for a wiring board with higher elasticity.

また、耐熱性向上の観点から、配線基板のベース基材を作製するための材料としては、反応性官能基を有する架橋成分を用いることが検討されている。しかしながら、反応性官能基を有する架橋成分を用いると、得られるベース基材の誘電正接が増加し易く、ベース基材上に設けられた配線の伝送損失が増大し易いという問題がある。 In addition, from the viewpoint of improving heat resistance, the use of crosslinking components having reactive functional groups as materials for producing the base substrate of the wiring board has been considered. However, when crosslinking components having reactive functional groups are used, there is a problem in that the dielectric tangent of the obtained base substrate is likely to increase, and the transmission loss of the wiring provided on the base substrate is likely to increase.

このような状況において、本発明の一側面は、高い伸縮性を有すると共に、低い誘電正接を有する導体基板、それを用いた配線基板、ストレッチャブルデバイス及び配線基板の製造方法を提供することを目的とする。 In this situation, one aspect of the present invention aims to provide a conductor substrate having high elasticity and a low dielectric tangent, a wiring substrate using the same, a stretchable device, and a method for manufacturing the wiring substrate.

上記目的を達成するために、本発明の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体箔と、を有する導体基板であって、上記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む、導体基板を提供する。 In order to achieve the above object, one aspect of the present invention provides a conductive substrate having an elastic resin layer and a conductive foil provided on the elastic resin layer, the elastic resin layer including a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester-based curing agent.

本発明の別の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板であって、上記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む、導体基板を提供する。 Another aspect of the present invention provides a conductive substrate having an elastic resin layer and a conductive plating film provided on the elastic resin layer, the elastic resin layer including a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester-based curing agent.

上記導体基板によれば、そのベース基材として(A)ゴム成分を含む伸縮性樹脂層を用いることにより、高い伸縮性を得ることができる。また、従来、伸縮性樹脂層を作製するための材料として反応性官能基を有する架橋成分を用いた場合に誘電正接が増加してしまうのは、架橋成分が硬化反応時に水酸基を生成するためであると考えられる。水酸基は体積が小さく分極率が高い官能基であるため、水酸基を有する材料は全体として誘電正接が増加することとなる。これに対し、架橋成分として(B)エポキシ基を有する架橋成分と、硬化剤として(C)エステル系硬化剤とを組み合わせて用いることにより、架橋成分の硬化反応時に水酸基が生成することを大きく抑制できることを本発明者らは見出した。これは、架橋成分が有するエポキシ基と、エステル系硬化剤との硬化反応が、水酸基の生成を伴わず、また、硬化後においても水酸基を生成し難いためである。更に、それらの硬化物は、伸縮性に悪影響を及ぼさない。このため、上記構成を有する導体基板によれば、高い伸縮性を維持しつつ、耐熱性を向上できる架橋成分を用いながら低い誘電正接を実現することができる。 According to the above-mentioned conductor substrate, high elasticity can be obtained by using an elastic resin layer containing a rubber component (A) as the base substrate. In addition, it is considered that the dielectric loss tangent increases when a crosslinking component having a reactive functional group is used as a material for producing an elastic resin layer in the past because the crosslinking component generates hydroxyl groups during the curing reaction. Since hydroxyl groups are functional groups with small volumes and high polarizability, the dielectric loss tangent of the material containing hydroxyl groups increases as a whole. In contrast, the present inventors have found that the generation of hydroxyl groups during the curing reaction of the crosslinking component can be greatly suppressed by using a crosslinking component having an epoxy group (B) as the crosslinking component in combination with an ester-based curing agent (C) as the curing agent. This is because the curing reaction between the epoxy group of the crosslinking component and the ester-based curing agent does not generate hydroxyl groups, and hydroxyl groups are unlikely to be generated even after curing. Furthermore, the cured product does not adversely affect the elasticity. Therefore, according to the conductor substrate having the above configuration, it is possible to achieve a low dielectric loss tangent while maintaining high elasticity and using a crosslinking component that can improve heat resistance.

本発明の別の一側面は、上記本発明の導体基板を含み、上記導体箔又は導体めっき膜が配線パターンを形成している、配線基板を提供する。上記配線基板は、上記本発明の導体基板における導体箔又は導体めっき膜が配線パターンを形成したものであり、上記特定の構成を有する伸縮性樹脂層を備えるものであるため、高い伸縮性を有すると共に、架橋成分を用いることで高い耐熱性を有しつつ、低い誘電正接を有することができ、配線パターンの伝送損失が十分に低減されたものとなる。 Another aspect of the present invention provides a wiring board including the conductor substrate of the present invention, in which the conductor foil or conductor plating film forms a wiring pattern. The wiring board is a wiring board in which the conductor foil or conductor plating film in the conductor substrate of the present invention forms a wiring pattern, and is provided with an elastic resin layer having the specific configuration described above. Therefore, the wiring board has high elasticity, and by using a crosslinking component, it has high heat resistance and a low dielectric tangent, and the transmission loss of the wiring pattern is sufficiently reduced.

本発明の別の一側面は、上記本発明の配線基板と、上記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイスを提供する。上記ストレッチャブルデバイスは、上記本発明の配線基板を備えるものであり、上記特定の構成を有する伸縮性樹脂層を備えるものであるため、高い伸縮性を有すると共に、架橋成分を用いることで高い耐熱性を有しつつ、低い誘電正接を有することができ、配線パターンの伝送損失が十分に低減されたものとなる。 Another aspect of the present invention provides a stretchable device comprising the wiring board of the present invention and an electronic element mounted on the wiring board. The stretchable device comprises the wiring board of the present invention and an elastic resin layer having the specific configuration described above, and therefore has high elasticity, and by using a crosslinking component, has high heat resistance and a low dielectric tangent, and the transmission loss of the wiring pattern is sufficiently reduced.

本発明の別の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体箔又は導体めっき膜と、を有する導体基板を含み、上記導体箔又は導体めっき膜が配線パターンを形成している、配線基板を形成するために用いられる、上記本発明の導体基板を提供する。 Another aspect of the present invention provides the conductor substrate of the present invention, which includes a conductor substrate having an elastic resin layer and a conductor foil or conductor plating film provided on the elastic resin layer, and is used to form a wiring substrate in which the conductor foil or conductor plating film forms a wiring pattern.

本発明の別の一側面は、伸縮性樹脂層と上記伸縮性樹脂層上に積層された導体箔とを有する積層板を準備する工程と、上記導体箔上にエッチングレジストを形成する工程と、上記エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、上記導体箔の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体箔を除去する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention provides a method for producing the wiring board of the present invention, comprising the steps of preparing a laminate having an elastic resin layer and a conductor foil laminated on the elastic resin layer, forming an etching resist on the conductor foil, exposing the etching resist and developing the exposed etching resist to form a resist pattern that covers a portion of the conductor foil, removing the conductor foil from a portion not covered by the resist pattern, and removing the resist pattern.

本発明の別の一側面は、伸縮性樹脂層上にめっきレジストを形成する工程と、上記めっきレジストを露光し、露光後の上記めっきレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記伸縮性樹脂層の上記レジストパターンによって覆われていない部分の表面上に無電解めっきによって導体めっき膜を形成する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention provides a method for producing the wiring board of the present invention, comprising the steps of forming a plating resist on an elastic resin layer, exposing the plating resist and developing the exposed plating resist to form a resist pattern that covers a portion of the elastic resin layer, forming a conductor plating film by electroless plating on the surface of the portion of the elastic resin layer that is not covered by the resist pattern, and removing the resist pattern.

本発明の別の一側面は、伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、上記導体めっき膜上にめっきレジストを形成する工程と、上記めっきレジストを露光し、露光後の上記めっきレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、上記レジストパターンを除去する工程と、無電解めっきによって形成された上記導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention provides a method for producing the wiring board of the present invention, comprising the steps of forming a conductor plating film on an elastic resin layer by electroless plating, forming a plating resist on the conductor plating film, exposing the plating resist and developing the exposed plating resist to form a resist pattern that covers a portion of the elastic resin layer, forming a further conductor plating film by electrolytic plating on the conductor plating film in the portion not covered by the resist pattern, removing the resist pattern, and removing the portion of the conductor plating film formed by electroless plating that is not covered by the conductor plating film formed by electrolytic plating.

本発明の別の一側面は、伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、上記エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体めっき膜を除去する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention provides a method for producing the wiring board of the present invention, comprising the steps of forming an etching resist on a conductor plating film formed on an elastic resin layer, exposing the etching resist and developing the exposed etching resist to form a resist pattern that covers a portion of the elastic resin layer, removing the conductor plating film from a portion not covered by the resist pattern, and removing the resist pattern.

上記製造方法により、導体箔又は導体めっき膜が配線パターンを形成している本発明の配線基板を効率的に製造することができる。 The above manufacturing method makes it possible to efficiently manufacture the wiring board of the present invention in which the conductor foil or conductor plating film forms the wiring pattern.

本発明の一側面によれば、高い伸縮性を有すると共に、低い誘電正接を有する導体基板、それを用いた配線基板、ストレッチャブルデバイス及び配線基板の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a conductor substrate having high elasticity and a low dielectric tangent, a wiring substrate using the same, a stretchable device, and a method for manufacturing a wiring substrate.

回復率の測定例を示す応力-ひずみ曲線である。1 is a stress-strain curve showing an example of measuring the recovery rate. 配線基板の一実施形態を示す平面図である。FIG. 1 is a plan view showing an embodiment of a wiring board. 耐熱性試験の温度プロファイルを示すグラフである。1 is a graph showing a temperature profile in a heat resistance test. 比較例1の硬化前後の伸縮性樹脂層の赤外線吸収スペクトルを示す図である。FIG. 2 is a diagram showing infrared absorption spectra of the stretchable resin layer before and after curing in Comparative Example 1. 実施例1、3及び比較例1の硬化後の伸縮性樹脂層の赤外線吸収スペクトルを示す図である。FIG. 2 is a diagram showing infrared absorption spectra of the stretchable resin layers after curing in Examples 1 and 3 and Comparative Example 1.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Several embodiments of the present invention are described in detail below. However, the present invention is not limited to the following embodiments.

一実施形態に係る導体基板は、伸縮性樹脂層と、伸縮性樹脂層の片面上又は両面上に設けられた導体層とを有し、伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む。一実施形態に係る配線基板は、上記樹脂組成物の硬化物を含む伸縮性樹脂層と、伸縮性樹脂層の片面上又は両面上に設けられ、配線パターンを形成している導体層とを有する。導体層は、導体箔又は導体めっき膜であることができる。 The conductive substrate according to one embodiment has an elastic resin layer and a conductive layer provided on one or both sides of the elastic resin layer, and the elastic resin layer contains a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester-based curing agent. The wiring substrate according to one embodiment has an elastic resin layer containing a cured product of the resin composition, and a conductive layer provided on one or both sides of the elastic resin layer and forming a wiring pattern. The conductive layer can be a conductive foil or a conductive plating film.

<導体基板>
[導体箔]
導体箔の弾性率は、40~300GPaであってもよい。導体箔の弾性率が40~300GPaであることにより、配線基板の伸長による導体箔の破断が生じ難い傾向がある。同様の観点から、導体箔の弾性率は50GPa以上又は60GPa以上であってもよく、280GPa以下又は250GPa以下であってもよい。ここでの導体箔の弾性率は、共振法によって測定される値であることができる。
<Conductor substrate>
[Conductor foil]
The elastic modulus of the conductor foil may be 40 to 300 GPa. When the elastic modulus of the conductor foil is 40 to 300 GPa, the conductor foil is less likely to break due to elongation of the wiring board. From the same viewpoint, the elastic modulus of the conductor foil may be 50 GPa or more or 60 GPa or more, and may be 280 GPa or less or 250 GPa or less. The elastic modulus of the conductor foil here may be a value measured by a resonance method.

