JP2023029400A - Conductor substrate, wiring board, stretchable device, and method for manufacturing wiring board - Google Patents

Conductor substrate, wiring board, stretchable device, and method for manufacturing wiring board Download PDF

Info

Publication number
JP2023029400A
JP2023029400A JP2022203303A JP2022203303A JP2023029400A JP 2023029400 A JP2023029400 A JP 2023029400A JP 2022203303 A JP2022203303 A JP 2022203303A JP 2022203303 A JP2022203303 A JP 2022203303A JP 2023029400 A JP2023029400 A JP 2023029400A
Authority
JP
Japan
Prior art keywords
resin layer
rubber
conductor
plating
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022203303A
Other languages
Japanese (ja)
Other versions
JP7468611B2 (en
Inventor
禎宏 小川
Sadahiro Ogawa
剛史 正木
Takashi Masaki
崇司 川守
Takashi Kawamori
タンイー シム
Tanyi Sim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Resonac Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Holdings Corp filed Critical Resonac Holdings Corp
Publication of JP2023029400A publication Critical patent/JP2023029400A/en
Application granted granted Critical
Publication of JP7468611B2 publication Critical patent/JP7468611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists

Abstract

PROBLEM TO BE SOLVED: To provide a conductor substrate having high stretchability and a low dielectric loss tangent.
SOLUTION: The conductor substrate includes a stretchable resin layer and a conductor plating film provided on the stretchable resin layer. The stretchable resin layer contains a cured product of a resin composition containing (A) a rubber component, (B) a crosslinking component having an epoxy group, and (C) an ester-based curing agent. The content of the rubber component (A) in the resin composition is 60-95 mass% based on the total amount of the rubber component (A), the crosslinking component (B), and the ester-based curing agent (C).
SELECTED DRAWING: None
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明の一側面は、高い伸縮性を有することのできる配線基板、及びその製造方法に関する。本発明の別の側面は、上記配線基板を形成するために用いることのできる導体基板に関する。本発明の更に別の側面は、上記配線基板を用いたストレッチャブルデバイスに関する。 One aspect of the present invention relates to a wiring board that can have high elasticity and a method for manufacturing the same. Another aspect of the present invention relates to a conductor substrate that can be used to form the above wiring substrate. Yet another aspect of the present invention relates to a stretchable device using the wiring substrate.

近年、ウェアラブル機器及びヘルスケア関連機器等の分野において、例えば身体の曲面又は関節部に沿って使用できると共に、脱着しても接続不良が生じにくいためのフレキシブル性及び伸縮性が求められている。このような機器を構成するためには、高い伸縮性を持つ配線基板又は基材が求められる。 In recent years, in the fields of wearable devices and healthcare-related devices, there has been a demand for flexibility and stretchability so that they can be used, for example, along curved surfaces or joints of the body, and are less likely to cause poor connection when attached and detached. In order to configure such equipment, a wiring board or base material with high elasticity is required.

特許文献1には、伸縮性の樹脂組成物を用いてメモリーチップ等の半導体素子を封止する方法が記載されている。特許文献1では、伸縮性の樹脂組成物の封止用途への適用が主として検討されている。 Patent Literature 1 describes a method of encapsulating a semiconductor element such as a memory chip using an elastic resin composition. In Patent Document 1, application of a stretchable resin composition to sealing applications is mainly studied.

国際公開第2016/080346号WO2016/080346

特許文献1に記載のように、封止材に伸縮性を持たせることで従来の封止材では困難であった伸縮性を有した部材の実現が可能となった。一方で、ベース基材は伸縮性を有していないため、より高い伸縮性を持たせることが困難であった。そのため、より高い伸縮性を有する配線基板が求められている。 As described in Patent Document 1, by imparting stretchability to the sealing material, it has become possible to realize a member having stretchability, which has been difficult with conventional sealing materials. On the other hand, since the base material does not have stretchability, it has been difficult to impart higher stretchability. Therefore, there is a demand for a wiring board having higher stretchability.

また、耐熱性向上の観点から、配線基板のベース基材を作製するための材料としては、反応性官能基を有する架橋成分を用いることが検討されている。しかしながら、反応性官能基を有する架橋成分を用いると、得られるベース基材の誘電正接が増加し易く、ベース基材上に設けられた配線の伝送損失が増大し易いという問題がある。 In addition, from the viewpoint of improving heat resistance, the use of a cross-linking component having a reactive functional group is being studied as a material for producing a base material of a wiring board. However, the use of a cross-linking component having a reactive functional group tends to increase the dielectric loss tangent of the resulting base material, which tends to increase the transmission loss of wiring provided on the base material.

このような状況において、本発明の一側面は、高い伸縮性を有すると共に、低い誘電正接を有する導体基板、それを用いた配線基板、ストレッチャブルデバイス及び配線基板の製造方法を提供することを目的とする。 Under such circumstances, an object of one aspect of the present invention is to provide a conductive substrate having high stretchability and low dielectric loss tangent, a wiring substrate using the same, a stretchable device, and a method for manufacturing a wiring substrate. and

上記目的を達成するために、本発明の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体箔と、を有する導体基板であって、上記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む、導体基板を提供する。 In order to achieve the above object, one aspect of the present invention is a conductive substrate having a stretchable resin layer and a conductive foil provided on the stretchable resin layer, wherein the stretchable resin layer comprises: Provided is a conductor substrate including a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester curing agent.

本発明の別の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板であって、上記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む、導体基板を提供する。 Another aspect of the present invention is a conductor substrate having a stretchable resin layer and a conductive plating film provided on the stretchable resin layer, wherein the stretchable resin layer comprises (A) a rubber component and (B) a cross-linking component having an epoxy group, and (C) an ester curing agent.

上記導体基板によれば、そのベース基材として(A)ゴム成分を含む伸縮性樹脂層を用いることにより、高い伸縮性を得ることができる。また、従来、伸縮性樹脂層を作製するための材料として反応性官能基を有する架橋成分を用いた場合に誘電正接が増加してしまうのは、架橋成分が硬化反応時に水酸基を生成するためであると考えられる。水酸基は体積が小さく分極率が高い官能基であるため、水酸基を有する材料は全体として誘電正接が増加することとなる。これに対し、架橋成分として(B)エポキシ基を有する架橋成分と、硬化剤として(C)エステル系硬化剤とを組み合わせて用いることにより、架橋成分の硬化反応時に水酸基が生成することを大きく抑制できることを本発明者らは見出した。これは、架橋成分が有するエポキシ基と、エステル系硬化剤との硬化反応が、水酸基の生成を伴わず、また、硬化後においても水酸基を生成し難いためである。更に、それらの硬化物は、伸縮性に悪影響を及ぼさない。このため、上記構成を有する導体基板によれば、高い伸縮性を維持しつつ、耐熱性を向上できる架橋成分を用いながら低い誘電正接を実現することができる。 According to the above-mentioned conductor board, high stretchability can be obtained by using (A) the stretchable resin layer containing the rubber component as the base material. Conventionally, when a cross-linking component having a reactive functional group is used as a material for producing a stretchable resin layer, the dielectric loss tangent increases because the cross-linking component generates hydroxyl groups during the curing reaction. It is believed that there is. Since the hydroxyl group is a functional group with a small volume and high polarizability, the dielectric loss tangent of the material having the hydroxyl group increases as a whole. On the other hand, by using a combination of (B) a crosslinking component having an epoxy group as a crosslinking component and (C) an ester-based curing agent as a curing agent, the generation of hydroxyl groups during the curing reaction of the crosslinking component is greatly suppressed. The inventors have found that it is possible. This is because the curing reaction between the epoxy group of the cross-linking component and the ester-based curing agent does not accompany the formation of hydroxyl groups, and the formation of hydroxyl groups is difficult even after curing. Furthermore, their cured products do not adversely affect stretchability. Therefore, according to the conductive substrate having the above configuration, a low dielectric loss tangent can be realized while maintaining high stretchability and using a cross-linking component capable of improving heat resistance.

本発明の別の一側面は、上記本発明の導体基板を含み、上記導体箔又は導体めっき膜が配線パターンを形成している、配線基板を提供する。上記配線基板は、上記本発明の導体基板における導体箔又は導体めっき膜が配線パターンを形成したものであり、上記特定の構成を有する伸縮性樹脂層を備えるものであるため、高い伸縮性を有すると共に、架橋成分を用いることで高い耐熱性を有しつつ、低い誘電正接を有することができ、配線パターンの伝送損失が十分に低減されたものとなる。 Another aspect of the present invention provides a wiring substrate including the conductor substrate of the present invention, wherein the conductor foil or conductor plating film forms a wiring pattern. The wiring board is obtained by forming a wiring pattern from the conductor foil or the conductor plating film of the conductor board of the present invention, and is provided with the elastic resin layer having the specific configuration, and thus has high elasticity. At the same time, the use of the cross-linking component can provide high heat resistance and low dielectric loss tangent, thereby sufficiently reducing the transmission loss of the wiring pattern.

本発明の別の一側面は、上記本発明の配線基板と、上記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイスを提供する。上記ストレッチャブルデバイスは、上記本発明の配線基板を備えるものであり、上記特定の構成を有する伸縮性樹脂層を備えるものであるため、高い伸縮性を有すると共に、架橋成分を用いることで高い耐熱性を有しつつ、低い誘電正接を有することができ、配線パターンの伝送損失が十分に低減されたものとなる。 Another aspect of the present invention provides a stretchable device including the wiring board of the present invention and an electronic element mounted on the wiring board. The stretchable device includes the wiring board of the present invention, and includes the stretchable resin layer having the specific configuration. It is possible to have a low dielectric loss tangent while maintaining the property, and the transmission loss of the wiring pattern is sufficiently reduced.

本発明の別の一側面は、伸縮性樹脂層と、上記伸縮性樹脂層上に設けられた導体箔又は導体めっき膜と、を有する導体基板を含み、上記導体箔又は導体めっき膜が配線パターンを形成している、配線基板を形成するために用いられる、上記本発明の導体基板を提供する。 Another aspect of the present invention includes a conductor substrate having an elastic resin layer and a conductor foil or conductor plating film provided on the elastic resin layer, wherein the conductor foil or conductor plating film is a wiring pattern. The conductor substrate of the present invention, which is used to form a wiring substrate, is provided.

本発明の別の一側面は、伸縮性樹脂層と上記伸縮性樹脂層上に積層された導体箔とを有する積層板を準備する工程と、上記導体箔上にエッチングレジストを形成する工程と、上記エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、上記導体箔の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体箔を除去する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention includes the steps of preparing a laminate having a stretchable resin layer and a conductor foil laminated on the stretchable resin layer, forming an etching resist on the conductor foil, exposing the etching resist and developing the etching resist after exposure to form a resist pattern covering a portion of the conductor foil; and removing a portion of the conductor foil not covered by the resist pattern. and a step of removing the resist pattern.

本発明の別の一側面は、伸縮性樹脂層上にめっきレジストを形成する工程と、上記めっきレジストを露光し、露光後の上記めっきレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記伸縮性樹脂層の上記レジストパターンによって覆われていない部分の表面上に無電解めっきによって導体めっき膜を形成する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention includes a step of forming a plating resist on a stretchable resin layer, exposing the plating resist, developing the exposed plating resist, and partially removing the stretchable resin layer. forming a covering resist pattern; forming a conductive plating film by electroless plating on the surface of the stretchable resin layer not covered by the resist pattern; removing the resist pattern; to provide a method for manufacturing the wiring board of the present invention.

本発明の別の一側面は、伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、上記導体めっき膜上にめっきレジストを形成する工程と、上記めっきレジストを露光し、露光後の上記めっきレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、上記レジストパターンを除去する工程と、無電解めっきによって形成された上記導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention includes the steps of forming a conductor plating film on an elastic resin layer by electroless plating, forming a plating resist on the conductor plating film, exposing the plating resist to light, and exposing the plating resist to light. developing the plating resist to form a resist pattern covering a portion of the elastic resin layer; and electroplating a portion of the conductive plating film not covered by the resist pattern with electroplating. forming a further film; removing the resist pattern; and removing a portion of the conductor plating film formed by electroless plating that is not covered by the conductor plating film formed by electrolytic plating. and a method for manufacturing the wiring board of the present invention.

本発明の別の一側面は、伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、上記エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、上記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体めっき膜を除去する工程と、上記レジストパターンを除去する工程と、を含む、上記本発明の配線基板を製造する方法を提供する。 Another aspect of the present invention includes a step of forming an etching resist on a conductive plating film formed on a stretchable resin layer, exposing the etching resist, developing the etching resist after exposure, and forming a resist pattern covering a part of the elastic resin layer; removing the conductive plating film in a portion not covered by the resist pattern; and removing the resist pattern. A method for manufacturing the wiring substrate of the present invention is provided.

上記製造方法により、導体箔又は導体めっき膜が配線パターンを形成している本発明の配線基板を効率的に製造することができる。 By the manufacturing method described above, it is possible to efficiently manufacture the wiring board of the present invention in which the conductor foil or conductor plating film forms the wiring pattern.

