JP2012122046A - Resin film for printed wiring board and method for manufacturing the same - Google Patents

Resin film for printed wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2012122046A
JP2012122046A JP2011064849A JP2011064849A JP2012122046A JP 2012122046 A JP2012122046 A JP 2012122046A JP 2011064849 A JP2011064849 A JP 2011064849A JP 2011064849 A JP2011064849 A JP 2011064849A JP 2012122046 A JP2012122046 A JP 2012122046A
Authority
JP
Japan
Prior art keywords
resin
component
printed wiring
resin film
maleimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011064849A
Other languages
Japanese (ja)
Other versions
JP5724503B2 (en
Inventor
Yasuyuki Mizuno
康之 水野
Akira Murai
曜 村井
Daisuke Fujimoto
大輔 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011064849A priority Critical patent/JP5724503B2/en
Publication of JP2012122046A publication Critical patent/JP2012122046A/en
Application granted granted Critical
Publication of JP5724503B2 publication Critical patent/JP5724503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin film for printed wiring boards capable of imparting good dielectric characteristics in a high frequency region to the printed wiring board, while sufficiently securing the compatibility of a resin component, and to provide a method for manufacturing the resin film for printed wiring boards.SOLUTION: The method for manufacturing the resin film for printed wiring boards comprises a step of casting and applying a resin composition on one side of a supporting substrate, and heating and drying a resin composition solution to half-cure or cure it, wherein the resin composition contains: (A) a saturated thermoplastic elastomer having a styrene unit; (B) a thermosetting resin component containing at least one thermosetting resin selected from the group consisting of an epoxy resin, a cyanate ester resin, a polybutadiene resin, and a maleimide compound, a curing agent and a curing accelerator for the thermosetting resin which are mixed as necessary, and the mass ratio W/Wof the content Wof the component (A) to the content Wof the component (B) is 0.430-5.000, and the content of polyphenylene ether is not more than 10 pts.mass based on 100 pts.mass of the total of the component (A) and the component (B).

Description

本発明は、印刷配線板用樹脂フィルム及びその製造方法に関する。   The present invention relates to a resin film for printed wiring boards and a method for producing the same.

携帯電話に代表される移動体通信機器、通信用基地局装置やその周辺機器(アンテナ、パワーアンプ、フィルタ等)では、使用する信号の高速大容量化が進んでいる。これに伴い、これらの機器に搭載される印刷配線板の信号の高周波数化対応が必要となり、印刷配線板の伝送損失の低減を可能とする基板材料が求められている。近年、このような高周波信号を扱う無線系アプリケーションとして、ITS分野(自動車・交通システム関連)や室内の近距離通信分野でミリ波帯(30GHz〜)信号を扱うシステムの実用化や実用計画が特に進んでおり、今後、これらの機器に搭載する印刷配線板に対して、伝送損失の低減がさらに要求されると予想される。   In mobile communication devices typified by mobile phones, communication base station devices and peripheral devices (antennas, power amplifiers, filters, etc.), high-speed and large-capacity signals are being used. Along with this, it is necessary to cope with higher frequency signals of printed wiring boards mounted on these devices, and there is a need for a substrate material that can reduce transmission loss of printed wiring boards. In recent years, practical applications and practical plans for systems that handle millimeter-wave (30 GHz ~) signals in the ITS field (related to automobiles and transportation systems) and indoor short-range communication fields are particularly popular as wireless applications that handle such high-frequency signals. In the future, it is expected that further reduction of transmission loss will be required for printed wiring boards mounted on these devices.

従来、低伝送損失の印刷配線板を得るため、比誘電率及び誘電正接が低いフッ素系樹脂が基板材料として使用されている。しかしながら、フッ素系樹脂はコストが高いだけでなく、溶融温度及び溶融粘度が高く、その流動性が比較的低いため、プレス成型を高温高圧条件下で行う必要があるという問題点がある。加えて、印刷配線板用途に使用するには、加工性、熱膨張特性、寸法安定性及び金属めっきとの接着性が不充分であるという問題点もある。また他の樹脂材料との接着や複合化が困難であり、用途が限定されている。更にフッ素系樹脂は基本的には熱可塑性樹脂であるために耐熱性の要求される用途や誘電特性の温度に対する安定性の要求される用途での使用は困難である。   Conventionally, in order to obtain a printed wiring board with a low transmission loss, a fluorine-based resin having a low relative dielectric constant and dielectric loss tangent has been used as a substrate material. However, the fluororesin is not only high in cost, but also has a problem that it is necessary to perform press molding under high temperature and high pressure conditions because of high melting temperature and melt viscosity and relatively low fluidity. In addition, there is a problem that the processability, thermal expansion characteristics, dimensional stability, and adhesion to metal plating are insufficient for use in printed wiring board applications. In addition, it is difficult to bond or combine with other resin materials, and its application is limited. Furthermore, since the fluororesin is basically a thermoplastic resin, it is difficult to use it in applications requiring heat resistance and applications requiring dielectric property stability with respect to temperature.