導体箔は、金属箔であることができる。金属箔としては、銅箔、チタン箔、ステンレス箔、ニッケル箔、パーマロイ箔、42アロイ箔、コバール箔、ニクロム箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、アルミニウム箔、錫箔、鉛箔、亜鉛箔、半田箔、鉄箔、タンタル箔、ニオブ箔、モリブデン箔、ジルコニウム箔、金箔、銀箔、パラジウム箔、モネル箔、インコネル箔、ハステロイ箔等が挙げられる。適切な弾性率等の観点から、導体箔は、銅箔、金箔、ニッケル箔、及び鉄箔から選ばれてもよい。配線形成性の観点から、導体箔は銅箔であってもよい。銅箔は、フォトリソグラフィーにより、伸縮性樹脂層の特性を損なわずに、簡易的に配線パターンを形成できる。 The conductor foil may be a metal foil. Examples of the metal foil include copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, nickel silver foil, aluminum foil, tin foil, lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, Monel foil, Inconel foil, and Hastelloy foil. From the viewpoint of appropriate elastic modulus, the conductor foil may be selected from copper foil, gold foil, nickel foil, and iron foil. From the viewpoint of wiring formability, the conductor foil may be copper foil. Copper foil can be easily formed into a wiring pattern by photolithography without impairing the properties of the elastic resin layer.

銅箔としては、特に制限はなく、例えば銅張積層板及びフレキシブル配線板等に用いられる電解銅箔及び圧延銅箔を使用できる。市販の電解銅箔としては、例えばF0-WS-18(古河電気工業株式会社製、商品名)、NC-WS-20(古河電気工業株式会社製、商品名)、YGP-12(日本電解株式会社製、商品名)、GTS-18(古河電気工業株式会社製、商品名)、及びF2-WS-12(古河電気工業株式会社製、商品名)が挙げられる。圧延銅箔としては、例えばTPC箔(JX金属株式会社製、商品名)、HA箔(JX金属株式会社製、商品名)、HA-V2箔(JX金属株式会社製、商品名)、及びC1100R(三井住友金属鉱山伸銅株式会社製、商品名)が挙げられる。伸縮性樹脂層との密着性の観点から、粗化処理を施している銅箔を使用してもよい。耐折性の観点から、圧延銅箔を用いてもよい。 The copper foil is not particularly limited, and for example, electrolytic copper foil and rolled copper foil used for copper-clad laminates and flexible wiring boards can be used. Commercially available electrolytic copper foils include, for example, F0-WS-18 (manufactured by Furukawa Electric Co., Ltd., product name), NC-WS-20 (manufactured by Furukawa Electric Co., Ltd., product name), YGP-12 (manufactured by Nippon Denkai Co., Ltd., product name), GTS-18 (manufactured by Furukawa Electric Co., Ltd., product name), and F2-WS-12 (manufactured by Furukawa Electric Co., Ltd., product name). Rolled copper foils include, for example, TPC foil (manufactured by JX Metals Corporation, product name), HA foil (manufactured by JX Metals Corporation, product name), HA-V2 foil (manufactured by JX Metals Corporation, product name), and C1100R (manufactured by Mitsui Sumitomo Metal Mining Co., Ltd., product name). Copper foil that has been subjected to a roughening treatment may be used from the viewpoint of adhesion with the elastic resin layer. Rolled copper foil may be used from the viewpoint of folding resistance.

金属箔は、粗化処理によって形成された粗化面を有していてもよい。この場合、通常、粗化面が伸縮性樹脂層に接する向きで、金属箔が伸縮性樹脂層上に設けられる。伸縮性樹脂層と金属箔との密着性の観点から、粗化面の表面粗さRaは、0.1~3μm、又は0.2~2.0μmであってもよい。微細な配線を容易に形成するために、粗化面の表面粗さRaが0.3~1.5μmであってもよい。 The metal foil may have a roughened surface formed by a roughening treatment. In this case, the metal foil is usually provided on the stretchable resin layer with the roughened surface facing the stretchable resin layer. From the viewpoint of adhesion between the stretchable resin layer and the metal foil, the surface roughness Ra of the roughened surface may be 0.1 to 3 μm, or 0.2 to 2.0 μm. To easily form fine wiring, the surface roughness Ra of the roughened surface may be 0.3 to 1.5 μm.

表面粗さRaは、例えば、表面形状測定装置Wyko NT9100(Veeco社製)を用いて、以下の条件で測定することができる。
測定条件
内部レンズ:1倍
外部レンズ:50倍
測定範囲:0.120×0.095mm
測定深度:10μm
測定方式:垂直走査型干渉方式(VSI方式)
The surface roughness Ra can be measured, for example, using a surface profiler Wyko NT9100 (manufactured by Veeco) under the following conditions.
Measurement conditions: Internal lens: 1x External lens: 50x Measurement range: 0.120 x 0.095 mm
Measurement depth: 10 μm
Measurement method: Vertical scanning interferometry (VSI)

導体箔の厚みは、特に制限はないが、1~50μmであってもよい。導体箔の厚みが1μm以上であると、より容易に配線パターンを形成することができる。導体箔の厚みが50μm以下であると、エッチング及び取り扱いが特に容易である。 The thickness of the conductor foil is not particularly limited, but may be 1 to 50 μm. When the thickness of the conductor foil is 1 μm or more, the wiring pattern can be formed more easily. When the thickness of the conductor foil is 50 μm or less, etching and handling are particularly easy.

導体箔は、伸縮性樹脂層の片面又は両面上に設けられる。伸縮性樹脂層の両面上に導体箔を設けることにより、硬化等のための加熱による反りを抑制することができる。 The conductor foil is provided on one or both sides of the elastic resin layer. By providing the conductor foil on both sides of the elastic resin layer, warping due to heating for curing, etc. can be suppressed.

導体箔を設ける方法は特に制限されないが、例えば、伸縮性樹脂層を形成するための樹脂組成物を金属箔に直接塗工する方法、及び、伸縮性樹脂層を形成するための樹脂組成物をキャリアフィルムに塗工して樹脂層(硬化前の伸縮性樹脂層)を形成し、形成された樹脂層を導体箔上に積層する方法がある。 The method for providing the conductor foil is not particularly limited, but examples include a method in which the resin composition for forming the elastic resin layer is directly applied to the metal foil, and a method in which the resin composition for forming the elastic resin layer is applied to a carrier film to form a resin layer (elastic resin layer before curing), and the formed resin layer is laminated on the conductor foil.

[導体めっき膜]
導体めっき膜は、アディティブ法又はセミアディティブ法に用いられる通常のめっき法により形成することができる。例えば、パラジウムを付着させるめっき触媒付与処理を行った後、伸縮性樹脂層を無電解めっき液に浸漬してプライマーの表面全面に厚み0.3~1.5μmの無電解めっき層(導体層)を析出させる。必要に応じて、電解めっき(電気めっき)を更に行って、必要な厚みに調整することができる。無電解めっきに用いる無電解めっき液としては、任意の無電解めっき液を用いることが可能であり、特に制限はない。電解めっきについても通常の方法を採用することが可能であり、特に制限はない。導体めっき膜(無電解めっき膜、電解めっき膜)は、コスト面及び抵抗値の観点から銅めっき膜であってもよい。
[Conductor plating film]
The conductor plating film can be formed by a normal plating method used in the additive method or the semi-additive method. For example, after performing a plating catalyst imparting treatment to adhere palladium, the elastic resin layer is immersed in an electroless plating solution to deposit an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 μm on the entire surface of the primer. If necessary, electrolytic plating (electrical plating) can be further performed to adjust the required thickness. As the electroless plating solution used for electroless plating, any electroless plating solution can be used, and there is no particular restriction. For electrolytic plating, a normal method can also be adopted, and there is no particular restriction. The conductor plating film (electroless plating film, electrolytic plating film) may be a copper plating film from the viewpoint of cost and resistance value.

更に不要な箇所をエッチング除去して回路層を形成することができる。エッチングに用いられるエッチング液は、めっきの種類により適宜選択できる。例えば、導体が銅めっきである場合、エッチングに用いられるエッチング液としては、例えば濃硫酸と過酸化水素水の混合溶液、又は塩化第二鉄溶液等を使用できる。 The circuit layer can then be formed by etching away unnecessary areas. The etching solution used for etching can be selected appropriately depending on the type of plating. For example, if the conductor is copper plating, the etching solution used for etching can be, for example, a mixed solution of concentrated sulfuric acid and hydrogen peroxide, or a ferric chloride solution.

導体めっき膜との接着力を向上させるために、伸縮性樹脂層上にあらかじめ凹凸を形成してもよい。凹凸を形成する手法としては、例えば銅箔の粗化面を転写する方法が挙げられる。銅箔としては、例えばYGP-12(日本電解株式会社製、商品名)、GTS-18(古河電気工業株式会社製、商品名)又はF2-WS-12(古河電気工業株式会社製、商品名)を用いることができる。 In order to improve the adhesive strength with the conductor plating film, unevenness may be formed beforehand on the elastic resin layer. One method for forming unevenness is, for example, a method of transferring the roughened surface of copper foil. As the copper foil, for example, YGP-12 (product name, manufactured by Nippon Denkai Co., Ltd.), GTS-18 (product name, manufactured by Furukawa Electric Co., Ltd.), or F2-WS-12 (product name, manufactured by Furukawa Electric Co., Ltd.) can be used.

銅箔の粗化面を転写する手法としては、例えば銅箔の粗化面に伸縮性樹脂層を形成するための樹脂組成物を直接塗工する方法、及び、伸縮性樹脂層を形成するための樹脂組成物をキャリアフィルムに塗工後、樹脂層(硬化前の伸縮性樹脂層)を銅箔上に成型する方法がある。伸縮性樹脂層の両面上に導体めっき膜を形成することにより、硬化等のための加熱による反りを抑制することができる。 Methods for transferring the roughened surface of copper foil include, for example, a method in which a resin composition for forming an elastic resin layer is directly applied to the roughened surface of the copper foil, and a method in which the resin composition for forming the elastic resin layer is applied to a carrier film, and then a resin layer (elastic resin layer before curing) is molded onto the copper foil. By forming a conductive plating film on both sides of the elastic resin layer, warping due to heating for curing, etc. can be suppressed.

導体めっき膜との高接着化を目的として、伸縮性樹脂層に表面処理を施してもよい。表面処理としては、例えば一般的な配線板の製造工程に用いられる粗化処理(デスミア処理)、UV処理、及びプラズマ処理が挙げられる。 The elastic resin layer may be subjected to a surface treatment in order to improve adhesion with the conductor plating film. Examples of surface treatments include roughening treatment (desmear treatment), UV treatment, and plasma treatment, which are commonly used in the manufacturing process of wiring boards.

デスミア処理としては、一般的な配線板の製造工程で用いられる方法を用いてもよく、例えば過マンガン酸ナトリウム水溶液を用いることができる。 For the desmear process, a method used in the general manufacturing process of wiring boards may be used, for example, an aqueous solution of sodium permanganate may be used.

[伸縮性樹脂層]
伸縮性樹脂層は、例えば歪み20%まで引張変形した後の回復率が80%以上であるような、伸縮性を有することができる。この回復率は、伸縮性樹脂層の測定サンプルを用いた引張試験において求められる。1回目の引っ張り試験で加えたひずみ(変位量)をX、次に初期位置に戻し再度引っ張り試験を行ったときに荷重が掛かり始めるときの位置とXとの差をYとし、式:R(%)=(Y/X)×100で計算されるRが、回復率として定義される。回復率は、Xを20%として測定することができる。図1は、回復率の測定例を示す応力-ひずみ曲線である。繰り返しの使用に対する耐性の観点から、回復率が80%以上、85%以上、又は90%以上であってもよい。回復率の定義上の上限は100%である。
[Elastic resin layer]
The elastic resin layer can have elasticity such that the recovery rate after tensile deformation to a strain of 20% is 80% or more. This recovery rate is determined in a tensile test using a measurement sample of the elastic resin layer. The strain (displacement) applied in the first tensile test is X, and the difference between the position at which the load begins to be applied when the sample is returned to the initial position and a tensile test is performed again is Y, and R calculated by the formula: R (%) = (Y / X) x 100 is defined as the recovery rate. The recovery rate can be measured with X being 20%. Figure 1 is a stress-strain curve showing an example of the measurement of the recovery rate. From the viewpoint of resistance to repeated use, the recovery rate may be 80% or more, 85% or more, or 90% or more. The upper limit of the recovery rate by definition is 100%.