本発明の一側面によれば、高い伸縮性を有すると共に、低い誘電正接を有する導体基板、それを用いた配線基板、ストレッチャブルデバイス及び配線基板の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to one aspect of the present invention, it is possible to provide a conductive substrate having high stretchability and low dielectric loss tangent, a wiring substrate using the same, a stretchable device, and a method for manufacturing a wiring substrate.

回復率の測定例を示す応力-ひずみ曲線である。It is a stress-strain curve showing an example of recovery rate measurement. 配線基板の一実施形態を示す平面図である。It is a top view which shows one Embodiment of a wiring board. 耐熱性試験の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of a heat resistance test. 比較例1の硬化前後の伸縮性樹脂層の赤外線吸収スペクトルを示す図である。2 is a diagram showing infrared absorption spectra of a stretchable resin layer before and after curing in Comparative Example 1. FIG. 実施例1、3及び比較例1の硬化後の伸縮性樹脂層の赤外線吸収スペクトルを示す図である。2 is a diagram showing infrared absorption spectra of stretchable resin layers after curing in Examples 1 and 3 and Comparative Example 1. FIG.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Several embodiments of the invention are described in detail below. However, the present invention is not limited to the following embodiments.

一実施形態に係る導体基板は、伸縮性樹脂層と、伸縮性樹脂層の片面上又は両面上に設けられた導体層とを有し、伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含む。一実施形態に係る配線基板は、上記樹脂組成物の硬化物を含む伸縮性樹脂層と、伸縮性樹脂層の片面上又は両面上に設けられ、配線パターンを形成している導体層とを有する。導体層は、導体箔又は導体めっき膜であることができる。 A conductor substrate according to one embodiment has a stretchable resin layer and conductor layers provided on one side or both sides of the stretchable resin layer, wherein the stretchable resin layer comprises (A) a rubber component, ( It includes a cured product of a resin composition containing B) a cross-linking component having an epoxy group and (C) an ester-based curing agent. A wiring board according to one embodiment includes a stretchable resin layer containing a cured product of the resin composition, and a conductor layer provided on one side or both sides of the stretchable resin layer and forming a wiring pattern. . The conductor layer can be a conductor foil or a conductor plating film.

<導体基板>
[導体箔]
導体箔の弾性率は、40~300GPaであってもよい。導体箔の弾性率が40~300GPaであることにより、配線基板の伸長による導体箔の破断が生じ難い傾向がある。同様の観点から、導体箔の弾性率は50GPa以上又は60GPa以上であってもよく、280GPa以下又は250GPa以下であってもよい。ここでの導体箔の弾性率は、共振法によって測定される値であることができる。
<Conductor board>
[Conductor foil]
The elastic modulus of the conductor foil may be 40-300 GPa. Since the elastic modulus of the conductor foil is 40 to 300 GPa, the conductor foil tends to be less likely to break due to the elongation of the wiring board. From the same point of view, the elastic modulus of the conductor foil may be 50 GPa or more or 60 GPa or more, or may be 280 GPa or less or 250 GPa or less. The elastic modulus of the conductor foil here can be a value measured by a resonance method.

導体箔は、金属箔であることができる。金属箔としては、銅箔、チタン箔、ステンレス箔、ニッケル箔、パーマロイ箔、42アロイ箔、コバール箔、ニクロム箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、アルミニウム箔、錫箔、鉛箔、亜鉛箔、半田箔、鉄箔、タンタル箔、ニオブ箔、モリブデン箔、ジルコニウム箔、金箔、銀箔、パラジウム箔、モネル箔、インコネル箔、ハステロイ箔等が挙げられる。適切な弾性率等の観点から、導体箔は、銅箔、金箔、ニッケル箔、及び鉄箔から選ばれてもよい。配線形成性の観点から、導体箔は銅箔であってもよい。銅箔は、フォトリソグラフィーにより、伸縮性樹脂層の特性を損なわずに、簡易的に配線パターンを形成できる。 The conductor foil can be a metal foil. Metal foils include copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, nickel silver foil, aluminum foil, tin foil, Lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, monel foil, inconel foil, hastelloy foil and the like. The conductor foil may be selected from copper foil, gold foil, nickel foil, and iron foil from the viewpoint of appropriate elastic modulus and the like. From the viewpoint of wiring formability, the conductor foil may be copper foil. A wiring pattern can be easily formed on the copper foil by photolithography without impairing the properties of the stretchable resin layer.

銅箔としては、特に制限はなく、例えば銅張積層板及びフレキシブル配線板等に用いられる電解銅箔及び圧延銅箔を使用できる。市販の電解銅箔としては、例えばF0-WS-18(古河電気工業株式会社製、商品名)、NC-WS-20(古河電気工業株式会社製、商品名)、YGP-12(日本電解株式会社製、商品名)、GTS-18(古河電気工業株式会社製、商品名)、及びF2-WS-12(古河電気工業株式会社製、商品名)が挙げられる。圧延銅箔としては、例えばTPC箔(JX金属株式会社製、商品名)、HA箔(JX金属株式会社製、商品名)、HA-V2箔(JX金属株式会社製、商品名)、及びC1100R(三井住友金属鉱山伸銅株式会社製、商品名)が挙げられる。伸縮性樹脂層との密着性の観点から、粗化処理を施している銅箔を使用してもよい。耐折性の観点から、圧延銅箔を用いてもよい。 The copper foil is not particularly limited, and for example, electrolytic copper foil and rolled copper foil used for copper-clad laminates, flexible wiring boards and the like can be used. Commercially available electrolytic copper foils include, for example, F0-WS-18 (manufactured by Furukawa Electric Co., Ltd., trade name), NC-WS-20 (manufactured by Furukawa Electric Co., Ltd., trade name), YGP-12 (Nippon Denki Co., Ltd. (manufactured by Furukawa Electric Co., Ltd., trade name), GTS-18 (manufactured by Furukawa Electric Co., Ltd., trade name), and F2-WS-12 (manufactured by Furukawa Electric Co., Ltd., trade name). Examples of rolled copper foils include TPC foil (manufactured by JX Metals Co., Ltd., trade name), HA foil (manufactured by JX Metals Co., Ltd., trade name), HA-V2 foil (manufactured by JX Metals Co., Ltd., trade name), and C1100R. (manufactured by Mitsui Sumitomo Metal Mining Copper & Copper Co., Ltd., trade name). From the viewpoint of adhesion with the stretchable resin layer, a copper foil that has undergone a roughening treatment may be used. From the viewpoint of folding resistance, a rolled copper foil may be used.

金属箔は、粗化処理によって形成された粗化面を有していてもよい。この場合、通常、粗化面が伸縮性樹脂層に接する向きで、金属箔が伸縮性樹脂層上に設けられる。伸縮性樹脂層と金属箔との密着性の観点から、粗化面の表面粗さRaは、0.1~3μm、又は0.2~2.0μmであってもよい。微細な配線を容易に形成するために、粗化面の表面粗さRaが0.3~1.5μmであってもよい。 The metal foil may have a roughened surface formed by roughening treatment. In this case, the metal foil is usually provided on the stretchable resin layer such that the roughened surface is in contact with the stretchable resin layer. From the viewpoint of adhesion between the elastic resin layer and the metal foil, the roughened surface may have a surface roughness Ra of 0.1 to 3 μm, or 0.2 to 2.0 μm. In order to easily form fine wiring, the roughened surface may have a surface roughness Ra of 0.3 to 1.5 μm.

表面粗さRaは、例えば、表面形状測定装置Wyko NT9100(Veeco社製)を用いて、以下の条件で測定することができる。
測定条件
内部レンズ:1倍
外部レンズ:50倍
測定範囲:0.120×0.095mm
測定深度:10μm
測定方式:垂直走査型干渉方式(VSI方式)
The surface roughness Ra can be measured, for example, using a surface profiler Wyko NT9100 (manufactured by Veeco) under the following conditions.
Measurement conditions Internal lens: 1x External lens: 50x Measurement range: 0.120 x 0.095 mm
Measurement depth: 10 μm
Measurement method: vertical scanning interference method (VSI method)

導体箔の厚みは、特に制限はないが、1~50μmであってもよい。導体箔の厚みが1μm以上であると、より容易に配線パターンを形成することができる。導体箔の厚みが50μm以下であると、エッチング及び取り扱いが特に容易である。 The thickness of the conductor foil is not particularly limited, but may be 1 to 50 μm. A wiring pattern can be formed more easily as the thickness of the conductor foil is 1 μm or more. Etching and handling are particularly easy when the thickness of the conductor foil is 50 μm or less.

導体箔は、伸縮性樹脂層の片面又は両面上に設けられる。伸縮性樹脂層の両面上に導体箔を設けることにより、硬化等のための加熱による反りを抑制することができる。 The conductor foil is provided on one side or both sides of the elastic resin layer. By providing conductor foils on both sides of the elastic resin layer, it is possible to suppress warping due to heating for curing or the like.

導体箔を設ける方法は特に制限されないが、例えば、伸縮性樹脂層を形成するための樹脂組成物を金属箔に直接塗工する方法、及び、伸縮性樹脂層を形成するための樹脂組成物をキャリアフィルムに塗工して樹脂層(硬化前の伸縮性樹脂層)を形成し、形成された樹脂層を導体箔上に積層する方法がある。 The method of providing the conductor foil is not particularly limited. There is a method of coating a carrier film to form a resin layer (stretchable resin layer before curing), and laminating the formed resin layer on a conductor foil.

[導体めっき膜]
導体めっき膜は、アディティブ法又はセミアディティブ法に用いられる通常のめっき法により形成することができる。例えば、パラジウムを付着させるめっき触媒付与処理を行った後、伸縮性樹脂層を無電解めっき液に浸漬してプライマーの表面全面に厚み0.3~1.5μmの無電解めっき層(導体層)を析出させる。必要に応じて、電解めっき(電気めっき)を更に行って、必要な厚みに調整することができる。無電解めっきに用いる無電解めっき液としては、任意の無電解めっき液を用いることが可能であり、特に制限はない。電解めっきについても通常の方法を採用することが可能であり、特に制限はない。導体めっき膜(無電解めっき膜、電解めっき膜)は、コスト面及び抵抗値の観点から銅めっき膜であってもよい。
[Conductor plating film]
The conductive plating film can be formed by a normal plating method used for additive or semi-additive methods. For example, after performing a plating catalyst application treatment for adhering palladium, the elastic resin layer is immersed in an electroless plating solution to form an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 μm on the entire surface of the primer. precipitate out. If necessary, further electroplating (electroplating) can be performed to adjust the required thickness. Any electroless plating solution can be used as the electroless plating solution used for electroless plating, and there is no particular limitation. As for electrolytic plating, it is possible to adopt a normal method, and there is no particular limitation. The conductor plated film (electroless plated film, electrolytic plated film) may be a copper plated film from the viewpoint of cost and resistance.

更に不要な箇所をエッチング除去して回路層を形成することができる。エッチングに用いられるエッチング液は、めっきの種類により適宜選択できる。例えば、導体が銅めっきである場合、エッチングに用いられるエッチング液としては、例えば濃硫酸と過酸化水素水の混合溶液、又は塩化第二鉄溶液等を使用できる。 Furthermore, unnecessary portions can be removed by etching to form a circuit layer. The etchant used for etching can be appropriately selected depending on the type of plating. For example, when the conductor is plated with copper, the etchant used for etching may be, for example, a mixed solution of concentrated sulfuric acid and hydrogen peroxide, or a ferric chloride solution.

導体めっき膜との接着力を向上させるために、伸縮性樹脂層上にあらかじめ凹凸を形成してもよい。凹凸を形成する手法としては、例えば銅箔の粗化面を転写する方法が挙げられる。銅箔としては、例えばYGP-12(日本電解株式会社製、商品名)、GTS-18(古河電気工業株式会社製、商品名)又はF2-WS-12(古河電気工業株式会社製、商品名)を用いることができる。 Asperities may be formed in advance on the stretchable resin layer in order to improve the adhesive strength with the conductive plating film. As a method of forming unevenness, for example, a method of transferring a roughened surface of a copper foil can be used. As the copper foil, for example, YGP-12 (manufactured by Nippon Denki Co., Ltd., trade name), GTS-18 (manufactured by Furukawa Electric Co., Ltd., trade name) or F2-WS-12 (manufactured by Furukawa Electric Co., Ltd., trade name ) can be used.

銅箔の粗化面を転写する手法としては、例えば銅箔の粗化面に伸縮性樹脂層を形成するための樹脂組成物を直接塗工する方法、及び、伸縮性樹脂層を形成するための樹脂組成物をキャリアフィルムに塗工後、樹脂層(硬化前の伸縮性樹脂層)を銅箔上に成型する方法がある。伸縮性樹脂層の両面上に導体めっき膜を形成することにより、硬化等のための加熱による反りを抑制することができる。 Techniques for transferring the roughened surface of the copper foil include, for example, a method of directly applying a resin composition for forming a stretchable resin layer on the roughened surface of the copper foil, and a method of forming a stretchable resin layer. There is a method in which a resin layer (stretchable resin layer before curing) is formed on a copper foil after coating the resin composition of (1) on a carrier film. By forming conductive plating films on both surfaces of the stretchable resin layer, it is possible to suppress warping caused by heating for curing or the like.