一方、電子機器の小型・高機能化に伴い、薄型・軽量でかつ高密度配線を可能とする基板材料が求められるようになってきている。近年、小径でかつ必要な層間のみを非貫通穴で接続するインナービアホール(IVH)構造のビルドアップ積層方式印刷配線板が開発され、急速に普及が進んでいる。ビルドアップ積層方式印刷配線板の絶縁層にはガラス布等(ガラスクロス)の基材を含まない樹脂フィルムが用いられる場合が多く、IVH用の穴は感光性樹脂を利用したフォトリソグラフィあるいは熱硬化性樹脂をレーザー加工機によって熱分解する等の方法で形成されている。   On the other hand, with the downsizing and high functionality of electronic devices, there has been a demand for substrate materials that are thin, lightweight, and capable of high-density wiring. In recent years, a build-up lamination type printed wiring board having an inner via hole (IVH) structure in which only a necessary layer is connected with a non-through hole has been developed and is rapidly spreading. Resin films that do not contain a glass cloth (glass cloth) base material are often used for the insulating layer of build-up laminated printed wiring boards, and the holes for IVH are photolithography or thermosetting using a photosensitive resin. It is formed by a method such as thermally decomposing a functional resin with a laser processing machine.

上述した樹脂フィルムの材料として、ビルドアップ配線板には、耐熱性能を有するエポキシ樹脂系の材料が適用されており、フレキシブル印刷配線板には、フィルム形成能を有するポリイミド系の材料が適用されている。しかしながら、これらの樹脂フィルムを備えた印刷配線板は、比誘電率及び誘電正接がともに高く、高周波特性(低伝送損失)が不十分である。このほか、高周波特性に優れる樹脂フィルムの材料として全芳香族ポリエステルの液晶ポリマー(LCP)が最近注目されているが、LCPを備えた印刷配線板は、誘電正接が低いものの、比誘電率が3以上とフッ素樹脂系材料と比べて高い。またLCPは、コストが高い上に、フッ素樹脂同様に溶融温度の高い熱可塑性樹脂であるとともに、加工性及び金属や他の樹脂材料との接着性が乏しいため用途が限定される。   As the material of the resin film described above, an epoxy resin material having heat resistance is applied to the build-up wiring board, and a polyimide material having film forming ability is applied to the flexible printed wiring board. Yes. However, printed wiring boards provided with these resin films have high relative dielectric constant and dielectric loss tangent, and are insufficient in high-frequency characteristics (low transmission loss). In addition, liquid crystal polymers (LCPs) of wholly aromatic polyesters have recently attracted attention as materials for resin films with excellent high-frequency characteristics. Although printed wiring boards equipped with LCP have a low dielectric loss tangent, they have a relative dielectric constant of 3 As above, it is higher than fluororesin-based materials. Further, LCP is not only costly but also a thermoplastic resin having a high melting temperature like a fluororesin, and its application is limited because of poor workability and adhesion to metals and other resin materials.

そこで、従来からフッ素樹脂には及ばないものの、低誘電率を示す樹脂フィルムの材料として、耐熱性熱可塑性樹脂(エンジニアリング・プラスチックス)のポリフェニレンエーテル(PPO又はPPE)系樹脂が知られている。しかしながら、印刷配線板の絶縁層に適用するためには、実装時のはんだ接続工程に耐えられる耐熱性が必要である。この耐熱性や耐溶剤性を改善する方法として、ポリフェニレンエーテル樹脂を熱硬化性樹脂で変性する方法が提案されている。例えば、熱硬化性樹脂の中でも誘電率が低いシアネートエステル樹脂を用いた樹脂フィルムとして、ポリフェニレンエーテル樹脂にシアネートエステル樹脂を配合した硬化性樹脂組成物を用いるポリフェニレンエーテル樹脂系フィルムがある(特許文献1参照)。   Therefore, a polyphenylene ether (PPO or PPE) resin of a heat-resistant thermoplastic resin (engineering plastics) is known as a material for a resin film exhibiting a low dielectric constant, although it does not reach that of a fluororesin. However, in order to apply to an insulating layer of a printed wiring board, heat resistance that can withstand a solder connection process at the time of mounting is required. As a method for improving the heat resistance and solvent resistance, a method of modifying a polyphenylene ether resin with a thermosetting resin has been proposed. For example, as a resin film using a cyanate ester resin having a low dielectric constant among thermosetting resins, there is a polyphenylene ether resin film using a curable resin composition in which a cyanate ester resin is blended with a polyphenylene ether resin (Patent Document 1). reference).