伸縮性樹脂層の弾性率(引張弾性率)は、0.1MPa以上1000MPa以下であってもよい。弾性率が0.1MPa以上1000MPa以下であると、基材としての取り扱い性及び可撓性が特に優れる傾向がある。この観点から、弾性率が0.3MPa以上100MPa以下、又は0.5MPa以上50MPa以下であってもよい。 The elastic modulus (tensile modulus) of the elastic resin layer may be 0.1 MPa or more and 1000 MPa or less. When the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility as a substrate tend to be particularly excellent. From this viewpoint, the elastic modulus may be 0.3 MPa or more and 100 MPa or less, or 0.5 MPa or more and 50 MPa or less.

伸縮性樹脂層の破断伸び率は、100%以上であってもよい。破断伸び率が100%以上であると、十分な伸縮性が得られ易い傾向がある。この観点から、破断伸び率は150%以上、200%以上、300%以上又は500%以上であってもよい。破断伸び率の上限は、特に制限されないが、通常1000%程度以下である。 The breaking elongation of the elastic resin layer may be 100% or more. If the breaking elongation is 100% or more, sufficient elasticity tends to be easily obtained. From this viewpoint, the breaking elongation may be 150% or more, 200% or more, 300% or more, or 500% or more. The upper limit of the breaking elongation is not particularly limited, but is usually about 1000% or less.

伸縮性樹脂層の誘電正接(Df)は、0.004以下であってもよい。誘電正接が0.004以下であると、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。この観点から、誘電正接は0.0035以下、0.003以下、又は、0.0025以下であってもよい。誘電正接の下限は、特に制限されないが、通常0.0005程度以上である。 The dielectric loss tangent (Df) of the elastic resin layer may be 0.004 or less. If the dielectric loss tangent is 0.004 or less, the transmission loss of the wiring pattern provided on the elastic resin layer tends to be sufficiently reduced. From this viewpoint, the dielectric loss tangent may be 0.0035 or less, 0.003 or less, or 0.0025 or less. The lower limit of the dielectric loss tangent is not particularly limited, but is usually about 0.0005 or more.

伸縮性樹脂層の比誘電率(Dk)は、4.0以下であってもよい。比誘電率が4.0以下であると、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。この観点から、比誘電率は3.5以下、3.0以下、又は、2.5以下であってもよい。 The dielectric constant (Dk) of the elastic resin layer may be 4.0 or less. If the dielectric constant is 4.0 or less, the transmission loss of the wiring pattern provided on the elastic resin layer tends to be sufficiently reduced. From this viewpoint, the dielectric constant may be 3.5 or less, 3.0 or less, or 2.5 or less.

伸縮性樹脂層は、その赤外線吸収スペクトルにおいて、水酸基の伸縮振動に帰属される吸収ピークが存在しないものであってもよい。これにより、伸縮性樹脂層の誘電正接が十分に低減されたものとなり、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。 The elastic resin layer may have no absorption peaks attributable to the stretching vibration of hydroxyl groups in its infrared absorption spectrum. This tends to sufficiently reduce the dielectric tangent of the elastic resin layer, and to sufficiently reduce the transmission loss of the wiring pattern provided on the elastic resin layer.

伸縮性樹脂層は、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物(硬化性樹脂組成物)の硬化物を含む。すなわち、伸縮性樹脂層は、(B)エポキシ基を有する架橋成分の架橋重合体を含有する。伸縮性樹脂層には、主に上記(A)ゴム成分によって、容易に伸縮性が付与される。 The elastic resin layer contains a cured product of a resin composition (curable resin composition) containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester-based curing agent. In other words, the elastic resin layer contains a cross-linked polymer of (B) a cross-linking component having an epoxy group. The elastic resin layer is easily given elasticity mainly by the rubber component (A).

(A)ゴム成分は、例えば、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種のゴムを含むことができる。吸湿等による配線へのダメージを保護する観点から、ガス透過性が低いゴム成分を用いてもよい。係る観点から、(A)ゴム成分が、スチレンブタジエンゴム、ブタジエンゴム、及びブチルゴムから選ばれる少なくとも1種を含んでもよい。スチレンブタジエンゴムを用いることにより、めっき工程に使用する各種薬液に対する伸縮性樹脂層の耐性が向上し、歩留まりよく配線基板を製造することができる。 The rubber component (A) may contain at least one rubber selected from the group consisting of, for example, acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluororubber, vulcanized rubber, epichlorohydrin rubber, and chlorinated butyl rubber. From the viewpoint of protecting the wiring from damage caused by moisture absorption, etc., a rubber component with low gas permeability may be used. From this viewpoint, the rubber component (A) may contain at least one rubber selected from styrene butadiene rubber, butadiene rubber, and butyl rubber. By using styrene butadiene rubber, the resistance of the elastic resin layer to various chemicals used in the plating process is improved, and wiring boards can be manufactured with a good yield.

アクリルゴムの市販品としては、例えば日本ゼオン株式会社「Nipol ARシリーズ」、クラレ株式会社「クラリティシリーズ」が挙げられる。 Commercially available acrylic rubber products include, for example, Zeon Corporation's "Nipol AR Series" and Kuraray Co., Ltd.'s "Clarity Series."

イソプレンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol IRシリーズ」が挙げられる。 Commercially available isoprene rubber products include, for example, the "Nipol IR series" from Nippon Zeon Co., Ltd.

ブチルゴムの市販品としては、例えばJSR株式会社「BUTYLシリーズ」等が挙げられる。 Commercially available butyl rubber products include, for example, the "BUTYL series" from JSR Corporation.

スチレンブタジエンゴムの市販品としては、例えばJSR株式会社「ダイナロンSEBSシリーズ」、「ダイナロンHSBRシリーズ」、クレイトンポリマージャパン株式会社「クレイトンDポリマーシリーズ」、アロン化成株式会社「ARシリーズ」が挙げられる。 Commercially available styrene butadiene rubber products include, for example, JSR Corporation's "Dynaron SEBS series" and "Dynaron HSBR series," Kraton Polymer Japan Ltd.'s "Kraton D Polymer series," and Aronkasei Corporation's "AR series."

ブタジエンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol BRシリーズ」等が挙げられる。 Commercially available butadiene rubber products include, for example, the "Nipol BR series" from Nippon Zeon Co., Ltd.

アクリロニトリルブタジエンゴムの市販品としては、例えばJSR株式会社「JSR NBRシリーズ」が挙げられる。 Commercially available acrylonitrile butadiene rubber products include, for example, JSR Corporation's "JSR NBR series."

シリコーンゴムの市販品としては、例えば信越シリコーン株式会社「KMPシリーズ」が挙げられる。 An example of a commercially available silicone rubber product is the "KMP series" from Shin-Etsu Silicone Co., Ltd.

エチレンプロピレンゴムの市販品としては、例えばJSR株式会社「JSR EPシリーズ」等が挙げられる。 Commercially available ethylene propylene rubber products include, for example, JSR Corporation's "JSR EP Series."

フッ素ゴムの市販品としては、例えばダイキン株式会社「ダイエルシリーズ」等が挙げられる。 Commercially available fluororubber products include, for example, Daikin Ltd.'s "Dai-El Series."

エピクロルヒドリンゴムの市販品としては、例えば日本ゼオン株式会社「Hydrinシリーズ」が挙げられる。 Commercially available epichlorohydrin rubber products include, for example, the "Hydrin series" from Zeon Corporation.

(A)ゴム成分は、合成により作製することもできる。例えば、アクリルゴムでは、(メタ)アクリル酸、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物等を反応させることにより得られる。 The (A) rubber component can also be produced by synthesis. For example, acrylic rubber can be obtained by reacting (meth)acrylic acid, (meth)acrylic acid esters, aromatic vinyl compounds, vinyl cyanide compounds, etc.

(A)ゴム成分は、架橋基を有するゴムを含んでいてもよい。架橋基を有するゴムを用いることにより、伸縮性樹脂層の耐熱性が向上し易い傾向がある。架橋基は、(A)ゴム成分の分子鎖を架橋する反応を進行させ得る反応性基であればよい。その例としては、後述する(B)架橋成分が有する反応性基、酸無水物基、アミノ基、水酸基、エポキシ基及びカルボキシル基が挙げられる。 The (A) rubber component may contain a rubber having a crosslinking group. The use of a rubber having a crosslinking group tends to improve the heat resistance of the elastic resin layer. The crosslinking group may be a reactive group that can proceed with a reaction that crosslinks the molecular chains of the (A) rubber component. Examples of such a group include the reactive groups of the (B) crosslinking component described below, acid anhydride groups, amino groups, hydroxyl groups, epoxy groups, and carboxyl groups.

(A)ゴム成分は、酸無水物基又はカルボキシル基のうち少なくとも一方の架橋基を有するゴムを含んでいてもよい。酸無水物基を有するゴムの例としては、無水マレイン酸で部分的に変性されたゴムが挙げられる。無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸に由来する構成単位を含む重合体である。無水マレイン酸で部分的に変性されたゴムの市販品としては、例えば、旭化成株式会社製のスチレン系エラストマー「タフプレン912」がある。 The (A) rubber component may contain a rubber having at least one crosslinking group of an acid anhydride group or a carboxyl group. An example of a rubber having an acid anhydride group is a rubber partially modified with maleic anhydride. The rubber partially modified with maleic anhydride is a polymer containing structural units derived from maleic anhydride. An example of a commercially available product of rubber partially modified with maleic anhydride is the styrene-based elastomer "Tufprene 912" manufactured by Asahi Kasei Corporation.

無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマーであってもよい。水素添加型スチレン系エラストマーは、耐候性向上等の効果も期待できる。水素添加型スチレン系エラストマーは、不飽和二重結合を含むソフトセグメントを有するスチレン系エラストマーの不飽和二重結合に水素を付加反応させて得られるエラストマーである。無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマーの市販品の例としては、クレイトンポリマージャパン株式会社の「FG1901」、「FG1924」、旭化成株式会社の「タフテックM1911」、「タフテックM1913」、「タフテックM1943」がある。 The rubber partially modified with maleic anhydride may be a hydrogenated styrene-based elastomer partially modified with maleic anhydride. Hydrogenated styrene-based elastomers are also expected to have effects such as improved weather resistance. Hydrogenated styrene-based elastomers are elastomers obtained by adding hydrogen to the unsaturated double bonds of a styrene-based elastomer having a soft segment containing an unsaturated double bond. Examples of commercially available hydrogenated styrene-based elastomers partially modified with maleic anhydride include "FG1901" and "FG1924" from Kraton Polymer Japan Co., Ltd., and "Tuftec M1911", "Tuftec M1913", and "Tuftec M1943" from Asahi Kasei Corporation.

(A)ゴム成分の重量平均分子量は、塗膜性の観点から、20000~200000、30000~150000、又は50000~125000であってもよい。ここでの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって求められる標準ポリスチレン換算値を意味する。 The weight average molecular weight of the (A) rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties. The weight average molecular weight (Mw) here refers to the standard polystyrene equivalent value determined by gel permeation chromatography (GPC).

樹脂組成物において、(A)ゴム成分の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の総量を基準として、60~95質量%であることが好ましく、65~90質量%であることがより好ましく、70~85質量%であることが更に好ましい。(A)ゴム成分の含有量が60質量%以上であると、より十分な伸縮性が得られ易く、かつゴム成分と架橋成分がよく混ざり合う傾向がある。(A)ゴム成分の含有量が95質量%以下であると、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。伸縮性樹脂層における(A)ゴム成分の含有量が、伸縮性樹脂層の質量を基準として、上記範囲内にあってもよい。 In the resin composition, the content of the rubber component (A) is preferably 60 to 95% by mass, more preferably 65 to 90% by mass, and even more preferably 70 to 85% by mass, based on the total amount of the rubber component (A), the crosslinking component (B), and the ester-based curing agent (C). When the content of the rubber component (A) is 60% by mass or more, more sufficient elasticity is easily obtained, and the rubber component and the crosslinking component tend to mix well. When the content of the rubber component (A) is 95% by mass or less, the elastic resin layer tends to have particularly excellent properties in terms of adhesion, insulation reliability, and heat resistance. The content of the rubber component (A) in the elastic resin layer may be within the above range based on the mass of the elastic resin layer.