導体めっき膜との高接着化を目的として、伸縮性樹脂層に表面処理を施してもよい。表面処理としては、例えば一般的な配線板の製造工程に用いられる粗化処理(デスミア処理)、UV処理、及びプラズマ処理が挙げられる。 A surface treatment may be applied to the stretchable resin layer for the purpose of achieving high adhesion with the conductive plating film. Examples of the surface treatment include roughening treatment (desmear treatment), UV treatment, and plasma treatment, which are used in general wiring board manufacturing processes.

デスミア処理としては、一般的な配線板の製造工程で用いられる方法を用いてもよく、例えば過マンガン酸ナトリウム水溶液を用いることができる。 As the desmear treatment, a method used in a general wiring board manufacturing process may be used, and for example, an aqueous solution of sodium permanganate may be used.

[伸縮性樹脂層]
伸縮性樹脂層は、例えば歪み20%まで引張変形した後の回復率が80%以上であるような、伸縮性を有することができる。この回復率は、伸縮性樹脂層の測定サンプルを用いた引張試験において求められる。1回目の引っ張り試験で加えたひずみ(変位量)をX、次に初期位置に戻し再度引っ張り試験を行ったときに荷重が掛かり始めるときの位置とXとの差をYとし、式:R(%)=(Y/X)×100で計算されるRが、回復率として定義される。回復率は、Xを20%として測定することができる。図1は、回復率の測定例を示す応力-ひずみ曲線である。繰り返しの使用に対する耐性の観点から、回復率が80%以上、85%以上、又は90%以上であってもよい。回復率の定義上の上限は100%である。
[Elastic resin layer]
The stretchable resin layer can have stretchability such that the recovery rate after being tensile-deformed to a strain of 20% is 80% or more. This recovery rate is obtained in a tensile test using a measurement sample of the stretchable resin layer. Let X be the strain (displacement amount) applied in the first tensile test, and Y be the difference between the position when the load starts to be applied when the tensile test is performed again after returning to the initial position and X, and the formula: R ( %) = (Y/X) x 100 is defined as the recovery rate. Recovery can be measured with X as 20%. FIG. 1 is a stress-strain curve showing an example of recovery rate measurement. From the viewpoint of resistance to repeated use, the recovery rate may be 80% or more, 85% or more, or 90% or more. The definitional upper limit of the recovery rate is 100%.

伸縮性樹脂層の弾性率(引張弾性率)は、0.1MPa以上1000MPa以下であってもよい。弾性率が0.1MPa以上1000MPa以下であると、基材としての取り扱い性及び可撓性が特に優れる傾向がある。この観点から、弾性率が0.3MPa以上100MPa以下、又は0.5MPa以上50MPa以下であってもよい。 The elastic modulus (tensile elastic modulus) of the elastic resin layer may be 0.1 MPa or more and 1000 MPa or less. When the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility of the substrate tend to be particularly excellent. From this point of view, the elastic modulus may be 0.3 MPa or more and 100 MPa or less, or 0.5 MPa or more and 50 MPa or less.

伸縮性樹脂層の破断伸び率は、100%以上であってもよい。破断伸び率が100%以上であると、十分な伸縮性が得られ易い傾向がある。この観点から、破断伸び率は150%以上、200%以上、300%以上又は500%以上であってもよい。破断伸び率の上限は、特に制限されないが、通常1000%程度以下である。 The elastic resin layer may have an elongation at break of 100% or more. When the elongation at break is 100% or more, sufficient stretchability tends to be obtained. From this point of view, the elongation at break may be 150% or more, 200% or more, 300% or more, or 500% or more. Although the upper limit of the elongation at break is not particularly limited, it is usually about 1000% or less.

伸縮性樹脂層の誘電正接(Df)は、0.004以下であってもよい。誘電正接が0.004以下であると、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。この観点から、誘電正接は0.0035以下、0.003以下、又は、0.0025以下であってもよい。誘電正接の下限は、特に制限されないが、通常0.0005程度以上である。 The dielectric loss tangent (Df) of the elastic resin layer may be 0.004 or less. When the dielectric loss tangent is 0.004 or less, there is a tendency that the transmission loss of the wiring pattern provided on the elastic resin layer can be sufficiently reduced. From this point of view, the dielectric loss tangent may be 0.0035 or less, 0.003 or less, or 0.0025 or less. Although the lower limit of the dielectric loss tangent is not particularly limited, it is usually about 0.0005 or more.

伸縮性樹脂層の比誘電率(Dk)は、4.0以下であってもよい。比誘電率が4.0以下であると、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。この観点から、比誘電率は3.5以下、3.0以下、又は、2.5以下であってもよい。 The elastic resin layer may have a dielectric constant (Dk) of 4.0 or less. When the dielectric constant is 4.0 or less, there is a tendency that the transmission loss of the wiring pattern provided on the stretchable resin layer can be sufficiently reduced. From this point of view, the dielectric constant may be 3.5 or less, 3.0 or less, or 2.5 or less.

伸縮性樹脂層は、その赤外線吸収スペクトルにおいて、水酸基の伸縮振動に帰属される吸収ピークが存在しないものであってもよい。これにより、伸縮性樹脂層の誘電正接が十分に低減されたものとなり、伸縮性樹脂層上に設けられた配線パターンの伝送損失を十分に低減することができる傾向がある。 The stretchable resin layer may have no absorption peak attributed to the stretching vibration of hydroxyl groups in its infrared absorption spectrum. As a result, the dielectric loss tangent of the elastic resin layer is sufficiently reduced, and there is a tendency that the transmission loss of the wiring pattern provided on the elastic resin layer can be sufficiently reduced.

伸縮性樹脂層は、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物(硬化性樹脂組成物)の硬化物を含む。すなわち、伸縮性樹脂層は、(B)エポキシ基を有する架橋成分の架橋重合体を含有する。伸縮性樹脂層には、主に上記(A)ゴム成分によって、容易に伸縮性が付与される。 The stretchable resin layer is a cured product of a resin composition (curable resin composition) containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester curing agent. include. That is, the elastic resin layer contains (B) a crosslinked polymer of a crosslinking component having an epoxy group. Stretchability is easily imparted to the stretchable resin layer mainly by the rubber component (A).

(A)ゴム成分は、例えば、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種のゴムを含むことができる。吸湿等による配線へのダメージを保護する観点から、ガス透過性が低いゴム成分を用いてもよい。係る観点から、(A)ゴム成分が、スチレンブタジエンゴム、ブタジエンゴム、及びブチルゴムから選ばれる少なくとも1種を含んでもよい。スチレンブタジエンゴムを用いることにより、めっき工程に使用する各種薬液に対する伸縮性樹脂層の耐性が向上し、歩留まりよく配線基板を製造することができる。 (A) The rubber component includes, for example, acrylic rubber, isoprene rubber, butyl rubber, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene-propylene rubber, fluororubber, vulcanized rubber, epichlorohydrin rubber, and at least one rubber selected from the group consisting of chlorinated butyl rubber. A rubber component having low gas permeability may be used from the viewpoint of protecting the wiring from damage due to moisture absorption or the like. From this point of view, the rubber component (A) may contain at least one selected from styrene-butadiene rubber, butadiene rubber, and butyl rubber. By using styrene-butadiene rubber, the resistance of the elastic resin layer to various chemical solutions used in the plating process is improved, and the wiring board can be manufactured with high yield.

アクリルゴムの市販品としては、例えば日本ゼオン株式会社「Nipol ARシリーズ」、クラレ株式会社「クラリティシリーズ」が挙げられる。 Commercially available acrylic rubbers include, for example, Nippon Zeon Co., Ltd. "Nipol AR Series" and Kuraray Co., Ltd. "Clarity Series."

イソプレンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol IRシリーズ」が挙げられる。 Examples of commercial products of isoprene rubber include Nippon Zeon Co., Ltd. “Nipol IR Series”.

ブチルゴムの市販品としては、例えばJSR株式会社「BUTYLシリーズ」等が挙げられる。 Examples of commercial products of butyl rubber include JSR Corporation "BUTYL Series".

スチレンブタジエンゴムの市販品としては、例えばJSR株式会社「ダイナロンSEBSシリーズ」、「ダイナロンHSBRシリーズ」、クレイトンポリマージャパン株式会社「クレイトンDポリマーシリーズ」、アロン化成株式会社「ARシリーズ」が挙げられる。 Commercially available styrene-butadiene rubbers include, for example, JSR Corporation "DYNARON SEBS Series" and "DYNARON HSBR Series", Kraton Polymer Japan Co., Ltd. "Kraton D Polymer Series", and Aron Kasei Co., Ltd. "AR Series".

ブタジエンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol BRシリーズ」等が挙げられる。 Examples of commercial products of butadiene rubber include Nippon Zeon Co., Ltd. "Nipol BR Series".

アクリロニトリルブタジエンゴムの市販品としては、例えばJSR株式会社「JSR NBRシリーズ」が挙げられる。 Examples of commercial products of acrylonitrile-butadiene rubber include JSR Corporation "JSR NBR Series".

シリコーンゴムの市販品としては、例えば信越シリコーン株式会社「KMPシリーズ」が挙げられる。 Examples of commercial products of silicone rubber include Shin-Etsu Silicone Co., Ltd. "KMP Series".

エチレンプロピレンゴムの市販品としては、例えばJSR株式会社「JSR EPシリーズ」等が挙げられる。 Commercially available ethylene propylene rubbers include, for example, JSR Co., Ltd. "JSR EP Series".

フッ素ゴムの市販品としては、例えばダイキン株式会社「ダイエルシリーズ」等が挙げられる。 Commercial products of fluororubber include, for example, Daikin Co., Ltd. "DAI-EL Series".

エピクロルヒドリンゴムの市販品としては、例えば日本ゼオン株式会社「Hydrinシリーズ」が挙げられる。 As a commercial product of epichlorohydrin rubber, Nippon Zeon Co., Ltd. "Hydrin series" is mentioned, for example.

(A)ゴム成分は、合成により作製することもできる。例えば、アクリルゴムでは、(メタ)アクリル酸、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物等を反応させることにより得られる。 (A) The rubber component can also be produced synthetically. For example, acrylic rubber can be obtained by reacting (meth)acrylic acid, (meth)acrylic acid ester, aromatic vinyl compound, vinyl cyanide compound, and the like.

(A)ゴム成分は、架橋基を有するゴムを含んでいてもよい。架橋基を有するゴムを用いることにより、伸縮性樹脂層の耐熱性が向上し易い傾向がある。架橋基は、(A)ゴム成分の分子鎖を架橋する反応を進行させ得る反応性基であればよい。その例としては、後述する(B)架橋成分が有する反応性基、酸無水物基、アミノ基、水酸基、エポキシ基及びカルボキシル基が挙げられる。 (A) The rubber component may contain a rubber having a cross-linking group. The use of rubber having a cross-linking group tends to improve the heat resistance of the stretchable resin layer. The cross-linking group may be any reactive group capable of promoting the reaction of cross-linking the molecular chains of the (A) rubber component. Examples thereof include reactive groups, acid anhydride groups, amino groups, hydroxyl groups, epoxy groups and carboxyl groups possessed by the (B) cross-linking component described later.

(A)ゴム成分は、酸無水物基又はカルボキシル基のうち少なくとも一方の架橋基を有するゴムを含んでいてもよい。酸無水物基を有するゴムの例としては、無水マレイン酸で部分的に変性されたゴムが挙げられる。無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸に由来する構成単位を含む重合体である。無水マレイン酸で部分的に変性されたゴムの市販品としては、例えば、旭化成株式会社製のスチレン系エラストマー「タフプレン912」がある。 (A) The rubber component may contain a rubber having at least one cross-linking group of an acid anhydride group or a carboxyl group. Examples of rubbers with anhydride groups include rubbers partially modified with maleic anhydride. Rubbers partially modified with maleic anhydride are polymers containing constitutional units derived from maleic anhydride. Commercially available rubbers partially modified with maleic anhydride include, for example, Asahi Kasei Corporation's styrenic elastomer "TUFPRENE 912".

無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマーであってもよい。水素添加型スチレン系エラストマーは、耐候性向上等の効果も期待できる。水素添加型スチレン系エラストマーは、不飽和二重結合を含むソフトセグメントを有するスチレン系エラストマーの不飽和二重結合に水素を付加反応させて得られるエラストマーである。無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマーの市販品の例としては、クレイトンポリマージャパン株式会社の「FG1901」、「FG1924」、旭化成株式会社の「タフテックM1911」、「タフテックM1913」、「タフテックM1943」がある。 The rubber partially modified with maleic anhydride may be a hydrogenated styrenic elastomer partially modified with maleic anhydride. Hydrogenated styrene-based elastomers are also expected to have effects such as improved weather resistance. A hydrogenated styrenic elastomer is an elastomer obtained by adding hydrogen to the unsaturated double bond of a styrenic elastomer having a soft segment containing an unsaturated double bond. Examples of commercially available hydrogenated styrene elastomers partially modified with maleic anhydride include "FG1901" and "FG1924" manufactured by Kraton Polymer Japan Co., Ltd., and "Tuftec M1911" and "Tuftec M1913" manufactured by Asahi Kasei Corporation. , and Tuftec M1943.

(A)ゴム成分の重量平均分子量は、塗膜性の観点から、20000~200000、30000~150000、又は50000~125000であってもよい。ここでの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって求められる標準ポリスチレン換算値を意味する。 (A) The weight average molecular weight of the rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties. A weight average molecular weight (Mw) here means a standard polystyrene conversion value calculated|required by a gel permeation chromatography (GPC).

樹脂組成物において、(A)ゴム成分の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の総量を基準として、60~95質量%であることが好ましく、65~90質量%であることがより好ましく、70~85質量%であることが更に好ましい。(A)ゴム成分の含有量が60質量%以上であると、より十分な伸縮性が得られ易く、かつゴム成分と架橋成分がよく混ざり合う傾向がある。(A)ゴム成分の含有量が95質量%以下であると、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。伸縮性樹脂層における(A)ゴム成分の含有量が、伸縮性樹脂層の質量を基準として、上記範囲内にあってもよい。 In the resin composition, the content of (A) the rubber component is preferably 60 to 95% by mass based on the total amount of (A) the rubber component, (B) the cross-linking component and (C) the ester curing agent. , more preferably 65 to 90% by mass, even more preferably 70 to 85% by mass. (A) When the content of the rubber component is 60% by mass or more, more sufficient stretchability is likely to be obtained, and the rubber component and the cross-linking component tend to mix well. (A) When the content of the rubber component is 95% by mass or less, the elastic resin layer tends to have particularly excellent properties in terms of adhesion, insulation reliability, and heat resistance. The content of the (A) rubber component in the stretchable resin layer may be within the above range based on the mass of the stretchable resin layer.

(B)エポキシ基を有する架橋成分は、硬化反応時に架橋して架橋重合体を形成する成分である。(B)エポキシ基を有する架橋成分は、分子内にエポキシ基を有していれば特に制限されず、例えば一般的なエポキシ樹脂であることができる。エポキシ樹脂としては、単官能、2官能又は多官能のいずれでもよく、特に制限はないが、十分な硬化性を得るためには2官能又は多官能のエポキシ樹脂を用いてもよい。 (B) The cross-linking component having an epoxy group is a component that cross-links during the curing reaction to form a cross-linked polymer. (B) The cross-linking component having an epoxy group is not particularly limited as long as it has an epoxy group in its molecule, and can be, for example, a general epoxy resin. The epoxy resin may be monofunctional, bifunctional, or polyfunctional, and is not particularly limited, but bifunctional or polyfunctional epoxy resins may be used to obtain sufficient curability.

エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、ナフタレン型、ジシクロペンタジエン型、クレゾールノボラック型等が挙げられる。脂肪鎖で変性したエポキシ樹脂は、柔軟性を付与できる。市販の脂肪鎖変性エポキシ樹脂としては、例えばDIC株式会社製のEXA-4816が挙げられる。硬化性、低タック性、及び耐熱性の観点から、フェノールノボラック型、クレゾールノボラック型、ナフタレン型、又はジシクロペンタジエン型のエポキシ樹脂を選択してもよい。これらのエポキシ樹脂は、単独で又は2種類以上を組み合わせて用いることができる。 Examples of epoxy resins include bisphenol A type, bisphenol F type, phenol novolak type, naphthalene type, dicyclopentadiene type, cresol novolak type, and the like. Epoxy resins modified with fatty chains can impart flexibility. Commercially available fatty chain-modified epoxy resins include, for example, EXA-4816 manufactured by DIC Corporation. A phenol novolak type, cresol novolak type, naphthalene type, or dicyclopentadiene type epoxy resin may be selected from the viewpoint of curability, low tackiness, and heat resistance. These epoxy resins can be used alone or in combination of two or more.

無水マレイン酸基又はカルボキシル基を有するゴムと、エポキシ基を有する化合物(エポキシ樹脂)との組み合わせにより、伸縮性樹脂層の耐熱性及び低透湿度、伸縮性樹脂層と導電層との密着性、並びに、伸縮性樹脂層の低いタックの点で、特に優れた効果が得られる。伸縮性樹脂層の耐熱性が向上すると、例えば窒素リフローのような加熱工程における伸縮性樹脂層の劣化を抑制することができる。伸縮性樹脂層が低いタックを有すると、作業性良く導体基板又は配線基板を取り扱うことができる。 The combination of a rubber having a maleic anhydride group or a carboxyl group and a compound having an epoxy group (epoxy resin) improves the heat resistance and low moisture permeability of the stretchable resin layer, the adhesion between the stretchable resin layer and the conductive layer, In addition, particularly excellent effects can be obtained in terms of low tackiness of the stretchable resin layer. When the heat resistance of the stretchable resin layer is improved, deterioration of the stretchable resin layer in a heating process such as nitrogen reflow can be suppressed. When the stretchable resin layer has low tack, it is possible to handle the conductive substrate or wiring substrate with good workability.

樹脂組成物は、本発明の効果を著しく損なわない範囲で、(B)エポキシ基を有する架橋成分以外の他の架橋成分を含んでいてもよい。他の架橋成分の含有量は、伸縮性樹脂層の誘電正接をより十分に低減する観点から、(B)エポキシ基を有する架橋成分100質量部に対して10質量部未満であることが好ましい。 The resin composition may contain a cross-linking component other than (B) the cross-linking component having an epoxy group, as long as the effects of the present invention are not significantly impaired. From the viewpoint of sufficiently reducing the dielectric loss tangent of the elastic resin layer, the content of the other cross-linking component is preferably less than 10 parts by mass with respect to 100 parts by mass of the (B) cross-linking component having an epoxy group.

(C)エステル系硬化剤は、それ自体が硬化反応に関与する化合物であり、伸縮性樹脂層の耐熱性を向上しつつ、誘電正接を低減することができる。 (C) The ester-based curing agent is a compound that itself participates in the curing reaction, and can reduce the dielectric loss tangent while improving the heat resistance of the stretchable resin layer.

エステル系硬化剤としては特に制限されないが、耐熱性の向上効果及び誘電正接の低減効果をより十分に得る観点から、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に1個又は2個以上有する化合物が好ましく用いられる。エステル系硬化剤としてより具体的には、例えば、「EPICLON HPC8000-65T」、「EPICLON HPC8000-L-65MT」、「EPICLON HPC8150-60T」(いずれもDIC株式会社製の商品名)等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 The ester-based curing agent is not particularly limited, but from the viewpoint of sufficiently obtaining the effect of improving heat resistance and reducing the dielectric loss tangent, phenol esters, thiophenol esters, N-hydroxyamine esters, heterocyclic hydroxy compounds. A compound having one or two or more highly reactive ester groups in one molecule, such as esters of (1), is preferably used. More specific examples of the ester curing agent include "EPICLON HPC8000-65T", "EPICLON HPC8000-L-65MT", and "EPICLON HPC8150-60T" (all trade names manufactured by DIC Corporation). . These can be used individually by 1 type or in combination of 2 or more types.

エステル系硬化剤は、硬化反応時に下記式(I)に示すように(B)架橋成分と反応するものと考えられる。このような(C)エステル系硬化剤と、(B)架橋成分との反応において水酸基は生成せず、また、副反応が生じたとしても水酸基は生成し難く、その結果、低い誘電正接を実現できるものと考えられる。 It is believed that the ester-based curing agent reacts with the cross-linking component (B) as shown in formula (I) below during the curing reaction. In the reaction between (C) the ester-based curing agent and (B) the cross-linking component, hydroxyl groups are not generated, and even if a side reaction occurs, hydroxyl groups are unlikely to be generated. As a result, a low dielectric loss tangent is achieved. It is considered possible.

Figure 2023029400000001

式中、R、R及びRはそれぞれ独立に、1価の有機基を示すが、本発明の効果がより十分に得られることから、芳香環を有する1価の有機基であってもよい。
Figure 2023029400000001

In the formula, R 1 , R 2 and R 3 each independently represent a monovalent organic group. good too.

樹脂組成物は、本発明の効果を著しく損なわない範囲で、(C)エステル系硬化剤以外の他の硬化剤を含んでいてもよい。他の硬化剤の含有量は、伸縮性樹脂層の誘電正接をより十分に低減する観点から、(C)エステル系硬化剤100質量部に対して10質量部未満であることが好ましい。 The resin composition may contain a curing agent other than (C) the ester-based curing agent as long as the effects of the present invention are not significantly impaired. From the viewpoint of sufficiently reducing the dielectric loss tangent of the elastic resin layer, the content of the other curing agent is preferably less than 10 parts by mass with respect to 100 parts by mass of the (C) ester-based curing agent.

樹脂組成物において、(B)架橋成分及び(C)エステル系硬化剤の合計の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の総量を基準として、5~40質量%であることが好ましく、10~35質量%であることがより好ましく、15~30質量%であることが更に好ましい。(B)架橋成分及び(C)エステル系硬化剤の合計の含有量が5質量%以上であると、より十分な硬化が得られ易いと共に、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。(B)架橋成分及び(C)エステル系硬化剤の合計の含有量が40質量%以下であると、より十分な伸縮性が得られ易く、かつゴム成分と架橋成分がよく混ざり合う傾向がある。 In the resin composition, the total content of (B) the cross-linking component and (C) the ester-based curing agent is based on the total amount of (A) the rubber component, (B) the cross-linking component and (C) the ester-based curing agent, It is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, even more preferably 15 to 30% by mass. When the total content of (B) the cross-linking component and (C) the ester-based curing agent is 5% by mass or more, more sufficient curing can be easily obtained, and the stretchable resin layer exhibits adhesion, insulation reliability, and It tends to have particularly excellent properties in terms of heat resistance. When the total content of (B) the cross-linking component and (C) the ester-based curing agent is 40% by mass or less, it is easy to obtain sufficient stretchability, and the rubber component and the cross-linking component tend to mix well. .

樹脂組成物において、(B)架橋成分と(C)エステル系硬化剤との含有量比は、(B)エポキシ樹脂中のエポキシ基と(C)エステル系硬化剤中のエステル結合との当量比で、4:5~5:4の範囲であることが好ましい。含有量比が上記範囲内であることで、より十分な硬化が得られ易いと共に、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。 In the resin composition, the content ratio of (B) the cross-linking component and (C) the ester-based curing agent is the equivalent ratio of the epoxy groups in the (B) epoxy resin and the ester bonds in the (C) ester-based curing agent. and preferably in the range of 4:5 to 5:4. When the content ratio is within the above range, more sufficient curing is likely to be obtained, and the stretchable resin layer tends to have particularly excellent properties in terms of adhesion, insulation reliability, and heat resistance.

樹脂組成物は、更に(D)硬化促進剤を含有してもよい。(D)硬化促進剤は、硬化反応の触媒として機能する化合物である。(D)硬化促進剤は、三級アミン、イミダゾール、有機酸金属塩、リン系化合物、ルイス酸、アミン錯塩及びホスフィンから選ばれるものであってもよい。これらの中でも、樹脂組成物のワニスの保存安定性及び硬化性の観点から、イミダゾールを使用してもよい。(A)ゴム成分が無水マレイン酸で部分的に変性されたゴムを含む場合、これと相溶するイミダゾールを選択してもよい。 The resin composition may further contain (D) a curing accelerator. (D) A curing accelerator is a compound that functions as a catalyst for the curing reaction. (D) The curing accelerator may be selected from tertiary amines, imidazoles, organic acid metal salts, phosphorus compounds, Lewis acids, amine complex salts and phosphines. Among these, imidazole may be used from the viewpoint of storage stability and curability of the varnish of the resin composition. (A) When the rubber component contains rubber partially modified with maleic anhydride, an imidazole compatible with this may be selected.

樹脂組成物において、(D)硬化促進剤の含有量は、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤の合計量100質量部に対して、0.1~10質量部であってもよい。(D)硬化促進剤の含有量が0.1質量部以上であると、より十分な硬化が得られ易い傾向がある。(D)硬化促進剤の含有量が10質量部以下であると、より十分な耐熱性が得られ易い傾向がある。以上の観点から、(D)硬化促進剤の含有量は0.3~7質量部、又は0.5~5質量部であってもよい。 In the resin composition, the content of the (D) curing accelerator is 0.1 to 10 parts per 100 parts by mass of the total amount of (A) the rubber component, (B) the cross-linking component and (C) the ester curing agent. It may be parts by mass. (D) When the content of the curing accelerator is 0.1 parts by mass or more, there is a tendency that more sufficient curing is likely to be obtained. (D) When the content of the curing accelerator is 10 parts by mass or less, there is a tendency that more sufficient heat resistance can be easily obtained. From the above point of view, the content of (D) curing accelerator may be 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.