(B)エポキシ基を有する架橋成分は、硬化反応時に架橋して架橋重合体を形成する成分である。(B)エポキシ基を有する架橋成分は、分子内にエポキシ基を有していれば特に制限されず、例えば一般的なエポキシ樹脂であることができる。エポキシ樹脂としては、単官能、2官能又は多官能のいずれでもよく、特に制限はないが、十分な硬化性を得るためには2官能又は多官能のエポキシ樹脂を用いてもよい。 (B) The cross-linking component having an epoxy group is a component that cross-links during a curing reaction to form a cross-linked polymer. (B) The cross-linking component having an epoxy group is not particularly limited as long as it has an epoxy group in the molecule, and can be, for example, a general epoxy resin. The epoxy resin may be monofunctional, bifunctional, or polyfunctional, and is not particularly limited, but a bifunctional or polyfunctional epoxy resin may be used to obtain sufficient curability.

エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、ナフタレン型、ジシクロペンタジエン型、クレゾールノボラック型等が挙げられる。脂肪鎖で変性したエポキシ樹脂は、柔軟性を付与できる。市販の脂肪鎖変性エポキシ樹脂としては、例えばDIC株式会社製のEXA-4816が挙げられる。硬化性、低タック性、及び耐熱性の観点から、フェノールノボラック型、クレゾールノボラック型、ナフタレン型、又はジシクロペンタジエン型のエポキシ樹脂を選択してもよい。これらのエポキシ樹脂は、単独で又は2種類以上を組み合わせて用いることができる。 Epoxy resins include bisphenol A type, bisphenol F type, phenol novolac type, naphthalene type, dicyclopentadiene type, cresol novolac type, etc. Epoxy resins modified with aliphatic chains can impart flexibility. An example of a commercially available aliphatic chain modified epoxy resin is EXA-4816 manufactured by DIC Corporation. From the viewpoints of curability, low tackiness, and heat resistance, phenol novolac type, cresol novolac type, naphthalene type, or dicyclopentadiene type epoxy resins may be selected. These epoxy resins can be used alone or in combination of two or more types.

無水マレイン酸基又はカルボキシル基を有するゴムと、エポキシ基を有する化合物(エポキシ樹脂)との組み合わせにより、伸縮性樹脂層の耐熱性及び低透湿度、伸縮性樹脂層と導電層との密着性、並びに、伸縮性樹脂層の低いタックの点で、特に優れた効果が得られる。伸縮性樹脂層の耐熱性が向上すると、例えば窒素リフローのような加熱工程における伸縮性樹脂層の劣化を抑制することができる。伸縮性樹脂層が低いタックを有すると、作業性良く導体基板又は配線基板を取り扱うことができる。 The combination of a rubber having a maleic anhydride group or a carboxyl group with a compound having an epoxy group (epoxy resin) provides particularly excellent effects in terms of the heat resistance and low moisture permeability of the elastic resin layer, adhesion between the elastic resin layer and the conductive layer, and low tack of the elastic resin layer. Improved heat resistance of the elastic resin layer can suppress deterioration of the elastic resin layer during a heating process such as nitrogen reflow. Low tack of the elastic resin layer allows for easy handling of the conductor board or wiring board.

樹脂組成物は、本発明の効果を著しく損なわない範囲で、(B)エポキシ基を有する架橋成分以外の他の架橋成分を含んでいてもよい。他の架橋成分の含有量は、伸縮性樹脂層の誘電正接をより十分に低減する観点から、(B)エポキシ基を有する架橋成分100質量部に対して10質量部未満であることが好ましい。 The resin composition may contain other crosslinking components other than the crosslinking component having an epoxy group (B) to the extent that the effect of the present invention is not significantly impaired. From the viewpoint of more sufficiently reducing the dielectric tangent of the elastic resin layer, the content of the other crosslinking components is preferably less than 10 parts by mass per 100 parts by mass of the crosslinking component having an epoxy group (B).

(C)エステル系硬化剤は、それ自体が硬化反応に関与する化合物であり、伸縮性樹脂層の耐熱性を向上しつつ、誘電正接を低減することができる。 (C) The ester-based curing agent is a compound that itself participates in the curing reaction, and can reduce the dielectric tangent while improving the heat resistance of the elastic resin layer.

エステル系硬化剤としては特に制限されないが、耐熱性の向上効果及び誘電正接の低減効果をより十分に得る観点から、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に1個又は2個以上有する化合物が好ましく用いられる。エステル系硬化剤としてより具体的には、例えば、「EPICLON HPC8000-65T」、「EPICLON HPC8000-L-65MT」、「EPICLON HPC8150-60T」(いずれもDIC株式会社製の商品名)等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 The ester-based hardener is not particularly limited, but from the viewpoint of more fully obtaining the effect of improving heat resistance and the effect of reducing dielectric tangent, compounds having one or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, are preferably used. More specific examples of ester-based hardeners include "EPICLON HPC8000-65T", "EPICLON HPC8000-L-65MT", and "EPICLON HPC8150-60T" (all trade names manufactured by DIC Corporation). These can be used alone or in combination of two or more.

エステル系硬化剤は、硬化反応時に下記式(I)に示すように(B)架橋成分と反応するものと考えられる。このような(C)エステル系硬化剤と、(B)架橋成分との反応において水酸基は生成せず、また、副反応が生じたとしても水酸基は生成し難く、その結果、低い誘電正接を実現できるものと考えられる。 During the curing reaction, the ester-based curing agent is thought to react with the crosslinking component (B) as shown in the following formula (I). In the reaction between the ester-based curing agent (C) and the crosslinking component (B), no hydroxyl groups are produced, and even if a side reaction occurs, hydroxyl groups are unlikely to be produced. As a result, it is thought that a low dielectric tangent can be achieved.

Figure 0007468610000001

式中、R、R及びRはそれぞれ独立に、1価の有機基を示すが、本発明の効果がより十分に得られることから、芳香環を有する1価の有機基であってもよい。
Figure 0007468610000001

In the formula, R 1 , R 2 and R 3 each independently represent a monovalent organic group, but may be a monovalent organic group having an aromatic ring, since this allows the effects of the present invention to be more fully obtained.

樹脂組成物は、本発明の効果を著しく損なわない範囲で、(C)エステル系硬化剤以外の他の硬化剤を含んでいてもよい。他の硬化剤の含有量は、伸縮性樹脂層の誘電正接をより十分に低減する観点から、(C)エステル系硬化剤100質量部に対して10質量部未満であることが好ましい。 The resin composition may contain other curing agents besides the ester-based curing agent (C) to the extent that the effect of the present invention is not significantly impaired. From the viewpoint of more sufficiently reducing the dielectric tangent of the elastic resin layer, the content of the other curing agent is preferably less than 10 parts by mass per 100 parts by mass of the ester-based curing agent (C).

樹脂組成物において、(B)架橋成分及び(C)エステル系硬化剤の合計の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の総量を基準として、5~40質量%であることが好ましく、10~35質量%であることがより好ましく、15~30質量%であることが更に好ましい。(B)架橋成分及び(C)エステル系硬化剤の合計の含有量が5質量%以上であると、より十分な硬化が得られ易いと共に、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。(B)架橋成分及び(C)エステル系硬化剤の合計の含有量が40質量%以下であると、より十分な伸縮性が得られ易く、かつゴム成分と架橋成分がよく混ざり合う傾向がある。 In the resin composition, the total content of the (B) crosslinking component and the (C) ester-based hardener is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and even more preferably 15 to 30% by mass, based on the total amount of the (A) rubber component, the (B) crosslinking component, and the (C) ester-based hardener. When the total content of the (B) crosslinking component and the (C) ester-based hardener is 5% by mass or more, more sufficient hardening is easily obtained, and the elastic resin layer tends to have particularly excellent properties in terms of adhesion, insulation reliability, and heat resistance. When the total content of the (B) crosslinking component and the (C) ester-based hardener is 40% by mass or less, more sufficient elasticity is easily obtained, and the rubber component and the crosslinking component tend to mix well.

樹脂組成物において、(B)架橋成分と(C)エステル系硬化剤との含有量比は、(B)エポキシ樹脂中のエポキシ基と(C)エステル系硬化剤中のエステル結合との当量比で、4:5~5:4の範囲であることが好ましい。含有量比が上記範囲内であることで、より十分な硬化が得られ易いと共に、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。 In the resin composition, the content ratio of the (B) crosslinking component to the (C) ester-based hardener is preferably in the range of 4:5 to 5:4, in terms of the equivalent ratio of the epoxy groups in the (B) epoxy resin to the ester bonds in the (C) ester-based hardener. By having the content ratio within the above range, more sufficient hardening is easily achieved, and the elastic resin layer tends to have particularly excellent properties in terms of adhesion, insulation reliability, and heat resistance.

樹脂組成物は、更に(D)硬化促進剤を含有してもよい。(D)硬化促進剤は、硬化反応の触媒として機能する化合物である。(D)硬化促進剤は、三級アミン、イミダゾール、有機酸金属塩、リン系化合物、ルイス酸、アミン錯塩及びホスフィンから選ばれるものであってもよい。これらの中でも、樹脂組成物のワニスの保存安定性及び硬化性の観点から、イミダゾールを使用してもよい。(A)ゴム成分が無水マレイン酸で部分的に変性されたゴムを含む場合、これと相溶するイミダゾールを選択してもよい。 The resin composition may further contain (D) a curing accelerator. (D) The curing accelerator is a compound that functions as a catalyst for the curing reaction. (D) The curing accelerator may be selected from tertiary amines, imidazoles, organic acid metal salts, phosphorus compounds, Lewis acids, amine complex salts, and phosphines. Among these, imidazole may be used from the viewpoint of storage stability and curing properties of the varnish of the resin composition. (A) When the rubber component contains rubber partially modified with maleic anhydride, an imidazole compatible with this may be selected.

樹脂組成物において、(D)硬化促進剤の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の合計量100質量部に対して、0.1~10質量部であってもよい。(D)硬化促進剤の含有量が0.1質量部以上であると、より十分な硬化が得られ易い傾向がある。(D)硬化促進剤の含有量が10質量部以下であると、より十分な耐熱性が得られ易い傾向がある。以上の観点から、(D)硬化促進剤の含有量は0.3~7質量部、又は0.5~5質量部であってもよい。 In the resin composition, the content of the (D) curing accelerator may be 0.1 to 10 parts by mass relative to 100 parts by mass of the total amount of the (A) rubber component, the (B) crosslinking component, and the (C) ester-based curing agent. If the content of the (D) curing accelerator is 0.1 parts by mass or more, there is a tendency that more sufficient curing is easily obtained. If the content of the (D) curing accelerator is 10 parts by mass or less, there is a tendency that more sufficient heat resistance is easily obtained. From the above viewpoints, the content of the (D) curing accelerator may be 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.

樹脂組成物は、以上の成分の他、必要に応じて、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤、難燃剤、レベリング剤等を、本発明の効果を著しく損なわない範囲で更に含んでもよい。 In addition to the above components, the resin composition may further contain antioxidants, anti-yellowing agents, ultraviolet absorbers, visible light absorbers, colorants, plasticizers, stabilizers, fillers, flame retardants, leveling agents, etc., as necessary, to the extent that the effects of the present invention are not significantly impaired.

特に、樹脂組成物は、酸化防止剤、熱安定剤、光安定剤、及び加水分解防止剤からなる群より選ばれる少なくとも1種の劣化防止剤を含有してもよい。酸化防止剤は、酸化による劣化を抑制する。また、酸化防止剤は、高温下での十分な耐熱性を伸縮性樹脂層に付与する。熱安定剤は、高温下での安定性を伸縮性樹脂層に付与する。光安定剤の例としては、紫外線による劣化を防止する紫外線吸収剤、光を遮断する光遮断剤、有機材料が吸収した光エネルギーを受容して有機材料を安定化する消光機能を有する消光剤が挙げられる。加水分解防止剤は、水分による劣化を抑制する。劣化防止剤は、酸化防止剤、熱安定剤、及び紫外線吸収剤からなる群から選択される少なくとも1種であってもよい。劣化防止剤としては、以上例示した成分から1種のみを使用してもよいし、2種以上を併用してもよい。より優れた効果を得るために、2種以上の劣化防止剤を併用してもよい。 In particular, the resin composition may contain at least one deterioration inhibitor selected from the group consisting of antioxidants, heat stabilizers, light stabilizers, and hydrolysis inhibitors. The antioxidant suppresses deterioration due to oxidation. The antioxidant also imparts sufficient heat resistance at high temperatures to the elastic resin layer. The heat stabilizer imparts stability at high temperatures to the elastic resin layer. Examples of light stabilizers include ultraviolet absorbers that prevent deterioration due to ultraviolet rays, light blocking agents that block light, and quenchers that have a quenching function that receives light energy absorbed by an organic material and stabilizes the organic material. The hydrolysis inhibitor suppresses deterioration due to moisture. The deterioration inhibitor may be at least one selected from the group consisting of antioxidants, heat stabilizers, and ultraviolet absorbers. As the deterioration inhibitor, only one of the components exemplified above may be used, or two or more may be used in combination. In order to obtain a better effect, two or more deterioration inhibitors may be used in combination.