樹脂組成物は、以上の成分の他、必要に応じて、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤、難燃剤、レベリング剤等を、本発明の効果を著しく損なわない範囲で更に含んでもよい。 In addition to the above components, the resin composition may optionally contain an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, a filler, a flame retardant, and a leveling agent. Agents and the like may be further included within a range that does not significantly impair the effects of the present invention.

特に、樹脂組成物は、酸化防止剤、熱安定剤、光安定剤、及び加水分解防止剤からなる群より選ばれる少なくとも1種の劣化防止剤を含有してもよい。酸化防止剤は、酸化による劣化を抑制する。また、酸化防止剤は、高温下での十分な耐熱性を伸縮性樹脂層に付与する。熱安定剤は、高温下での安定性を伸縮性樹脂層に付与する。光安定剤の例としては、紫外線による劣化を防止する紫外線吸収剤、光を遮断する光遮断剤、有機材料が吸収した光エネルギーを受容して有機材料を安定化する消光機能を有する消光剤が挙げられる。加水分解防止剤は、水分による劣化を抑制する。劣化防止剤は、酸化防止剤、熱安定剤、及び紫外線吸収剤からなる群から選択される少なくとも1種であってもよい。劣化防止剤としては、以上例示した成分から1種のみを使用してもよいし、2種以上を併用してもよい。より優れた効果を得るために、2種以上の劣化防止剤を併用してもよい。 In particular, the resin composition may contain at least one deterioration inhibitor selected from the group consisting of antioxidants, heat stabilizers, light stabilizers, and hydrolysis inhibitors. Antioxidants suppress deterioration due to oxidation. Also, the antioxidant imparts sufficient heat resistance at high temperatures to the stretchable resin layer. The heat stabilizer imparts stability at high temperatures to the stretchable resin layer. Examples of light stabilizers include ultraviolet absorbers that prevent deterioration due to ultraviolet light, light blocking agents that block light, and quenching agents that receive light energy absorbed by organic materials and stabilize the organic materials. mentioned. The anti-hydrolysis agent suppresses deterioration due to moisture. The deterioration inhibitor may be at least one selected from the group consisting of antioxidants, heat stabilizers, and ultraviolet absorbers. As the anti-deterioration agent, one of the components exemplified above may be used alone, or two or more thereof may be used in combination. Two or more anti-deterioration agents may be used in combination to obtain better effects.

酸化防止剤は、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、及びホスファイト系酸化防止剤からなる群より選ばれる1種以上であってもよい。より優れた効果を得るために、2種以上の酸化防止剤を併用してもよい。フェノール系酸化防止剤と硫黄系酸化防止剤とを併用してもよい。 The antioxidant may be, for example, one or more selected from the group consisting of phenol antioxidants, amine antioxidants, sulfur antioxidants, and phosphite antioxidants. Two or more antioxidants may be used in combination in order to obtain better effects. A phenol-based antioxidant and a sulfur-based antioxidant may be used in combination.

フェノール系酸化防止剤は、フェノール性水酸基のオルト位にt-ブチル基(ターシャリーブチル基)及びトリメチルシリル基等の立体障害の大きい置換基を有する化合物であってもよい。フェノール系酸化防止剤は、ヒンダードフェノール系酸化防止剤とも称される。 The phenolic antioxidant may be a compound having a substituent having a large steric hindrance such as a t-butyl group (tertiary butyl group) and a trimethylsilyl group at the ortho position of the phenolic hydroxyl group. Phenolic antioxidants are also called hindered phenolic antioxidants.

フェノール系酸化防止剤は、例えば2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン及びテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンからなる群より選ばれる1種以上の化合物であってもよい。フェノール系酸化防止剤は、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン及びテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンに代表される高分子型フェノール系酸化防止剤であってもよい。 Phenolic antioxidants include, for example, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-ethylphenol, 2,2'- methylene-bis(4-methyl-6-t-butylphenol), 4,4'-thiobis-(3-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol ), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t -butyl-4-hydroxybenzyl)benzene and tetrakis-[methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane. may be Phenolic antioxidants include 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene and tetrakis-[methylene-3-(3' , 5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane, a polymeric phenol antioxidant.

ホスファイト系酸化防止剤は、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(ノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(ジノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルトリス(ノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルトリス(ジノニルフェニル)ホスファイト、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)-2-エチルヘキシルホスファイト、ジイソデシルペンタエリスリトールジホスファイト及びトリス(2,4-ジ-t-ブチルフェニル)ホスファイトからなる群より選ばれる1種以上の化合物であってもよく、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトであってもよい。 Phosphite-based antioxidants include, for example, triphenylphosphite, diphenylisodecylphosphite, phenyldiisodecylphosphite, 4,4′-butylidene-bis(3-methyl-6-t-butylphenylditridecyl)phosphite , cyclic neopentanetetrayl bis(nonylphenyl) phosphite, cyclic neopentanetetrayl bis(dinonylphenyl) phosphite, cyclic neopentanetetrayl tris(nonylphenyl)phosphite, cyclic neopentanetetrayl Tris(dinonylphenyl)phosphite, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2-methylenebis(4,6-di-t- butylphenyl)-2-ethylhexylphosphite, diisodecylpentaerythritol diphosphite, and tris(2,4-di-t-butylphenyl)phosphite. It may be (2,4-di-t-butylphenyl)phosphite.

その他の酸化防止剤の例として、N-メチル-2-ジメチルアミノアセトヒドロキサム酸に代表されるヒドロキシルアミン系酸化防止剤、ジラウリル3,3’-チオジプロピオネートに代表される硫黄系酸化防止剤が挙げられる。 Examples of other antioxidants include hydroxylamine-based antioxidants typified by N-methyl-2-dimethylaminoacetohydroxamic acid, and sulfur-based antioxidants typified by dilauryl 3,3'-thiodipropionate. is mentioned.

酸化防止剤の含有量は、樹脂組成物の質量(固形分全量)を基準として、0.1~20質量%であってもよい。酸化防止剤の含有量が0.1質量%以上であると、伸縮性樹脂層の十分な耐熱性が得られやすい。酸化防止剤の含有量が20質量%以下であると、ブリード及びブルームを抑制できる。 The content of the antioxidant may be 0.1 to 20% by mass based on the mass (total solid content) of the resin composition. When the content of the antioxidant is 0.1% by mass or more, it is easy to obtain sufficient heat resistance of the stretchable resin layer. Bleeding and blooming can be suppressed when the content of the antioxidant is 20% by mass or less.

酸化防止剤の分子量は、加熱中の昇華防止の観点から、400以上、600以上、又は750以上であってもよい。2種以上の酸化防止剤を含む場合、それらの分子量の平均が上記範囲であってもよい。 The molecular weight of the antioxidant may be 400 or more, 600 or more, or 750 or more from the viewpoint of preventing sublimation during heating. When two or more antioxidants are included, the average molecular weight thereof may be within the above range.

熱安定剤(熱劣化防止剤)としては、高級脂肪酸の亜鉛塩とバリウム塩の組み合わせのような金属石けん又は無機酸塩、有機スズマレエート及び有機スズメルカプチドのような有機スズ化合物、並びに、フラーレン(例えば、水酸化フラーレン)が挙げられる。 Thermal stabilizers (thermal deterioration inhibitors) include metal soaps or inorganic acid salts such as combinations of zinc salts and barium salts of higher fatty acids, organic tin compounds such as organic tin maleate and organic tin mercaptide, and fullerenes (e.g., fullerene hydroxide).

紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノンに代表されるベンゾフェノン系紫外線吸収剤、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾールに代表されるベンゾトリアゾール系紫外線吸収剤、及び、2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレートに代表されるシアノアクリレート系紫外線吸収剤が挙げられる。 UV absorbers include, for example, benzophenone-based UV absorbers typified by 2,4-dihydroxybenzophenone, and benzotriazole-based UV absorbers typified by 2-(2′-hydroxy-5′-methylphenyl)benzotriazole. and cyanoacrylate-based UV absorbers typified by 2-ethylhexyl-2-cyano-3,3'-diphenylacrylate.

加水分解防止剤としては、例えば、カルボジイミド誘導体、エポキシ化合物、イソシアネート化合物、酸無水物、オキサゾリン化合物、及びメラミン化合物が挙げられる。 Hydrolysis inhibitors include, for example, carbodiimide derivatives, epoxy compounds, isocyanate compounds, acid anhydrides, oxazoline compounds, and melamine compounds.

その他の劣化防止剤の例としては、ヒンダードアミン系光安定剤、アスコルビン酸、没食子酸プロピル、カテキン、シュウ酸、マロン酸、及び亜リン酸エステルが挙げられる。 Examples of other antidegradants include hindered amine light stabilizers, ascorbic acid, propyl gallate, catechins, oxalic acid, malonic acid, and phosphites.

伸縮性樹脂層は、例えば、(A)ゴム成分、(B)架橋成分及び(C)エステル系硬化剤、並びに、必要により他の成分を、有機溶剤に溶解又は分散して樹脂ワニスを得ることと、樹脂ワニスを後述の方法によって導体箔又はキャリアフィルムの上に成膜することとを含む方法により、製造することができる。 The stretchable resin layer is obtained by dissolving or dispersing, for example, (A) a rubber component, (B) a cross-linking component, (C) an ester curing agent, and optionally other components in an organic solvent to obtain a resin varnish. and forming a resin varnish on a conductor foil or carrier film by a method described below.

ここで用いる有機溶剤としては、特に制限はないが、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドなどが挙げられる。溶解性及び沸点の観点から、トルエン、又はN,N-ジメチルアセトアミドを用いてもよい。これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス中の固形分(有機溶媒以外の成分)濃度は、20~80質量%であってもよい。 The organic solvent used here is not particularly limited, but examples include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; acetone, methyl ethyl ketone; ketones such as methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, and γ-butyrolactone; ethylene carbonate, propylene carbonate, etc. carbonic acid ester; and amides such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and the like. From the viewpoint of solubility and boiling point, toluene or N,N-dimethylacetamide may be used. These organic solvents can be used alone or in combination of two or more. The solid content (components other than the organic solvent) concentration in the resin varnish may be 20 to 80% by mass.

キャリアフィルムとしては、特に制限されないが、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどのフィルムが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、又はポリスルホンのフィルムをキャリアフィルムとして用いてもよい。 Examples of the carrier film include, but are not limited to, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonates, polyamides, polyimides, polyamideimides, polyetherimides, poly Examples include films of ether sulfide, polyether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, and liquid crystal polymer. Among these, films of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone are used from the viewpoint of flexibility and toughness. It may be used as a carrier film.

キャリアフィルムの厚みは、特に制限されないが、3~250μmであってもよい。キャリアフィルムの厚みが3μm以上であるとフィルム強度が十分であり、キャリアフィルムの厚みが250μm以下であると十分な柔軟性が得られる。以上の観点から、厚みは5~200μm、又は7~150μmであってもよい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等によりキャリアフィルムに離型処理が施されたフィルムを必要に応じて用いてもよい。 The thickness of the carrier film is not particularly limited, but may be 3 to 250 μm. When the thickness of the carrier film is 3 μm or more, sufficient film strength is obtained, and when the thickness of the carrier film is 250 μm or less, sufficient flexibility can be obtained. From the above viewpoints, the thickness may be 5 to 200 μm, or 7 to 150 μm. From the viewpoint of improving releasability from the stretchable resin layer, a film obtained by subjecting the carrier film to release treatment with a silicone-based compound, a fluorine-containing compound, or the like may be used as necessary.

必要に応じて、保護フィルムを伸縮性樹脂層上に貼り付け、導体箔又はキャリアフィルム、伸縮性樹脂層及び保護フィルムからなる3層構造の積層フィルムとしてもよい。 If necessary, a protective film may be attached onto the stretchable resin layer to form a laminated film having a three-layer structure consisting of a conductor foil or carrier film, a stretchable resin layer and a protective film.

保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどのフィルムが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィンのフィルムを保護フィルムとして用いてもよい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により保護フィルムに離型処理が施されていてもよい。 The protective film is not particularly limited, and examples thereof include films of polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; and polyolefins such as polyethylene and polypropylene. Among them, polyester such as polyethylene terephthalate and polyolefin film such as polyethylene and polypropylene may be used as the protective film from the viewpoint of flexibility and toughness. From the viewpoint of improving releasability from the stretchable resin layer, the protective film may be subjected to release treatment with a silicone-based compound, a fluorine-containing compound, or the like.