酸化防止剤は、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、及びホスファイト系酸化防止剤からなる群より選ばれる1種以上であってもよい。より優れた効果を得るために、2種以上の酸化防止剤を併用してもよい。フェノール系酸化防止剤と硫黄系酸化防止剤とを併用してもよい。 The antioxidant may be, for example, one or more selected from the group consisting of phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, and phosphite-based antioxidants. To obtain a more excellent effect, two or more antioxidants may be used in combination. A phenol-based antioxidant and a sulfur-based antioxidant may be used in combination.

フェノール系酸化防止剤は、フェノール性水酸基のオルト位にt-ブチル基(ターシャリーブチル基)及びトリメチルシリル基等の立体障害の大きい置換基を有する化合物であってもよい。フェノール系酸化防止剤は、ヒンダードフェノール系酸化防止剤とも称される。 The phenolic antioxidant may be a compound having a substituent with large steric hindrance, such as a tertiary butyl group or a trimethylsilyl group, at the ortho position of the phenolic hydroxyl group. The phenolic antioxidant is also called a hindered phenolic antioxidant.

フェノール系酸化防止剤は、例えば2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン及びテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンからなる群より選ばれる1種以上の化合物であってもよい。フェノール系酸化防止剤は、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン及びテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンに代表される高分子型フェノール系酸化防止剤であってもよい。 The phenolic antioxidant may be, for example, one or more compounds selected from the group consisting of 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-ethylphenol, 2,2'-methylene-bis(4-methyl-6-t-butylphenol), 4,4'-thiobis-(3-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, and tetrakis-[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane. The phenolic antioxidant may be a polymeric phenolic antioxidant such as 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene and tetrakis-[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane.

ホスファイト系酸化防止剤は、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(ノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(ジノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルトリス(ノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルトリス(ジノニルフェニル)ホスファイト、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)-2-エチルヘキシルホスファイト、ジイソデシルペンタエリスリトールジホスファイト及びトリス(2,4-ジ-t-ブチルフェニル)ホスファイトからなる群より選ばれる1種以上の化合物であってもよく、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトであってもよい。 Examples of phosphite antioxidants include triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, 4,4'-butylidene-bis(3-methyl-6-t-butylphenyl ditridecyl) phosphite, cyclic neopentane tetrayl bis(nonylphenyl) phosphite, cyclic neopentane tetrayl bis(dinonylphenyl) phosphite, cyclic neopentane tetrayl tris(nonylphenyl) phosphite, and cyclic neopentane tetrayl tris(nonylphenyl) phosphite. It may be one or more compounds selected from the group consisting of 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2-methylenebis(4,6-di-t-butylphenyl)-2-ethylhexyl phosphite, diisodecyl pentaerythritol diphosphite, and tris(2,4-di-t-butylphenyl)phosphite, or it may be tris(2,4-di-t-butylphenyl)phosphite.

その他の酸化防止剤の例として、N-メチル-2-ジメチルアミノアセトヒドロキサム酸に代表されるヒドロキシルアミン系酸化防止剤、ジラウリル3,3’-チオジプロピオネートに代表される硫黄系酸化防止剤が挙げられる。 Other examples of antioxidants include hydroxylamine-based antioxidants such as N-methyl-2-dimethylaminoacetohydroxamic acid, and sulfur-based antioxidants such as dilauryl 3,3'-thiodipropionate.

酸化防止剤の含有量は、樹脂組成物の質量(固形分全量)を基準として、0.1~20質量%であってもよい。酸化防止剤の含有量が0.1質量%以上であると、伸縮性樹脂層の十分な耐熱性が得られやすい。酸化防止剤の含有量が20質量%以下であると、ブリード及びブルームを抑制できる。 The content of the antioxidant may be 0.1 to 20% by mass based on the mass (total solid content) of the resin composition. If the content of the antioxidant is 0.1% by mass or more, sufficient heat resistance of the elastic resin layer is likely to be obtained. If the content of the antioxidant is 20% by mass or less, bleeding and blooming can be suppressed.

酸化防止剤の分子量は、加熱中の昇華防止の観点から、400以上、600以上、又は750以上であってもよい。2種以上の酸化防止剤を含む場合、それらの分子量の平均が上記範囲であってもよい。 The molecular weight of the antioxidant may be 400 or more, 600 or more, or 750 or more from the viewpoint of preventing sublimation during heating. When two or more types of antioxidants are included, the average of their molecular weights may be within the above range.

熱安定剤(熱劣化防止剤)としては、高級脂肪酸の亜鉛塩とバリウム塩の組み合わせのような金属石けん又は無機酸塩、有機スズマレエート及び有機スズメルカプチドのような有機スズ化合物、並びに、フラーレン(例えば、水酸化フラーレン)が挙げられる。 Heat stabilizers (thermal deterioration inhibitors) include metal soaps or inorganic acid salts such as a combination of zinc and barium salts of higher fatty acids, organotin compounds such as organotin maleates and organotin mercaptides, and fullerenes (e.g., fullerene hydroxide).

紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノンに代表されるベンゾフェノン系紫外線吸収剤、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾールに代表されるベンゾトリアゾール系紫外線吸収剤、及び、2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレートに代表されるシアノアクリレート系紫外線吸収剤が挙げられる。 Examples of ultraviolet absorbers include benzophenone-based ultraviolet absorbers such as 2,4-dihydroxybenzophenone, benzotriazole-based ultraviolet absorbers such as 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, and cyanoacrylate-based ultraviolet absorbers such as 2-ethylhexyl-2-cyano-3,3'-diphenylacrylate.

加水分解防止剤としては、例えば、カルボジイミド誘導体、エポキシ化合物、イソシアネート化合物、酸無水物、オキサゾリン化合物、及びメラミン化合物が挙げられる。 Examples of hydrolysis inhibitors include carbodiimide derivatives, epoxy compounds, isocyanate compounds, acid anhydrides, oxazoline compounds, and melamine compounds.

その他の劣化防止剤の例としては、ヒンダードアミン系光安定剤、アスコルビン酸、没食子酸プロピル、カテキン、シュウ酸、マロン酸、及び亜リン酸エステルが挙げられる。 Other examples of anti-degradants include hindered amine light stabilizers, ascorbic acid, propyl gallate, catechin, oxalic acid, malonic acid, and phosphites.

伸縮性樹脂層は、例えば、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤、並びに、必要により他の成分を、有機溶剤に溶解又は分散して樹脂ワニスを得ることと、樹脂ワニスを後述の方法によって導体箔又はキャリアフィルムの上に成膜することとを含む方法により、製造することができる。 The elastic resin layer can be produced, for example, by a method including dissolving or dispersing (A) a rubber component, (B) a crosslinking component, and (C) an ester-based curing agent, as well as other components as necessary, in an organic solvent to obtain a resin varnish, and forming the resin varnish onto a conductor foil or a carrier film by a method described below.

ここで用いる有機溶剤としては、特に制限はないが、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドなどが挙げられる。溶解性及び沸点の観点から、トルエン、又はN,N-ジメチルアセトアミドを用いてもよい。これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス中の固形分(有機溶媒以外の成分)濃度は、20~80質量%であってもよい。 The organic solvent used here is not particularly limited, but examples thereof include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, and γ-butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; and amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone. From the viewpoint of solubility and boiling point, toluene or N,N-dimethylacetamide may be used. These organic solvents may be used alone or in combination of two or more kinds. The solid content (components other than the organic solvent) concentration in the resin varnish may be 20 to 80% by mass.

キャリアフィルムとしては、特に制限されないが、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどのフィルムが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、又はポリスルホンのフィルムをキャリアフィルムとして用いてもよい。 The carrier film is not particularly limited, but examples thereof include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; and films of polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfide, polyethersulfone, polyetherketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, and liquid crystal polymers. Among these, from the viewpoint of flexibility and toughness, films of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone may be used as the carrier film.

キャリアフィルムの厚みは、特に制限されないが、3~250μmであってもよい。キャリアフィルムの厚みが3μm以上であるとフィルム強度が十分であり、キャリアフィルムの厚みが250μm以下であると十分な柔軟性が得られる。以上の観点から、厚みは5~200μm、又は7~150μmであってもよい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等によりキャリアフィルムに離型処理が施されたフィルムを必要に応じて用いてもよい。 The thickness of the carrier film is not particularly limited, but may be 3 to 250 μm. If the thickness of the carrier film is 3 μm or more, the film strength is sufficient, and if the thickness of the carrier film is 250 μm or less, sufficient flexibility is obtained. From the above viewpoints, the thickness may be 5 to 200 μm, or 7 to 150 μm. From the viewpoint of improving the peelability from the elastic resin layer, a film in which the carrier film has been subjected to a release treatment using a silicone-based compound, a fluorine-containing compound, or the like may be used as necessary.

必要に応じて、保護フィルムを伸縮性樹脂層上に貼り付け、導体箔又はキャリアフィルム、伸縮性樹脂層及び保護フィルムからなる3層構造の積層フィルムとしてもよい。 If necessary, a protective film may be attached onto the elastic resin layer to form a three-layer laminate film consisting of a conductor foil or carrier film, an elastic resin layer, and a protective film.

保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどのフィルムが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィンのフィルムを保護フィルムとして用いてもよい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により保護フィルムに離型処理が施されていてもよい。 The protective film is not particularly limited, and examples thereof include films of polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; and polyolefins such as polyethylene and polypropylene. Among these, from the viewpoint of flexibility and toughness, films of polyesters such as polyethylene terephthalate, and polyolefins such as polyethylene and polypropylene may be used as the protective film. From the viewpoint of improving peelability from the elastic resin layer, the protective film may be subjected to a release treatment using a silicone-based compound, a fluorine-containing compound, or the like.

保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10~250μmであってもよい。厚みが10μm以上であるとフィルム強度が十分である傾向があり、250μm以下であると十分な柔軟性が得られる傾向がある。以上の観点から、厚みは15~200μm、又は20~150μmであってもよい。 The thickness of the protective film may vary depending on the desired flexibility, but may be 10 to 250 μm. A thickness of 10 μm or more tends to provide sufficient film strength, while a thickness of 250 μm or less tends to provide sufficient flexibility. From the above perspective, the thickness may be 15 to 200 μm, or 20 to 150 μm.

[配線基板の製造方法]
一実施形態に係る導体箔を有する配線基板は、例えば、伸縮性樹脂層と伸縮性樹脂層上に積層された導体箔とを有する積層板(導体基板)を準備する工程と、導体箔上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、導体箔の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体箔を除去する工程と、レジストパターンを除去する工程と、を含む方法により、製造することができる。
[Method of Manufacturing Wiring Board]
A wiring board having a conductor foil according to one embodiment can be manufactured by a method including, for example, a step of preparing a laminate (conductor board) having an elastic resin layer and a conductor foil laminated on the elastic resin layer, a step of forming an etching resist on the conductor foil, a step of exposing the etching resist and developing the exposed etching resist to form a resist pattern that covers a portion of the conductor foil, a step of removing a portion of the conductor foil that is not covered by the resist pattern, and a step of removing the resist pattern.

伸縮性樹脂層及び導体箔を有する積層板(導体基板)を得る手法としては、どのような手法を用いてもよいが、伸縮性樹脂層を形成するための樹脂組成物のワニスを導体箔に塗工する方法、及び、キャリアフィルム上に形成された伸縮性樹脂層に導体箔を真空プレス、ラミネータ等により積層する方法などがある。伸縮性樹脂層は、樹脂組成物を加熱して架橋成分の架橋反応(硬化反応)を進行させることで形成することができる。 Any method may be used to obtain a laminate (conductor substrate) having an elastic resin layer and a conductor foil, including a method of applying a varnish of a resin composition for forming an elastic resin layer to a conductor foil, and a method of laminating a conductor foil to an elastic resin layer formed on a carrier film using a vacuum press, a laminator, or the like. The elastic resin layer can be formed by heating the resin composition to promote a crosslinking reaction (curing reaction) of the crosslinking component.