保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10~250μmであってもよい。厚みが10μm以上であるとフィルム強度が十分である傾向があり、250μm以下であると十分な柔軟性が得られる傾向がある。以上の観点から、厚みは15~200μm、又は20~150μmであってもよい。 The thickness of the protective film may be appropriately changed depending on the desired flexibility, and may be 10 to 250 μm. When the thickness is 10 μm or more, the film strength tends to be sufficient, and when the thickness is 250 μm or less, sufficient flexibility tends to be obtained. From the above viewpoints, the thickness may be 15 to 200 μm, or 20 to 150 μm.

[配線基板の製造方法]
一実施形態に係る導体箔を有する配線基板は、例えば、伸縮性樹脂層と伸縮性樹脂層上に積層された導体箔とを有する積層板(導体基板)を準備する工程と、導体箔上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、導体箔の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体箔を除去する工程と、レジストパターンを除去する工程と、を含む方法により、製造することができる。
[Method for manufacturing wiring board]
A wiring board having a conductor foil according to one embodiment includes, for example, a step of preparing a laminated plate (conductor substrate) having a stretchable resin layer and a conductor foil laminated on the stretchable resin layer; forming an etching resist; exposing the etching resist; developing the etching resist after exposure to form a resist pattern covering a portion of the conductor foil; It can be manufactured by a method including a step of removing the foil and a step of removing the resist pattern.

伸縮性樹脂層及び導体箔を有する積層板(導体基板)を得る手法としては、どのような手法を用いてもよいが、伸縮性樹脂層を形成するための樹脂組成物のワニスを導体箔に塗工する方法、及び、キャリアフィルム上に形成された伸縮性樹脂層に導体箔を真空プレス、ラミネータ等により積層する方法などがある。伸縮性樹脂層は、樹脂組成物を加熱して架橋成分の架橋反応(硬化反応)を進行させることで形成することができる。 As a method for obtaining a laminate (conductor substrate) having a stretchable resin layer and a conductor foil, any method may be used. There is a method of coating, and a method of laminating a conductive foil on a stretchable resin layer formed on a carrier film by a vacuum press, a laminator, or the like. The stretchable resin layer can be formed by heating the resin composition to advance the cross-linking reaction (curing reaction) of the cross-linking component.

キャリアフィルム上の伸縮性樹脂層を導体箔に積層する手法としては、どのようなものでもよいが、ロールラミネータ、真空ラミネータ、真空プレス等が用いられる。生産効率の観点から、ロールラミネータ又は真空ラミネータを用いて成型してもよい。 Any technique may be used for laminating the stretchable resin layer on the carrier film to the conductor foil, but a roll laminator, vacuum laminator, vacuum press, or the like may be used. From the viewpoint of production efficiency, a roll laminator or a vacuum laminator may be used for molding.

伸縮性樹脂層の乾燥後の厚みは、特に限定されないが、通常は5~1000μmである。上記の範囲であると、伸縮性樹脂層の十分な強度が得られ易く、かつ乾燥が十分に行えるため伸縮性樹脂層中の残留溶媒量を低減できる。 Although the thickness of the stretchable resin layer after drying is not particularly limited, it is usually 5 to 1000 μm. Within the above range, sufficient strength of the stretchable resin layer can be easily obtained, and sufficient drying can be performed, so that the amount of residual solvent in the stretchable resin layer can be reduced.

伸縮性樹脂層の導体箔とは反対側の面に更に導体箔を積層することにより、伸縮性樹脂層の両面上に導体箔が形成された積層板を作製してもよい。伸縮性樹脂層の両面上に導体層を設けることにより、硬化時の積層板の反りを抑制することができる。 A laminate having conductor foils formed on both sides of the stretchable resin layer may be produced by further laminating conductor foil on the surface of the stretchable resin layer opposite to the conductor foil. By providing conductor layers on both sides of the stretchable resin layer, it is possible to suppress warping of the laminate during curing.

積層板(配線基板形成用積層板)の導体箔に配線パターンを形成させる手法としては、一般的にエッチング等を用いた手法が用いられる。例えば導体箔として銅箔を用いた場合、エッチング液としては、例えば濃硫酸と過酸化水素水の混合溶液、塩化第二鉄溶液等を使用できる。 As a technique for forming a wiring pattern on a conductor foil of a laminated board (laminated board for forming a wiring board), a technique using etching or the like is generally used. For example, when a copper foil is used as the conductor foil, a mixed solution of concentrated sulfuric acid and hydrogen peroxide, a ferric chloride solution, or the like can be used as the etchant.

エッチングに用いるエッチングレジストとしては、例えばフォテックH-7025(日立化成株式会社製、商品名)、及びフォテックH-7030(日立化成株式会社製、商品名)、X-87(太陽ホールディングス株式会社製、商品名)が挙げられる。エッチングレジストは、配線パターンの形成の後、通常、除去される。 Examples of etching resists used for etching include Photech H-7025 (manufactured by Hitachi Chemical Co., Ltd., trade name), Photech H-7030 (manufactured by Hitachi Chemical Co., Ltd., trade name), X-87 (manufactured by Taiyo Holdings Co., Ltd., product name). The etching resist is usually removed after forming the wiring pattern.

導体めっき膜を有する配線基板を製造する方法の一実施形態は、伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、導体めっき膜上にめっきレジストを形成する工程と、めっきレジストを露光し、露光後のめっきレジストを現像して、伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、レジストパターンを除去する工程と、無電解めっきによって形成された導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む。 One embodiment of a method for manufacturing a wiring board having a conductor plating film comprises the steps of: forming a conductor plating film on an elastic resin layer by electroless plating; forming a plating resist on the conductor plating film; A process of exposing the resist and developing the plating resist after exposure to form a resist pattern covering a part of the elastic resin layer, and electroplating on the conductor plating film of the part not covered by the resist pattern. Further forming a conductive plated film, removing the resist pattern, and removing a portion of the conductive plated film formed by electroless plating that is not covered by the conductive plated film formed by electrolytic plating. and including.

配線基板を製造する方法の更に別の一実施形態は、伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後のエッチングレジストを現像して、伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体めっき膜を除去する工程と、レジストパターンを除去する工程と、を含む。 Yet another embodiment of the method for manufacturing a wiring board includes the steps of forming an etching resist on a conductive plating film formed on a stretchable resin layer, exposing the etching resist, and developing the etching resist after exposure. forming a resist pattern that partially covers the stretchable resin layer; removing the conductive plating film from the portion not covered by the resist pattern; and removing the resist pattern.

めっきのマスクとして用いるめっきレジストとしては、例えばフォテックRY3325(日立化成株式会社製、商品名)、及びフォテックRY-5319(日立化成株式会社製、商品名)、MA-830(太陽ホールディングス株式会社製、商品名)が挙げられる。その他、無電解めっき及び電解めっきの詳細については上述のとおりである。 Examples of plating resists used as plating masks include Photech RY3325 (manufactured by Hitachi Chemical Co., Ltd., trade name), Photech RY-5319 (manufactured by Hitachi Chemical Co., Ltd., trade name), MA-830 (manufactured by Taiyo Holdings Co., Ltd., product name). Other details of electroless plating and electrolytic plating are as described above.

配線基板に各種の電子素子を搭載することにより、ストレッチャブルデバイスを得ることができる。 A stretchable device can be obtained by mounting various electronic elements on a wiring substrate.

本発明について以下の実施例を挙げて更に具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
<伸縮性樹脂層形成用の樹脂ワニスの作製>
(A)成分としてトルエンで希釈し不揮発分25質量%に調整した無水マレイン酸変性スチレンエチレンブタジエンゴム(KRATON株式会社製、商品名「FG1924GT」)80質量部(不揮発分の配合量)、(B)成分としてトルエンで希釈し不揮発分25質量%に調整したジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、商品名「EPICLON HP7200H」)11.1質量部(不揮発分の配合量)、(C)成分としてトルエンで希釈し不揮発分25質量%に調整したエステル系硬化剤(DIC株式会社製、商品名「HPC8000-65T」、ジシクロペンタジエン型のジフェノール化合物)8.9質量部(不揮発分の配合量)、及び(D)成分として1-ベンジル-2-メチルイミダゾール(四国化成株式会社製、商品名「1B2MZ」)3質量部を撹拌しながら混合して、樹脂ワニスを得た。
(Example 1)
<Preparation of resin varnish for forming elastic resin layer>
(A) 80 parts by mass of maleic anhydride-modified styrene-ethylene-butadiene rubber (manufactured by KRATON Co., Ltd., trade name "FG1924GT") diluted with toluene and adjusted to a nonvolatile content of 25% by mass (amount of nonvolatile content); ) 11.1 parts by mass of a dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, trade name “EPICLON HP7200H”) diluted with toluene and adjusted to a nonvolatile content of 25% by mass as a component (amount of nonvolatile content), (C) Ester-based curing agent (manufactured by DIC Corporation, trade name “HPC8000-65T”, dicyclopentadiene type diphenol compound) diluted with toluene and adjusted to 25% by mass of nonvolatile content as a component) 8.9 parts by mass (nonvolatile content compounding amount), and 3 parts by mass of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name “1B2MZ”) as component (D) were mixed with stirring to obtain a resin varnish.

<積層フィルムの作製>
キャリアフィルムとして離型処理ポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA31」、厚み25μm)を準備した。このPETフィルムの離型処理面上にナイフコータ(株式会社康井精機製、商品名「SNC-350」)を用いて上記樹脂ワニスを塗布した。塗膜を乾燥機(株式会社二葉科学製、商品名「MSO-80TPS」)中、100℃で20分の加熱により乾燥して、厚み100μmの樹脂層(硬化前の伸縮性樹脂層)を形成させた。形成された樹脂層に、キャリアフィルムと同じ離型処理PETフィルムを、離型処理面が樹脂層側になる向きで保護フィルムとして貼付けて、積層フィルムを得た。
<Production of laminated film>
A release-treated polyethylene terephthalate (PET) film (manufactured by Teijin DuPont Films Limited, trade name “Purex A31”, thickness 25 μm) was prepared as a carrier film. The resin varnish was applied onto the release-treated surface of the PET film using a knife coater (manufactured by Yasui Seiki Co., Ltd., product name: "SNC-350"). The coating film is dried by heating at 100° C. for 20 minutes in a dryer (manufactured by Futaba Kagaku Co., Ltd., trade name “MSO-80TPS”) to form a 100 μm-thick resin layer (elastic resin layer before curing). let me A release-treated PET film, which was the same as the carrier film, was attached as a protective film to the formed resin layer so that the release-treated surface faced the resin layer, thereby obtaining a laminated film.

<導体基板の作製>
積層フィルムの保護フィルムを剥離し、露出した樹脂層に、表面粗さRaが1.5μmの粗化面を有する電解銅箔(古河電気工業株式会社製、商品名「F2-WS-12」)を、粗化面が樹脂層側になる向きで重ねた。その状態で、真空加圧式ラミネータ(ニッコー・マテリアルズ株式会社製、商品名「V130」)を用いて、圧力0.5MPa、温度90℃及び加圧時間60秒の条件で電解銅箔を樹脂層にラミネートした。その後、乾燥機(株式会社二葉科学製、商品名「MSO-80TPS」)中、180℃で60分の加熱により、樹脂層の硬化物である伸縮性樹脂層と、導体層としての電解銅箔とを有する導体基板を得た。
<Production of conductor substrate>
An electrolytic copper foil having a roughened surface with a surface roughness Ra of 1.5 μm on the exposed resin layer after peeling the protective film of the laminated film (manufactured by Furukawa Electric Co., Ltd., trade name “F2-WS-12”) were stacked with the roughened surface facing the resin layer. In that state, using a vacuum pressurized laminator (manufactured by Nikko Materials Co., Ltd., trade name "V130"), the electrolytic copper foil was applied to the resin layer under the conditions of a pressure of 0.5 MPa, a temperature of 90 ° C., and a pressurization time of 60 seconds. laminated to. After that, by heating at 180 ° C. for 60 minutes in a dryer (manufactured by Futaba Kagaku Co., Ltd., product name "MSO-80TPS"), an elastic resin layer, which is a cured product of the resin layer, and an electrolytic copper foil as a conductor layer. A conductor substrate having

(実施例2~6及び比較例1~2)
樹脂ワニスの組成を表1に示す組成に変更したこと以外は実施例1と同様にして、樹脂ワニス、積層フィルム及び導体基板を作製した。なお、表1中、「HP5000」は、ノボラック型エポキシ樹脂(DIC株式会社製、商品名「EPICLON HP5000」)であり、「HPC8000-L-65MT」は、エステル系硬化剤(DIC株式会社製、商品名「EPICLON HPC8000-L-65MT」、HPC8000-65Tの低分子量グレード)であり、「HPC8150-60T」は、エステル系硬化剤(DIC株式会社製、商品名「EPICLON HPC8150-60T」、ナフタレン骨格を有する化合物)である。また、表1中の各成分の配合量は不揮発分の配合量であり、単位は「質量部」である。
(Examples 2-6 and Comparative Examples 1-2)
A resin varnish, a laminated film and a conductor substrate were produced in the same manner as in Example 1 except that the composition of the resin varnish was changed to the composition shown in Table 1. In Table 1, "HP5000" is a novolac type epoxy resin (manufactured by DIC Corporation, trade name "EPICLON HP5000"), and "HPC8000-L-65MT" is an ester curing agent (manufactured by DIC Corporation, Product name "EPICLON HPC8000-L-65MT", low molecular weight grade of HPC8000-65T), "HPC8150-60T" is an ester curing agent (manufactured by DIC Corporation, product name "EPICLON HPC8150-60T", naphthalene skeleton is a compound having In addition, the blending amount of each component in Table 1 is the blending amount of the non-volatile matter, and the unit is "parts by mass".

[引張弾性率及び破断伸び率の測定]
実施例及び比較例で得られた積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂層を形成させた。キャリアフィルム及び保護フィルムを除去し、伸縮性樹脂層を長さ40mm、幅10mmの短冊状に切断して、試験片を得た。この試験片の引張試験をオートグラフ(株式会社島津製作所製、商品名「EZ-S」)を用いて行い、応力-ひずみ曲線を得た。得られた応力-ひずみ曲線から、引張弾性率及び破断伸び率を求めた。引張試験は、チャック間距離20mm、引張速度50mm/分の条件で行った。引張弾性率は、応力0.5~1.0Nの範囲の応力-ひずみ曲線の傾きから求めた。試験片が破断した時点のひずみを破断伸び率として記録した。結果を表1に示す。
[Measurement of tensile modulus and elongation at break]
The resin layers were cured by heating the laminated films obtained in Examples and Comparative Examples at 180° C. for 60 minutes to form elastic resin layers. After removing the carrier film and the protective film, the stretchable resin layer was cut into strips having a length of 40 mm and a width of 10 mm to obtain test pieces. A tensile test of this test piece was performed using an autograph (manufactured by Shimadzu Corporation, trade name "EZ-S") to obtain a stress-strain curve. The obtained stress-strain curve was used to determine the tensile modulus and elongation at break. The tensile test was performed under the conditions of a chuck-to-chuck distance of 20 mm and a tensile speed of 50 mm/min. The tensile modulus was obtained from the slope of the stress-strain curve in the stress range of 0.5 to 1.0N. The strain at which the specimen broke was recorded as the breaking elongation. Table 1 shows the results.

[回復率の測定]
上記引張弾性率及び破断伸び率の測定と同様にして、長さ40mm、幅10mmの短冊状の伸縮性樹脂層の試験片を作製した。この試験片を、オートグラフ(株式会社島津製作所製、商品名「EZ-S」)を用いて、引張速度100mm/分でひずみ20%まで伸長させ、その後応力を解放して初期位置に戻してから、再度引っ張り試験を行った。回復率Rは、1回目の引っ張り試験で加えたひずみ(変位量)をX、再度引っ張り試験を行ったときに荷重が掛かり始めるときの位置とXとの差をYとし、下記式により求めた。本試験において、Xは20%である。結果を表1に示す。
R(%)=Y/X×100
[Measurement of recovery rate]
A strip-shaped elastic resin layer test piece having a length of 40 mm and a width of 10 mm was prepared in the same manner as in the measurement of the tensile modulus and elongation at break. This test piece is elongated to a strain of 20% at a tensile speed of 100 mm / min using an autograph (manufactured by Shimadzu Corporation, trade name "EZ-S"), then the stress is released and returned to the initial position. Then, the tensile test was performed again. The recovery rate R is obtained by the following formula, where X is the strain (displacement amount) applied in the first tensile test, and Y is the difference between the position where the load starts to be applied when the tensile test is performed again and X. . In this test, X is 20%. Table 1 shows the results.
R (%) = Y/X x 100

[比誘電率(Dk)・誘電正接(Df)の測定]
上記引張弾性率及び破断伸び率の測定と同様にして、80mm×80mmのサイズの伸縮性樹脂層の試験片を作製した。この試験片を用いて、空洞共振器法によりDk及びDfを算出した。測定器にはベクトル型ネットワークアナライザE8364B(キーサイトテクノロジー社製)、CP531(関東電子応用開発社製)及びCPMA-V2(プログラム)をそれぞれ使用して、雰囲気温度25℃、周波数10kHzの条件で測定を行った。結果を表1に示す。
[Measurement of dielectric constant (Dk) and dielectric loss tangent (Df)]
A test piece of the stretchable resin layer having a size of 80 mm×80 mm was prepared in the same manner as the measurement of the tensile modulus and elongation at break. Using this test piece, Dk and Df were calculated by the cavity resonator method. Vector type network analyzer E8364B (manufactured by Keysight Technologies), CP531 (manufactured by Kanto Denshi Applied Development Co., Ltd.) and CPMA-V2 (program) are used as measuring instruments, and measurements are performed under the conditions of an ambient temperature of 25°C and a frequency of 10 kHz. did Table 1 shows the results.

[耐熱性の評価]
実施例1~6及び比較例1~2で得られた積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂層を形成させた。キャリアフィルム及び保護フィルムを除去してから、伸縮性樹脂層を窒素リフローシステム(田村製作所株式会社製、商品名「TNV-EN」)を用いて、IPC/JEDEC J-STD-020に準拠する図3の温度プロファイルで加熱処理する工程を10回繰り返す耐熱性試験を行った。耐熱性試験後、上記と同様の方法で、伸縮性樹脂層の引張弾性率、破断伸び率及び回復率を測定した。その結果を、耐熱性試験前の測定結果と併せて表2及び表3に示す。
[Evaluation of heat resistance]
The laminated films obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were heated at 180° C. for 60 minutes to cure the resin layer and form a stretchable resin layer. After removing the carrier film and protective film, the elastic resin layer is removed using a nitrogen reflow system (manufactured by Tamura Seisakusho Co., Ltd., trade name “TNV-EN”), a diagram conforming to IPC / JEDEC J-STD-020 A heat resistance test was conducted in which the process of heat treatment with the temperature profile of No. 3 was repeated 10 times. After the heat resistance test, the tensile modulus, elongation at break and recovery rate of the stretchable resin layer were measured in the same manner as above. The results are shown in Tables 2 and 3 together with the measurement results before the heat resistance test.

[赤外線吸収スペクトル(IR)の測定]
比較例1の積層フィルムの樹脂層(硬化前の伸縮性樹脂層)及びそれを180℃で60分加熱して硬化した後の伸縮性樹脂層、並びに、実施例1及び3の積層フィルムの樹脂層を180℃で60分加熱して硬化した後の伸縮性樹脂層について、キャリアフィルム及び保護フィルムを除去した後、フーリエ変換赤外分光光度計(Bio-Rad社製、商品名「FTS3000MX」)を用いて、透過法により赤外線吸収スペクトルを測定した。図4に、比較例1の硬化前後の伸縮性樹脂層の赤外線吸収スペクトルを、図5に、実施例1、3及び比較例1の硬化後の伸縮性樹脂層の赤外線吸収スペクトルを、それぞれ示す。
[Measurement of infrared absorption spectrum (IR)]
The resin layer (elastic resin layer before curing) of the laminated film of Comparative Example 1, the elastic resin layer after curing by heating it at 180 ° C. for 60 minutes, and the resins of the laminated films of Examples 1 and 3 After removing the carrier film and the protective film, the stretchable resin layer after curing by heating the layer at 180 ° C. for 60 minutes was measured with a Fourier transform infrared spectrophotometer (manufactured by Bio-Rad, trade name "FTS3000MX"). was used to measure the infrared absorption spectrum by the transmission method. FIG. 4 shows infrared absorption spectra of the elastic resin layer before and after curing of Comparative Example 1, and FIG. 5 shows infrared absorption spectra of the elastic resin layers after curing of Examples 1 and 3 and Comparative Example 1, respectively. .

図4に示されるように、比較例1の伸縮性樹脂層では、硬化後に、硬化前には無かった水酸基の伸縮振動に帰属される3400cm-1付近の吸収ピークが現れており、硬化反応により水酸基が生成したことが確認された。また、図5に示されるように、実施例1及び3の伸縮性樹脂層では、水酸基の伸縮振動に帰属される吸収ピークがほぼ無く、水酸基の生成が抑制されていることが確認された。 As shown in FIG. 4, in the stretchable resin layer of Comparative Example 1, after curing, an absorption peak around 3400 cm attributed to the stretching vibration of hydroxyl groups, which was not present before curing, appeared. It was confirmed that hydroxyl groups were generated. Further, as shown in FIG. 5, in the elastic resin layers of Examples 1 and 3, there was almost no absorption peak attributed to the stretching vibration of hydroxyl groups, confirming that the generation of hydroxyl groups was suppressed.

[配線基板の作製とその評価]
図2に示すような、伸縮性樹脂層3及び伸縮性樹脂層3上に形成された波型パターンを有する導体箔(電解銅箔)を導体層5として有する試験用の配線基板1を作製した。まず、伸縮性樹脂層表面に凹凸が形成された実施例及び比較例で得られた導体基板の導体層上にエッチングレジスト(日立化成株式会社製、商品名「フォテックRY-5325」)をロールラミネータで貼着し、そこに波型パターンを形成したフォトツールを密着させた。エッチングレジストを、オーク製作所社製EXM-1201型露光機を使用して、50mJ/cmのエネルギー量で露光した。次いで、30℃の1質量%炭酸ナトリウム水溶液で、240秒間スプレー現像を行い、エッチングレジストの未露光部を溶解させ、波型の開口部を有するレジストパターンを形成した。次いで、エッチング液により、レジストパターンによって覆われていない部分の銅箔を除去した。その後、剥離液によりエッチングレジストを除去し、配線幅が50μmで所定の方向Xに沿って蛇行する波型の配線パターンを形成している導体層5を伸縮性樹脂層3上に有する配線基板1を得た。
[Production of Wiring Board and its Evaluation]
As shown in FIG. 2 , a test wiring board 1 having a conductive layer 5 made of an elastic resin layer 3 and a conductor foil (electrolytic copper foil) having a corrugated pattern formed on the elastic resin layer 3 was produced. . First, an etching resist (manufactured by Hitachi Chemical Co., Ltd., product name “Photech RY-5325”) was applied on the conductor layer of the conductor substrate obtained in Examples and Comparative Examples in which unevenness was formed on the surface of the elastic resin layer using a roll laminator. , and a phototool having a wavy pattern was brought into close contact therewith. The etching resist was exposed with an energy dose of 50 mJ/cm 2 using an EXM-1201 type exposing machine manufactured by Oak Manufacturing Co., Ltd. Next, spray development was carried out with a 1% by mass sodium carbonate aqueous solution at 30° C. for 240 seconds to dissolve the unexposed portions of the etching resist, thereby forming a resist pattern having wavy openings. Then, an etchant was used to remove portions of the copper foil that were not covered with the resist pattern. After that, the etching resist is removed with a stripping solution, and the wiring substrate 1 having the conductor layer 5 on the stretchable resin layer 3 has a wavy wiring pattern with a wiring width of 50 μm and meandering along a predetermined direction X. got

得られた配線基板をXの方向に歪み10%まで引張変形させ、元に戻したときの、伸縮性樹脂層及び波型の配線パターンを観察した。その結果、実施例及び比較例のいずれの配線基板も、伸張時に伸縮性樹脂層及び配線パターンの破断を生じなかった。 The elastic resin layer and the wavy wiring pattern were observed when the obtained wiring board was tensile-deformed to a strain of 10% in the X direction and returned to its original state. As a result, neither the wiring board of the example nor the comparative example caused breakage of the elastic resin layer and the wiring pattern when stretched.

Figure 2023029400000002
Figure 2023029400000002

Figure 2023029400000003
Figure 2023029400000003

Figure 2023029400000004
Figure 2023029400000004

表1に示した結果から明らかなように、実施例1~6の導体基板は、比較例1~2の導体基板と比較して、優れた伸縮性を有すると共に、低い誘電正接を有することが確認された。また、表2及び表3に示した結果から明らかなように、実施例1~6の導体基板は、耐熱性試験後でも良好な伸縮性及び弾性率を維持できることが確認された。 As is clear from the results shown in Table 1, the conductor substrates of Examples 1 to 6 have excellent stretchability and low dielectric loss tangent compared to the conductor substrates of Comparative Examples 1 and 2. confirmed. Moreover, as is clear from the results shown in Tables 2 and 3, it was confirmed that the conductive substrates of Examples 1 to 6 could maintain good stretchability and elastic modulus even after the heat resistance test.

本発明の導体基板及びこれから得られる配線基板は、例えばウェアラブル機器の基板として適用することが期待される。 The conductor substrate of the present invention and the wiring substrate obtained therefrom are expected to be applied, for example, as substrates for wearable devices.

1…配線基板、3…伸縮性樹脂層、5…導体層(導体箔又は導体めっき膜)。 DESCRIPTION OF SYMBOLS 1... Wiring board, 3... Stretchable resin layer, 5... Conductor layer (conductor foil or conductor plating film).