キャリアフィルム上の伸縮性樹脂層を導体箔に積層する手法としては、どのようなものでもよいが、ロールラミネータ、真空ラミネータ、真空プレス等が用いられる。生産効率の観点から、ロールラミネータ又は真空ラミネータを用いて成型してもよい。 The elastic resin layer on the carrier film may be laminated onto the conductor foil by any method, including a roll laminator, a vacuum laminator, a vacuum press, etc. From the viewpoint of production efficiency, molding may be performed using a roll laminator or a vacuum laminator.

伸縮性樹脂層の乾燥後の厚みは、特に限定されないが、通常は5~1000μmである。上記の範囲であると、伸縮性樹脂層の十分な強度が得られ易く、かつ乾燥が十分に行えるため伸縮性樹脂層中の残留溶媒量を低減できる。 The thickness of the elastic resin layer after drying is not particularly limited, but is usually 5 to 1000 μm. Within this range, the elastic resin layer is likely to have sufficient strength, and drying can be performed sufficiently, reducing the amount of residual solvent in the elastic resin layer.

伸縮性樹脂層の導体箔とは反対側の面に更に導体箔を積層することにより、伸縮性樹脂層の両面上に導体箔が形成された積層板を作製してもよい。伸縮性樹脂層の両面上に導体層を設けることにより、硬化時の積層板の反りを抑制することができる。 A laminate having conductor foil formed on both sides of the elastic resin layer may be produced by further laminating a conductor foil on the side of the elastic resin layer opposite the conductor foil. By providing conductor layers on both sides of the elastic resin layer, warping of the laminate during curing can be suppressed.

積層板(配線基板形成用積層板)の導体箔に配線パターンを形成させる手法としては、一般的にエッチング等を用いた手法が用いられる。例えば導体箔として銅箔を用いた場合、エッチング液としては、例えば濃硫酸と過酸化水素水の混合溶液、塩化第二鉄溶液等を使用できる。 A method for forming a wiring pattern on the conductor foil of a laminate (a laminate for forming a wiring board) generally involves a method using etching or the like. For example, when copper foil is used as the conductor foil, the etching solution can be, for example, a mixture of concentrated sulfuric acid and hydrogen peroxide, or a ferric chloride solution.

エッチングに用いるエッチングレジストとしては、例えばフォテックH-7025(日立化成株式会社製、商品名)、及びフォテックH-7030(日立化成株式会社製、商品名)、X-87(太陽ホールディングス株式会社製、商品名)が挙げられる。エッチングレジストは、配線パターンの形成の後、通常、除去される。 Examples of etching resists used in etching include Photec H-7025 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Photec H-7030 (trade name, manufactured by Hitachi Chemical Co., Ltd.), and X-87 (trade name, manufactured by Taiyo Holdings Co., Ltd.). The etching resist is usually removed after the wiring pattern is formed.

導体めっき膜を有する配線基板を製造する方法の一実施形態は、伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、導体めっき膜上にめっきレジストを形成する工程と、めっきレジストを露光し、露光後のめっきレジストを現像して、伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、レジストパターンを除去する工程と、無電解めっきによって形成された導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む。 One embodiment of a method for manufacturing a wiring board having a conductor plating film includes the steps of forming a conductor plating film on a stretchable resin layer by electroless plating, forming a plating resist on the conductor plating film, exposing the plating resist and developing the exposed plating resist to form a resist pattern that covers a portion of the stretchable resin layer, forming a further conductor plating film by electrolytic plating on the portion of the conductor plating film that is not covered by the resist pattern, removing the resist pattern, and removing the portion of the conductor plating film formed by electroless plating that is not covered by the conductor plating film formed by electrolytic plating.

配線基板を製造する方法の更に別の一実施形態は、伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後のエッチングレジストを現像して、伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体めっき膜を除去する工程と、レジストパターンを除去する工程と、を含む。 Yet another embodiment of the method for manufacturing a wiring board includes a step of forming an etching resist on a conductive plating film formed on an elastic resin layer, a step of exposing the etching resist and developing the exposed etching resist to form a resist pattern that covers a portion of the elastic resin layer, a step of removing the conductive plating film from a portion not covered by the resist pattern, and a step of removing the resist pattern.

めっきのマスクとして用いるめっきレジストとしては、例えばフォテックRY3325(日立化成株式会社製、商品名)、及びフォテックRY-5319(日立化成株式会社製、商品名)、MA-830(太陽ホールディングス株式会社製、商品名)が挙げられる。その他、無電解めっき及び電解めっきの詳細については上述のとおりである。 Examples of plating resists used as masks for plating include Photec RY3325 (product name, manufactured by Hitachi Chemical Co., Ltd.), Photec RY-5319 (product name, manufactured by Hitachi Chemical Co., Ltd.), and MA-830 (product name, manufactured by Taiyo Holdings Co., Ltd.). Other details of electroless plating and electrolytic plating are as described above.

配線基板に各種の電子素子を搭載することにより、ストレッチャブルデバイスを得ることができる。 By mounting various electronic elements on the wiring board, a stretchable device can be obtained.

本発明について以下の実施例を挙げて更に具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
<伸縮性樹脂層形成用の樹脂ワニスの作製>
(A)成分としてトルエンで希釈し不揮発分25質量%に調整した無水マレイン酸変性スチレンエチレンブタジエンゴム(KRATON株式会社製、商品名「FG1924GT」)80質量部(不揮発分の配合量)、(B)成分としてトルエンで希釈し不揮発分25質量%に調整したジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、商品名「EPICLON HP7200H」)11.1質量部(不揮発分の配合量)、(C)成分としてトルエンで希釈し不揮発分25質量%に調整したエステル系硬化剤(DIC株式会社製、商品名「HPC8000-65T」、ジシクロペンタジエン型のジフェノール化合物)8.9質量部(不揮発分の配合量)、及び(D)成分として1-ベンジル-2-メチルイミダゾール(四国化成株式会社製、商品名「1B2MZ」)3質量部を撹拌しながら混合して、樹脂ワニスを得た。
Example 1
<Preparation of Resin Varnish for Forming Elastic Resin Layer>
As the (A) component, 80 parts by mass (amount of non-volatile content) of maleic anhydride-modified styrene-ethylene-butadiene rubber (manufactured by KRATON Corporation, trade name "FG1924GT") diluted with toluene to a non-volatile content of 25% by mass, as the (B) component, 11.1 parts by mass (amount of non-volatile content) of dicyclopentadiene-type epoxy resin (manufactured by DIC Corporation, trade name "EPICLON HP7200H") diluted with toluene to a non-volatile content of 25% by mass, as the (C) component, 8.9 parts by mass (amount of non-volatile content) of an ester-based curing agent (manufactured by DIC Corporation, trade name "HPC8000-65T", dicyclopentadiene-type diphenol compound) diluted with toluene to a non-volatile content of 25% by mass, and as the (D) component, 3 parts by mass of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Corporation, trade name "1B2MZ") were mixed with stirring to obtain a resin varnish.

<積層フィルムの作製>
キャリアフィルムとして離型処理ポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA31」、厚み25μm)を準備した。このPETフィルムの離型処理面上にナイフコータ(株式会社康井精機製、商品名「SNC-350」)を用いて上記樹脂ワニスを塗布した。塗膜を乾燥機(株式会社二葉科学製、商品名「MSO-80TPS」)中、100℃で20分の加熱により乾燥して、厚み100μmの樹脂層(硬化前の伸縮性樹脂層)を形成させた。形成された樹脂層に、キャリアフィルムと同じ離型処理PETフィルムを、離型処理面が樹脂層側になる向きで保護フィルムとして貼付けて、積層フィルムを得た。
<Preparation of Laminated Film>
A release-treated polyethylene terephthalate (PET) film (manufactured by Teijin DuPont Films Co., Ltd., product name "Purex A31", thickness 25 μm) was prepared as a carrier film. The above-mentioned resin varnish was applied to the release-treated surface of this PET film using a knife coater (manufactured by Yasui Seiki Co., Ltd., product name "SNC-350"). The coating film was dried by heating at 100 ° C. for 20 minutes in a dryer (manufactured by Futaba Scientific Co., Ltd., product name "MSO-80TPS") to form a resin layer (elastic resin layer before curing) having a thickness of 100 μm. A release-treated PET film identical to the carrier film was attached to the formed resin layer as a protective film with the release-treated surface facing the resin layer side, to obtain a laminated film.

<導体基板の作製>
積層フィルムの保護フィルムを剥離し、露出した樹脂層に、表面粗さRaが1.5μmの粗化面を有する電解銅箔(古河電気工業株式会社製、商品名「F2-WS-12」)を、粗化面が樹脂層側になる向きで重ねた。その状態で、真空加圧式ラミネータ(ニッコー・マテリアルズ株式会社製、商品名「V130」)を用いて、圧力0.5MPa、温度90℃及び加圧時間60秒の条件で電解銅箔を樹脂層にラミネートした。その後、乾燥機(株式会社二葉科学製、商品名「MSO-80TPS」)中、180℃で60分の加熱により、樹脂層の硬化物である伸縮性樹脂層と、導体層としての電解銅箔とを有する導体基板を得た。
<Preparation of Conductive Substrate>
The protective film of the laminated film was peeled off, and an electrolytic copper foil (manufactured by Furukawa Electric Co., Ltd., product name "F2-WS-12") having a roughened surface with a surface roughness Ra of 1.5 μm was laminated on the exposed resin layer with the roughened surface facing the resin layer. In this state, the electrolytic copper foil was laminated to the resin layer using a vacuum pressure laminator (manufactured by Nikko Materials Co., Ltd., product name "V130") under conditions of a pressure of 0.5 MPa, a temperature of 90°C, and a pressure time of 60 seconds. Thereafter, the resin layer was heated at 180°C for 60 minutes in a dryer (manufactured by Futaba Scientific Co., Ltd., product name "MSO-80TPS") to obtain a conductor substrate having an elastic resin layer, which is a cured product of the resin layer, and an electrolytic copper foil as a conductor layer.

(実施例2~6及び比較例1~2)
樹脂ワニスの組成を表1に示す組成に変更したこと以外は実施例1と同様にして、樹脂ワニス、積層フィルム及び導体基板を作製した。なお、表1中、「HP5000」は、ノボラック型エポキシ樹脂(DIC株式会社製、商品名「EPICLON HP5000」)であり、「HPC8000-L-65MT」は、エステル系硬化剤(DIC株式会社製、商品名「EPICLON HPC8000-L-65MT」、HPC8000-65Tの低分子量グレード)であり、「HPC8150-60T」は、エステル系硬化剤(DIC株式会社製、商品名「EPICLON HPC8150-60T」、ナフタレン骨格を有する化合物)である。また、表1中の各成分の配合量は不揮発分の配合量であり、単位は「質量部」である。
(Examples 2 to 6 and Comparative Examples 1 and 2)
A resin varnish, a laminated film, and a conductor substrate were produced in the same manner as in Example 1, except that the composition of the resin varnish was changed to the composition shown in Table 1. In Table 1, "HP5000" is a novolac type epoxy resin (manufactured by DIC Corporation, product name "EPICLON HP5000"), "HPC8000-L-65MT" is an ester-based curing agent (manufactured by DIC Corporation, product name "EPICLON HPC8000-L-65MT", a low molecular weight grade of HPC8000-65T), and "HPC8150-60T" is an ester-based curing agent (manufactured by DIC Corporation, product name "EPICLON HPC8150-60T", a compound having a naphthalene skeleton). The amount of each component in Table 1 is the amount of non-volatile matter, and the unit is "parts by mass".

[引張弾性率及び破断伸び率の測定]
実施例及び比較例で得られた積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂層を形成させた。キャリアフィルム及び保護フィルムを除去し、伸縮性樹脂層を長さ40mm、幅10mmの短冊状に切断して、試験片を得た。この試験片の引張試験をオートグラフ(株式会社島津製作所製、商品名「EZ-S」)を用いて行い、応力-ひずみ曲線を得た。得られた応力-ひずみ曲線から、引張弾性率及び破断伸び率を求めた。引張試験は、チャック間距離20mm、引張速度50mm/分の条件で行った。引張弾性率は、応力0.5~1.0Nの範囲の応力-ひずみ曲線の傾きから求めた。試験片が破断した時点のひずみを破断伸び率として記録した。結果を表1に示す。
[Measurement of tensile modulus and elongation at break]
The laminated films obtained in the examples and comparative examples were heated at 180°C for 60 minutes to harden the resin layer, forming an elastic resin layer. The carrier film and protective film were removed, and the elastic resin layer was cut into strips of 40 mm length and 10 mm width to obtain a test piece. A tensile test of this test piece was performed using an autograph (manufactured by Shimadzu Corporation, product name "EZ-S") to obtain a stress-strain curve. The tensile modulus and breaking elongation were obtained from the obtained stress-strain curve. The tensile test was performed under conditions of a chuck distance of 20 mm and a tensile speed of 50 mm/min. The tensile modulus was obtained from the slope of the stress-strain curve in the stress range of 0.5 to 1.0 N. The strain at the time when the test piece broke was recorded as the breaking elongation. The results are shown in Table 1.

[回復率の測定]
上記引張弾性率及び破断伸び率の測定と同様にして、長さ40mm、幅10mmの短冊状の伸縮性樹脂層の試験片を作製した。この試験片を、オートグラフ(株式会社島津製作所製、商品名「EZ-S」)を用いて、引張速度100mm/分でひずみ20%まで伸長させ、その後応力を解放して初期位置に戻してから、再度引っ張り試験を行った。回復率Rは、1回目の引っ張り試験で加えたひずみ(変位量)をX、再度引っ張り試験を行ったときに荷重が掛かり始めるときの位置とXとの差をYとし、下記式により求めた。本試験において、Xは20%である。結果を表1に示す。
R(%)=Y/X×100
[Measurement of recovery rate]
In the same manner as in the measurement of the tensile modulus and elongation at break, a strip-shaped elastic resin layer test piece having a length of 40 mm and a width of 10 mm was prepared. This test piece was stretched to a strain of 20% at a tensile speed of 100 mm/min using an autograph (manufactured by Shimadzu Corporation, product name "EZ-S"), and then the stress was released and returned to the initial position, and a tensile test was performed again. The recovery rate R was calculated by the following formula, where X is the strain (displacement) applied in the first tensile test, and Y is the difference between the position at which the load begins to be applied when the tensile test is performed again and X. In this test, X is 20%. The results are shown in Table 1.
R(%)=Y/X×100

[比誘電率(Dk)・誘電正接(Df)の測定]
上記引張弾性率及び破断伸び率の測定と同様にして、80mm×80mmのサイズの伸縮性樹脂層の試験片を作製した。この試験片を用いて、空洞共振器法によりDk及びDfを算出した。測定器にはベクトル型ネットワークアナライザE8364B(キーサイトテクノロジー社製)、CP531(関東電子応用開発社製)及びCPMA-V2(プログラム)をそれぞれ使用して、雰囲気温度25℃、周波数10kHzの条件で測定を行った。結果を表1に示す。
[Measurement of dielectric constant (Dk) and dielectric loss tangent (Df)]
In the same manner as in the measurement of the tensile modulus and elongation at break, a test piece of the elastic resin layer having a size of 80 mm x 80 mm was prepared. Using this test piece, Dk and Df were calculated by the cavity resonator method. Measurements were performed under conditions of an ambient temperature of 25°C and a frequency of 10 kHz using vector network analyzers E8364B (manufactured by Keysight Technologies), CP531 (manufactured by Kanto Electronics Application Development Co., Ltd.), and CPMA-V2 (program), respectively. The results are shown in Table 1.

[耐熱性の評価]
実施例1~6及び比較例1~2で得られた積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂層を形成させた。キャリアフィルム及び保護フィルムを除去してから、伸縮性樹脂層を窒素リフローシステム(田村製作所株式会社製、商品名「TNV-EN」)を用いて、IPC/JEDEC J-STD-020に準拠する図3の温度プロファイルで加熱処理する工程を10回繰り返す耐熱性試験を行った。耐熱性試験後、上記と同様の方法で、伸縮性樹脂層の引張弾性率、破断伸び率及び回復率を測定した。その結果を、耐熱性試験前の測定結果と併せて表2及び表3に示す。
[Evaluation of heat resistance]
The laminated films obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were heated at 180°C for 60 minutes to harden the resin layer, forming an elastic resin layer. After removing the carrier film and protective film, a heat resistance test was performed in which the elastic resin layer was heat-treated 10 times using a nitrogen reflow system (manufactured by Tamura Manufacturing Co., Ltd., product name "TNV-EN") with the temperature profile of Figure 3 conforming to IPC/JEDEC J-STD-020. After the heat resistance test, the tensile modulus, breaking elongation and recovery rate of the elastic resin layer were measured in the same manner as above. The results are shown in Tables 2 and 3 together with the measurement results before the heat resistance test.

[赤外線吸収スペクトル(IR)の測定]
比較例1の積層フィルムの樹脂層(硬化前の伸縮性樹脂層)及びそれを180℃で60分加熱して硬化した後の伸縮性樹脂層、並びに、実施例1及び3の積層フィルムの樹脂層を180℃で60分加熱して硬化した後の伸縮性樹脂層について、キャリアフィルム及び保護フィルムを除去した後、フーリエ変換赤外分光光度計(Bio-Rad社製、商品名「FTS3000MX」)を用いて、透過法により赤外線吸収スペクトルを測定した。図4に、比較例1の硬化前後の伸縮性樹脂層の赤外線吸収スペクトルを、図5に、実施例1、3及び比較例1の硬化後の伸縮性樹脂層の赤外線吸収スペクトルを、それぞれ示す。
[Measurement of infrared absorption spectrum (IR)]
The resin layer (elastic resin layer before curing) of the laminated film of Comparative Example 1 and the elastic resin layer after heating it at 180 ° C. for 60 minutes and curing it, and the resin layer of the laminated film of Examples 1 and 3 after heating it at 180 ° C. for 60 minutes and curing it, the carrier film and the protective film were removed, and then the infrared absorption spectrum was measured by a transmission method using a Fourier transform infrared spectrophotometer (manufactured by Bio-Rad, product name "FTS3000MX"). Figure 4 shows the infrared absorption spectrum of the elastic resin layer before and after curing of Comparative Example 1, and Figure 5 shows the infrared absorption spectrum of the elastic resin layer after curing of Examples 1, 3 and Comparative Example 1, respectively.

図4に示されるように、比較例1の伸縮性樹脂層では、硬化後に、硬化前には無かった水酸基の伸縮振動に帰属される3400cm-1付近の吸収ピークが現れており、硬化反応により水酸基が生成したことが確認された。また、図5に示されるように、実施例1及び3の伸縮性樹脂層では、水酸基の伸縮振動に帰属される吸収ピークがほぼ無く、水酸基の生成が抑制されていることが確認された。 As shown in Figure 4, in the elastic resin layer of Comparative Example 1, after curing, an absorption peak at about 3400 cm -1 attributed to the stretching vibration of the hydroxyl group that was not present before curing appeared, confirming that hydroxyl groups were generated by the curing reaction. Also, as shown in Figure 5, in the elastic resin layers of Examples 1 and 3, there was almost no absorption peak attributable to the stretching vibration of the hydroxyl group, confirming that the generation of hydroxyl groups was suppressed.

[配線基板の作製とその評価]
図2に示すような、伸縮性樹脂層3及び伸縮性樹脂層3上に形成された波型パターンを有する導体箔(電解銅箔)を導体層5として有する試験用の配線基板1を作製した。まず、伸縮性樹脂層表面に凹凸が形成された実施例及び比較例で得られた導体基板の導体層上にエッチングレジスト(日立化成株式会社製、商品名「フォテックRY-5325」)をロールラミネータで貼着し、そこに波型パターンを形成したフォトツールを密着させた。エッチングレジストを、オーク製作所社製EXM-1201型露光機を使用して、50mJ/cmのエネルギー量で露光した。次いで、30℃の1質量%炭酸ナトリウム水溶液で、240秒間スプレー現像を行い、エッチングレジストの未露光部を溶解させ、波型の開口部を有するレジストパターンを形成した。次いで、エッチング液により、レジストパターンによって覆われていない部分の銅箔を除去した。その後、剥離液によりエッチングレジストを除去し、配線幅が50μmで所定の方向Xに沿って蛇行する波型の配線パターンを形成している導体層5を伸縮性樹脂層3上に有する配線基板1を得た。
[Fabrication and evaluation of wiring board]
As shown in FIG. 2, a test wiring board 1 having an elastic resin layer 3 and a conductor foil (electrolytic copper foil) having a wave pattern formed on the elastic resin layer 3 as a conductor layer 5 was prepared. First, an etching resist (manufactured by Hitachi Chemical Co., Ltd., product name "Photec RY-5325") was attached to the conductor layer of the conductor board obtained in the examples and comparative examples in which the elastic resin layer surface was unevenly formed, using a roll laminator, and a phototool having a wave pattern formed thereon was adhered to it. The etching resist was exposed to an energy amount of 50 mJ/cm 2 using an EXM-1201 exposure machine manufactured by Oak Seisakusho Co., Ltd. Next, spray development was performed for 240 seconds with a 1% by mass sodium carbonate aqueous solution at 30 ° C., dissolving the unexposed parts of the etching resist, and a resist pattern having wave-shaped openings was formed. Next, the copper foil in the parts not covered by the resist pattern was removed by an etching solution. Thereafter, the etching resist was removed with a stripping solution to obtain a wiring board 1 having, on the elastic resin layer 3, a conductor layer 5 forming a wavy wiring pattern meandering along a predetermined direction X with a wiring width of 50 μm.

得られた配線基板をXの方向に歪み10%まで引張変形させ、元に戻したときの、伸縮性樹脂層及び波型の配線パターンを観察した。その結果、実施例及び比較例のいずれの配線基板も、伸張時に伸縮性樹脂層及び配線パターンの破断を生じなかった。 The obtained wiring board was tensile deformed in the X direction to a strain of 10%, and then returned to its original state, and the elastic resin layer and the wavy wiring pattern were observed. As a result, in both the example and comparative example wiring boards, no breakage occurred in the elastic resin layer or the wiring pattern when stretched.

Figure 0007468610000002
Figure 0007468610000002

Figure 0007468610000003
Figure 0007468610000003

Figure 0007468610000004
Figure 0007468610000004

表1に示した結果から明らかなように、実施例1~6の導体基板は、比較例1~2の導体基板と比較して、優れた伸縮性を有すると共に、低い誘電正接を有することが確認された。また、表2及び表3に示した結果から明らかなように、実施例1~6の導体基板は、耐熱性試験後でも良好な伸縮性及び弾性率を維持できることが確認された。 As is clear from the results shown in Table 1, it was confirmed that the conductor substrates of Examples 1 to 6 have excellent elasticity and a low dielectric tangent compared to the conductor substrates of Comparative Examples 1 and 2. In addition, as is clear from the results shown in Tables 2 and 3, it was confirmed that the conductor substrates of Examples 1 to 6 can maintain good elasticity and elastic modulus even after the heat resistance test.

本発明の導体基板及びこれから得られる配線基板は、例えばウェアラブル機器の基板として適用することが期待される。 The conductor substrate of the present invention and the wiring substrate obtained from it are expected to be used, for example, as substrates for wearable devices.

1…配線基板、3…伸縮性樹脂層、5…導体層(導体箔又は導体めっき膜)。 1...wiring board, 3...elastic resin layer, 5...conductor layer (conductor foil or conductor plating film).