Claims (12)

伸縮性樹脂層と、
前記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板であって、
前記伸縮性樹脂層が、(A)ゴム成分と、(B)エポキシ基を有する架橋成分と、(C)エステル系硬化剤と、を含有する樹脂組成物の硬化物を含み、
前記樹脂組成物における前記(A)ゴム成分の含有量が、前記(A)ゴム成分、前記(B)架橋成分及び前記(C)エステル系硬化剤の総量を基準として、60~95質量%である、導体基板。
an elastic resin layer;
A conductive substrate having a conductive plating film provided on the elastic resin layer,
The elastic resin layer comprises a cured product of a resin composition containing (A) a rubber component, (B) a cross-linking component having an epoxy group, and (C) an ester curing agent,
The content of the (A) rubber component in the resin composition is 60 to 95% by mass based on the total amount of the (A) rubber component, the (B) cross-linking component and the (C) ester curing agent. There is a conductive substrate.
前記(A)ゴム成分が、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種のゴムを含む、請求項1に記載の導体基板。 The rubber component (A) includes acrylic rubber, isoprene rubber, butyl rubber, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluororubber, vulcanized rubber, epichlorohydrin rubber, and 2. The conductor substrate according to claim 1, comprising at least one rubber selected from the group consisting of chlorinated butyl rubber. 前記(A)ゴム成分が、架橋基を有するゴムを含む、請求項1又は2に記載の導体基板。 3. The conductive substrate according to claim 1, wherein the (A) rubber component contains rubber having a cross-linking group. 前記架橋基が、酸無水物基又はカルボキシル基のうちの少なくとも一方である、請求項3に記載の導体基板。 4. The conductor substrate according to claim 3, wherein the cross-linking group is at least one of an acid anhydride group and a carboxyl group. 前記樹脂組成物が、(D)硬化促進剤を更に含有する、請求項1~4のいずれか一項に記載の導体基板。 The conductor substrate according to any one of claims 1 to 4, wherein the resin composition further contains (D) a curing accelerator. 前記樹脂組成物が、酸化防止剤を更に含有する、請求項1~5のいずれか一項に記載の導体基板。 The conductor substrate according to any one of claims 1 to 5, wherein the resin composition further contains an antioxidant. 請求項1~6のいずれか一項に記載の導体基板を含み、前記導体めっき膜が配線パターンを形成している、配線基板。 A wiring substrate comprising the conductor substrate according to any one of claims 1 to 6, wherein the conductor plating film forms a wiring pattern. 請求項7に記載の配線基板と、前記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイス。 A stretchable device comprising the wiring board according to claim 7 and an electronic element mounted on the wiring board. 伸縮性樹脂層と、前記伸縮性樹脂層上に設けられた導体めっき膜と、を有する導体基板を含み、前記導体めっき膜が配線パターンを形成している、配線基板を形成するために用いられる、請求項1~6のいずれか一項に記載の導体基板。 Used for forming a wiring board including a conductive substrate having an elastic resin layer and a conductive plating film provided on the elastic resin layer, wherein the conductive plating film forms a wiring pattern , the conductive substrate according to any one of claims 1 to 6. 伸縮性樹脂層上にめっきレジストを形成する工程と、
前記めっきレジストを露光し、露光後の前記めっきレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記伸縮性樹脂層の前記レジストパターンによって覆われていない部分の表面上に無電解めっきによって導体めっき膜を形成する工程と、
前記レジストパターンを除去する工程と、を含む、請求項7に記載の配線基板を製造する方法。
A step of forming a plating resist on the elastic resin layer;
exposing the plating resist and developing the exposed plating resist to form a resist pattern covering a portion of the stretchable resin layer;
forming a conductive plating film by electroless plating on the surface of the stretchable resin layer not covered by the resist pattern;
and removing the resist pattern.
伸縮性樹脂層上に無電解めっきにより導体めっき膜を形成する工程と、
前記導体めっき膜上にめっきレジストを形成する工程と、
前記めっきレジストを露光し、露光後の前記めっきレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記レジストパターンによって覆われていない部分の前記導体めっき膜上に、電解めっきによって導体めっき膜を更に形成する工程と、
前記レジストパターンを除去する工程と、
無電解めっきによって形成された前記導体めっき膜のうち、電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含む、請求項7に記載の配線基板を製造する方法。
a step of forming a conductive plating film on the stretchable resin layer by electroless plating;
forming a plating resist on the conductor plating film;
exposing the plating resist and developing the exposed plating resist to form a resist pattern covering a portion of the stretchable resin layer;
a step of further forming a conductor plating film by electroplating on the conductor plating film in a portion not covered with the resist pattern;
removing the resist pattern;
8. The method of manufacturing a wiring board according to claim 7, further comprising the step of removing a portion of the conductive plated film formed by electroless plating that is not covered by the conductive plated film formed by electrolytic plating. .
伸縮性樹脂層上に形成された導体めっき膜上にエッチングレジストを形成する工程と、
前記エッチングレジストを露光し、露光後の前記エッチングレジストを現像して、前記伸縮性樹脂層の一部を覆うレジストパターンを形成する工程と、
前記レジストパターンによって覆われていない部分の前記導体めっき膜を除去する工程と、
前記レジストパターンを除去する工程と、
を含む、請求項7に記載の配線基板を製造する方法。
forming an etching resist on the conductive plating film formed on the stretchable resin layer;
exposing the etching resist and developing the etching resist after exposure to form a resist pattern covering a portion of the stretchable resin layer;
a step of removing the conductor plating film in a portion not covered with the resist pattern;
removing the resist pattern;
8. The method of manufacturing a wiring board according to claim 7, comprising:
JP2022203303A 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate Active JP7468611B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018092105 2018-05-11
JP2018092105 2018-05-11
JP2020518362A JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
PCT/JP2019/018795 WO2019216425A1 (en) 2018-05-11 2019-05-10 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020518362A Division JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Publications (2)

Publication Number Publication Date
JP2023029400A true JP2023029400A (en) 2023-03-03
JP7468611B2 JP7468611B2 (en) 2024-04-16

Family

ID=68467028

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020518362A Active JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203296A Active JP7468609B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203298A Active JP7468610B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203303A Active JP7468611B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2020518362A Active JP7338621B2 (en) 2018-05-11 2019-05-10 Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203296A Active JP7468609B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2022203298A Active JP7468610B2 (en) 2018-05-11 2022-12-20 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate

Country Status (5)

Country Link
JP (4) JP7338621B2 (en)
KR (1) KR20210007956A (en)
CN (1) CN112088089A (en)
TW (1) TW201946777A (en)
WO (1) WO2019216425A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (en) * 2022-07-12 2024-01-18 株式会社レゾナック Curable resin composition, curable film, and laminated film

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316525A (en) * 1994-05-24 1995-12-05 Mitsui Petrochem Ind Ltd Adhesive composition for flexible printed-wiring board
JPH08302161A (en) * 1995-05-10 1996-11-19 Hitachi Chem Co Ltd Resin composition and method for chemically etching same
JP3635811B2 (en) * 1996-10-03 2005-04-06 東レ株式会社 Copper-clad laminate for flexible printed wiring board and flexible printed wiring board
US20010018122A1 (en) * 2000-01-20 2001-08-30 Shin-Etsu Chemical Co., Ltd. Adhesive composition
JP2003313526A (en) * 2002-04-19 2003-11-06 Hitachi Kasei Polymer Co Ltd Adhesive composition for flexible printed wiring board lamination and adhesive film
JP2004136631A (en) * 2002-10-18 2004-05-13 Hitachi Kasei Polymer Co Ltd Adhesive composition for laminating flexible printed wiring boards, and adhesive film
JP2006059999A (en) * 2004-08-19 2006-03-02 Tdk Corp Printed-wiring board and electronic component
JP3987074B2 (en) * 2005-06-27 2007-10-03 京セラケミカル株式会社 Epoxy resin composition, copper-clad laminate, adhesive film, coverlay and printed wiring board
JP2007051258A (en) * 2005-08-19 2007-03-01 Sumitomo Bakelite Co Ltd Resin composition, coverlay film using the same and metal-clad laminated board
JP2007112848A (en) * 2005-10-18 2007-05-10 Sumitomo Bakelite Co Ltd Resin composition and cover-lay film and metal-clad laminate each using the same
JP2007211143A (en) * 2006-02-09 2007-08-23 Sumitomo Bakelite Co Ltd Resin composition, cover-lay film and metal-clad laminate
JP2008007566A (en) * 2006-06-27 2008-01-17 Adeka Corp New compound, epoxy resin composition and its hardened product
JP2008195846A (en) * 2007-02-14 2008-08-28 Sumitomo Bakelite Co Ltd Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
US8207473B2 (en) * 2008-06-24 2012-06-26 Imec Method for manufacturing a stretchable electronic device
JP2010165848A (en) * 2009-01-15 2010-07-29 Kyocera Chemical Corp Coated flexible wiring board, liquid crystal display module, and method of manufacturing coated flexible wiring board
TWI498408B (en) * 2009-07-14 2015-09-01 Ajinomoto Kk Attached film with copper foil
JP5870917B2 (en) * 2010-03-08 2016-03-01 味の素株式会社 Resin composition
JP5447143B2 (en) * 2010-04-26 2014-03-19 日立化成株式会社 Flexible printed wiring board, optoelectric wiring board and manufacturing method thereof
JP5724503B2 (en) * 2010-11-15 2015-05-27 日立化成株式会社 Resin film for printed wiring board and method for producing the same
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
JP2014232776A (en) * 2013-05-28 2014-12-11 味の素株式会社 Method for manufacturing multilayer printed wiring board
JP6234143B2 (en) * 2013-09-30 2017-11-22 新日鉄住金化学株式会社 Curable resin composition, cured product thereof, electrical / electronic component and circuit board
FI20145907A (en) 2014-10-16 2016-04-17 Savo Solar Oy Solar Thermal Collectors
CN107113960A (en) * 2014-12-08 2017-08-29 株式会社藤仓 Retractility substrate
TWI752057B (en) * 2016-07-20 2022-01-11 日商昭和電工材料股份有限公司 Composite film for electronic equipment, printed wiring board, and manufacturing method using high-frequency signal
JP6897026B2 (en) * 2016-08-10 2021-06-30 味の素株式会社 Resin composition
CN106409873B (en) * 2016-10-12 2019-06-04 上海天马微电子有限公司 Flexible display apparatus and manufacturing method
WO2018092778A1 (en) * 2016-11-15 2018-05-24 日立化成株式会社 Conductor substrate, wiring substrate and method for producing wiring substrate

Also Published As

Publication number Publication date
WO2019216425A1 (en) 2019-11-14
JPWO2019216425A1 (en) 2021-05-27
JP7468611B2 (en) 2024-04-16
CN112088089A (en) 2020-12-15
JP7468610B2 (en) 2024-04-16
JP7468609B2 (en) 2024-04-16
TW201946777A (en) 2019-12-16
KR20210007956A (en) 2021-01-20
JP7338621B2 (en) 2023-09-05
JP2023029398A (en) 2023-03-03
JP2023029399A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
KR102561850B1 (en) Process for producing wiring board
JP2023075219A (en) Conductor substrate, and wiring substrate and method for manufacturing wiring substrate
CN104010448A (en) Method of manufacturing wiring substrate with built-in components and semiconductor apparatus
JP2011233883A (en) Dry film for coverlay, coverlay, flexible printed wiring board and method for manufacturing flexible printed wiring board
JP7468609B2 (en) Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
US20090266589A1 (en) Process for producing metal wiring board
JP2006290997A (en) Thermosetting resin composition, adhesive sheet using the composition and adhesive sheet with copper foil
JP6611396B2 (en) Plating layer forming composition, plated layer precursor film, patterned film with plated layer, conductive film, touch panel
TWI753071B (en) Wiring board, method for manufacturing the same, and stretchable element
KR102062210B1 (en) Manufacturing method of laminated body and metal foil with resin layer
TW202124149A (en) Method for manufacturing laminated film for flexible printed circuit board and flexible printed circuit board capable of providing the flexibility required by wearable devices
JP2022018372A (en) Laminate film and conductor substrate
JP7110711B2 (en) Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
CN104244603A (en) A manufacturing method for a part built-in type wiring substrate and a semiconductor device
JP4716662B2 (en) Coverlay for flexible wiring board and flexible wiring board using the same
JP2021017461A (en) Prepreg, insulation base material, conductor substrate, and wiring board
TW202409238A (en) Curable resin composition, curable film and laminated film
TW202409183A (en) Curable resin composition, curable film and laminated film
WO2024014432A1 (en) Curable resin composition, curable film, and laminated film
JP2024010670A (en) Curable resin composition, curable film, and laminated film
WO2024014435A1 (en) Curable resin composition, curable film, and laminated film
JP2022018376A (en) Resin composition and conductor substrate
JP2019160965A (en) Conductor substrate, wiring board, and method for manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150