Claims (13)

伸縮性樹脂層と、
前記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板であって、
前記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含み、
前記伸縮性樹脂層を歪み20%まで引張変形した後の回復率が80%以上である、導体基板。
An elastic resin layer;
A conductive substrate having a conductive plating film provided on the elastic resin layer,
the elastic resin layer comprises a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester-based curing agent;
A conductive substrate, wherein the elastic resin layer has a recovery rate of 80% or more after being tensile-deformed to a strain of 20%.
前記(A)ゴム成分が、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種のゴムを含む、請求項1に記載の導体基板。 The conductive substrate according to claim 1, wherein the (A) rubber component contains at least one rubber selected from the group consisting of acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluororubber, vulcanized rubber, epichlorohydrin rubber, and chlorinated butyl rubber. 前記(A)ゴム成分が、架橋基を有するゴムを含む、請求項1又は2に記載の導体基板。 The conductive substrate according to claim 1 or 2, wherein the rubber component (A) includes a rubber having a crosslinking group. 前記架橋基が、酸無水物基又はカルボキシル基のうちの少なくとも一方である、請求項3に記載の導体基板。 The conductive substrate according to claim 3, wherein the crosslinking group is at least one of an acid anhydride group and a carboxyl group. 前記樹脂組成物が、(D)硬化促進剤を更に含有する、請求項1~4のいずれか一項に記載の導体基板。 The conductive substrate according to any one of claims 1 to 4, wherein the resin composition further contains (D) a curing accelerator. 前記樹脂組成物における前記(A)ゴム成分の含有量が、前記(A)ゴム成分、前記(B)架橋成分及び前記(C)エステル系硬化剤の総量を基準として、60~95質量%である、請求項1~5のいずれか一項に記載の導体基板。 The conductive substrate according to any one of claims 1 to 5, wherein the content of the rubber component (A) in the resin composition is 60 to 95 mass% based on the total amount of the rubber component (A), the cross-linking component (B), and the ester-based hardener (C). 前記樹脂組成物が、酸化防止剤を更に含有する、請求項1~6のいずれか一項に記載の導体基板。 The conductive substrate according to any one of claims 1 to 6, wherein the resin composition further contains an antioxidant. 請求項1~7のいずれか一項に記載の導体基板を含み、前記導体めっき膜が配線パターンを形成している、配線基板。 A wiring board comprising the conductor substrate according to any one of claims 1 to 7, in which the conductor plating film forms a wiring pattern. 請求項8に記載の配線基板と、前記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイス。 A stretchable device comprising the wiring board according to claim 8 and an electronic element mounted on the wiring board. 伸縮性樹脂層と、前記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板を含み、前記導体めっき膜が配線パターンを形成している、配線基板を形成するために用いられる、請求項1~7のいずれか一項に記載の導体基板。 The conductor substrate according to any one of claims 1 to 7, which is used to form a wiring substrate, includes a conductor substrate having a stretchable resin layer and a conductor plating film provided on the stretchable resin layer, the conductor plating film forming a wiring pattern. 伸縮性樹脂層上にめっきレジストを形成する工程と、
前記めっきレジストを露光し、露光後の前記めっきレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記伸縮性樹脂層の前記レジストパターンによって覆われていない部分の表面上に無電解めっきによって導体めっき膜を形成する工程と、
前記レジストパターンを除去する工程と、を含む、請求項8に記載の配線基板を製造する方法。
forming a plating resist on the elastic resin layer;
A step of exposing the plating resist and developing the exposed plating resist to form a resist pattern that covers a part of the elastic resin layer;
forming a conductive plating film by electroless plating on a surface of the elastic resin layer in a portion not covered by the resist pattern;
The method for manufacturing a wiring board according to claim 8 , further comprising the step of: removing the resist pattern.
伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、
前記導体めっき膜上にめっきレジストを形成する工程と、
前記めっきレジストを露光し、露光後の前記めっきレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記レジストパターンによって覆われていない部分の前記導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、
前記レジストパターンを除去する工程と、
無電解めっきによって形成された前記導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む、請求項8に記載の配線基板を製造する方法。
forming a conductive plating film on the elastic resin layer by electroless plating;
forming a plating resist on the conductor plating film;
A step of exposing the plating resist and developing the exposed plating resist to form a resist pattern that covers a part of the elastic resin layer;
forming a further conductive plating film by electrolytic plating on the conductive plating film in the portion not covered by the resist pattern;
removing the resist pattern;
9. The method for producing a wiring board according to claim 8, further comprising the step of removing a portion of the conductive plating film formed by electroless plating that is not covered by the conductive plating film formed by electrolytic plating.
伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、
前記エッチングレジストを露光し、露光後の前記エッチングレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記レジストパターンによって覆われていない部分の前記導体めっき膜を除去する工程と、
前記レジストパターンを除去する工程と、
を含む、請求項8に記載の配線基板を製造する方法。
forming an etching resist on the conductor plating film formed on the elastic resin layer;
A step of exposing the etching resist and developing the exposed etching resist to form a resist pattern that covers a part of the elastic resin layer;
removing the conductor plating film from the portion not covered by the resist pattern;
removing the resist pattern;
The method for manufacturing the wiring substrate according to claim 8 , comprising:
JP2022203298A 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate Active JP7468610B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018092105 2018-05-11
JP2018092105 2018-05-11
JP2020518362A JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
PCT/JP2019/018795 WO2019216425A1 (en) 2018-05-11 2019-05-10 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020518362A Division JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Publications (2)

Publication Number Publication Date
JP2023029399A JP2023029399A (en) 2023-03-03
JP7468610B2 true JP7468610B2 (en) 2024-04-16

Family

ID=68467028

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020518362A Active JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203296A Active JP7468609B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203298A Active JP7468610B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203303A Active JP7468611B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2020518362A Active JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203296A Active JP7468609B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022203303A Active JP7468611B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Country Status (5)

Country Link
JP (4) JP7338621B2 (en)
KR (1) KR20210007956A (en)
CN (1) CN112088089A (en)
TW (1) TW201946777A (en)
WO (1) WO2019216425A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (en) * 2022-07-12 2024-01-18 株式会社レゾナック Curable resin composition, curable film, and laminated film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059999A (en) 2004-08-19 2006-03-02 Tdk Corp Printed-wiring board and electronic component
JP2007051258A (en) 2005-08-19 2007-03-01 Sumitomo Bakelite Co Ltd Resin composition, coverlay film using the same and metal-clad laminated board
JP2007112848A (en) 2005-10-18 2007-05-10 Sumitomo Bakelite Co Ltd Resin composition and cover-lay film and metal-clad laminate each using the same
JP2007211143A (en) 2006-02-09 2007-08-23 Sumitomo Bakelite Co Ltd Resin composition, cover-lay film and metal-clad laminate
JP2008195846A (en) 2007-02-14 2008-08-28 Sumitomo Bakelite Co Ltd Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP2011233622A (en) 2010-04-26 2011-11-17 Hitachi Chem Co Ltd Flexible printed wiring board, optical-electrical wiring board and manufacturing method of the same boards
JP2012122046A (en) 2010-11-15 2012-06-28 Hitachi Chemical Co Ltd Resin film for printed wiring board and method for manufacturing the same
JP2015067797A (en) 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product of the same, electrical and electronic parts and circuit board
WO2018016534A1 (en) 2016-07-20 2018-01-25 日立化成株式会社 Composite film for electronic devices using high frequency band signals, printed wiring board and manufacturing method therefor
JP2018024774A (en) 2016-08-10 2018-02-15 味の素株式会社 Resin composition

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316525A (en) * 1994-05-24 1995-12-05 Mitsui Petrochem Ind Ltd Adhesive composition for flexible printed-wiring board
JPH08302161A (en) * 1995-05-10 1996-11-19 Hitachi Chem Co Ltd Resin composition and method for chemically etching same
JP3635811B2 (en) * 1996-10-03 2005-04-06 東レ株式会社 Copper-clad laminate for flexible printed wiring board and flexible printed wiring board
US20010018122A1 (en) * 2000-01-20 2001-08-30 Shin-Etsu Chemical Co., Ltd. Adhesive composition
JP2003313526A (en) * 2002-04-19 2003-11-06 Hitachi Kasei Polymer Co Ltd Adhesive composition for flexible printed wiring board lamination and adhesive film
JP2004136631A (en) * 2002-10-18 2004-05-13 Hitachi Kasei Polymer Co Ltd Adhesive composition for laminating flexible printed wiring boards, and adhesive film
JP3987074B2 (en) * 2005-06-27 2007-10-03 京セラケミカル株式会社 Epoxy resin composition, copper-clad laminate, adhesive film, coverlay and printed wiring board
JP2008007566A (en) * 2006-06-27 2008-01-17 Adeka Corp New compound, epoxy resin composition and its hardened product
US8207473B2 (en) * 2008-06-24 2012-06-26 Imec Method for manufacturing a stretchable electronic device
JP2010165848A (en) * 2009-01-15 2010-07-29 Kyocera Chemical Corp Coated flexible wiring board, liquid crystal display module, and method of manufacturing coated flexible wiring board
KR101682886B1 (en) * 2009-07-14 2016-12-06 아지노모토 가부시키가이샤 Copper clad adhesive film
KR101906687B1 (en) * 2010-03-08 2018-12-05 아지노모토 가부시키가이샤 Manufacturing method for trench-type circuit board
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
JP2014232776A (en) * 2013-05-28 2014-12-11 味の素株式会社 Method for manufacturing multilayer printed wiring board
FI20145907A (en) 2014-10-16 2016-04-17 Savo Solar Oy Solar Thermal Collectors
EP3232743A4 (en) * 2014-12-08 2018-09-19 Fujikura, Ltd. Stretchable substrate
CN106409873B (en) * 2016-10-12 2019-06-04 上海天马微电子有限公司 Flexible display apparatus and manufacturing method
US11259409B2 (en) * 2016-11-15 2022-02-22 Showa Denko Materials Co., Ltd. Conductor substrate, wiring substrate and method for producing wiring substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059999A (en) 2004-08-19 2006-03-02 Tdk Corp Printed-wiring board and electronic component
JP2007051258A (en) 2005-08-19 2007-03-01 Sumitomo Bakelite Co Ltd Resin composition, coverlay film using the same and metal-clad laminated board
JP2007112848A (en) 2005-10-18 2007-05-10 Sumitomo Bakelite Co Ltd Resin composition and cover-lay film and metal-clad laminate each using the same
JP2007211143A (en) 2006-02-09 2007-08-23 Sumitomo Bakelite Co Ltd Resin composition, cover-lay film and metal-clad laminate
JP2008195846A (en) 2007-02-14 2008-08-28 Sumitomo Bakelite Co Ltd Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP2011233622A (en) 2010-04-26 2011-11-17 Hitachi Chem Co Ltd Flexible printed wiring board, optical-electrical wiring board and manufacturing method of the same boards
JP2012122046A (en) 2010-11-15 2012-06-28 Hitachi Chemical Co Ltd Resin film for printed wiring board and method for manufacturing the same
JP2015067797A (en) 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product of the same, electrical and electronic parts and circuit board
WO2018016534A1 (en) 2016-07-20 2018-01-25 日立化成株式会社 Composite film for electronic devices using high frequency band signals, printed wiring board and manufacturing method therefor
JP2018024774A (en) 2016-08-10 2018-02-15 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP2023029399A (en) 2023-03-03
JPWO2019216425A1 (en) 2021-05-27
TW201946777A (en) 2019-12-16
JP7468609B2 (en) 2024-04-16
JP2023029400A (en) 2023-03-03
WO2019216425A1 (en) 2019-11-14
JP7338621B2 (en) 2023-09-05
JP2023029398A (en) 2023-03-03
KR20210007956A (en) 2021-01-20
JP7468611B2 (en) 2024-04-16
CN112088089A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
TWI486372B (en) Resin composition
KR102561850B1 (en) Process for producing wiring board
JP2023075219A (en) Conductor substrate, and wiring substrate and method for manufacturing wiring substrate
KR102186664B1 (en) Process for the production of laminates
JP7468611B2 (en) Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2011233883A (en) Dry film for coverlay, coverlay, flexible printed wiring board and method for manufacturing flexible printed wiring board
JP6611396B2 (en) Plating layer forming composition, plated layer precursor film, patterned film with plated layer, conductive film, touch panel
TWI753071B (en) Wiring board, method for manufacturing the same, and stretchable element
KR101100381B1 (en) Adhesive Composition for Halogen-Free Coverlay Film and Coverlay Film Coated by the Same
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
JP2012015465A (en) Interlayer adhesion sheet and method of manufacturing multilayer flexible wiring board
JP2022018372A (en) Laminate film and conductor substrate
JP7110711B2 (en) Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2021017461A (en) Prepreg, insulation base material, conductor substrate, and wiring board
TW202409183A (en) Curable resin composition, curable film, and laminated film
TW202409238A (en) Curable resin composition, curable film, and laminated film
JP2005120327A (en) Resin composition for electronic material, copper-clad board for printed wiring board, coverlay film, and prepreg
JP2022018376A (en) Resin composition and conductor substrate
JP2019160965A (en) Conductor substrate, wiring board, and method for manufacturing them
KR20100092608A (en) Adhesive composition for halogen-free coverlay film and coverlay film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150