またポリフェニレンオキサイド系樹脂組成物、架橋性ポリマーおよび架橋性モノマー、難燃剤あるいは難燃助剤を含有させた樹脂組成物を用いて作製した金属張積層板(特許文献2参照)及び不飽和基を含む特定の硬化ポリフェニレンエーテル樹脂を適度に架橋させたフィルムなども開示されている(特許文献3参照)。また、本発明者らもポリフェニレンエーテル系樹脂とシアネートエステル樹脂等を用いた変性シアネートエステル系樹脂フィルムを提案した(特許文献4参照)。ポリフェニレンエーテル含有の変性シアネートエステル樹脂等にエラストマを配合した樹脂フィルムなども開示されている(特許文献5参照)。   In addition, a metal-clad laminate (see Patent Document 2) prepared using a resin composition containing a polyphenylene oxide resin composition, a crosslinkable polymer and a crosslinkable monomer, a flame retardant or a flame retardant aid, and an unsaturated group A film obtained by appropriately crosslinking a specific cured polyphenylene ether resin is also disclosed (see Patent Document 3). The present inventors have also proposed a modified cyanate ester resin film using a polyphenylene ether resin and a cyanate ester resin (see Patent Document 4). A resin film in which an elastomer is blended with a polyphenylene ether-containing modified cyanate ester resin or the like is also disclosed (see Patent Document 5).

また、特許文献6には、ポリフェニレンエーテルと、ブタジエンポリマー及び架橋剤から形成されたプリポリマーとが相容化した未硬化のセミIPN型複合体、並びに飽和型熱可塑性エラストマを、含有する熱硬化性樹脂組成物及び当該樹脂組成物を用いて作製した銅張積層板等が開示されている。   Further, Patent Document 6 discloses a thermosetting containing an uncured semi-IPN type composite obtained by compatibilizing a polyphenylene ether and a prepolymer formed from a butadiene polymer and a crosslinking agent, and a saturated thermoplastic elastomer. A copper-clad laminate produced using the resin composition and the resin composition are disclosed.

一方、特許文献7には、シアネートエステル樹脂/エポキシ樹脂/潜在性硬化剤を必須とした接着剤組成物を含む接続部材において、該接着剤組成物にスチレン系エラストマ等の各種熱可塑性樹脂を配合することが開示されている。   On the other hand, in Patent Document 7, in a connection member including an adhesive composition in which cyanate ester resin / epoxy resin / latent curing agent is essential, various thermoplastic resins such as styrene elastomer are blended in the adhesive composition. Is disclosed.

特公平1-53700号公報Japanese Patent Publication No. 1-53700 特公平5-77705号公報Japanese Patent Publication No. 5-77705 特開平7-188362号公報JP-A-7-188362 特開平11−124451号公報Japanese Patent Laid-Open No. 11-124451 特開2003−138133号公報JP 2003-138133 A 特開2007−302877号公報JP 2007-302877 A 特開平9−279121号公報JP-A-9-279121

しかしながら、特許文献1〜7に記載の樹脂組成物であっても、ミリ波用途の印刷配線板に要求される、高周波領域における誘電特性(低比誘電率及び低誘電正接)を達成するものとしては必ずしも十分とはいえない。特に、特許文献5に記載されているようなアクリルゴムや変性ポリブタジエン系のエラストマを含有した樹脂組成物では高周波領域での悪影響が顕著となる。また、特許文献7に記載されているようなスチレン系エラストマを配合した場合でも使用しているエラストマが極性基含有タイプのみであるため、高周波特性だけでなく、耐湿性、耐加熱変色性等がやや不十分となる。さらに、本発明者らの検討によれば、特許文献1〜6に記載の樹脂組成物の場合、主成分であるポリフェニレンエーテルとの相容性を確保する観点から、併用される樹脂の種類及びその配合量が制限されるため、実用上採用し得る組成の自由度が小さいことも判明した。   However, even the resin compositions described in Patent Documents 1 to 7 achieve dielectric properties (low relative dielectric constant and low dielectric loss tangent) in a high frequency region required for printed wiring boards for millimeter wave applications. Is not necessarily enough. In particular, in a resin composition containing an acrylic rubber or a modified polybutadiene-based elastomer as described in Patent Document 5, the adverse effect in the high frequency region becomes significant. Further, even when blended with a styrene elastomer as described in Patent Document 7, since the elastomer used is only a polar group-containing type, not only high frequency characteristics but also moisture resistance, heat discoloration resistance, etc. Slightly insufficient. Further, according to the study by the present inventors, in the case of the resin compositions described in Patent Documents 1 to 6, from the viewpoint of ensuring compatibility with the main component polyphenylene ether, Since the blending amount is limited, it has also been found that the degree of freedom of composition that can be practically used is small.

本発明は、このような実情に鑑みてなされたものであり、樹脂成分の相容性を十分に確保しつつ、高周波領域における良好な誘電特性を印刷配線板に付与することが可能な印刷配線板用樹脂フィルム及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a printed wiring capable of imparting good dielectric properties in a high frequency region to a printed wiring board while sufficiently ensuring compatibility of resin components. It aims at providing the resin film for boards, and its manufacturing method.

上記課題を解決するために、本発明の印刷配線板用樹脂フィルムの製造方法は、(A)スチレンユニットを有する飽和型熱可塑性エラストマと、(B)エポキシ樹脂、シアネートエステル樹脂、ポリブタジエン樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種以上の熱硬化性樹脂、並びに必要に応じて配合される熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分とを含有し、(B)成分の含有量Wに対する(A)成分の含有量Wの質量比W/Wが0.430〜5.000であり、かつ、ポリフェニレンエーテルの含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下である樹脂組成物を、支持基材の片面に流延塗布し、加熱乾燥により樹脂組成物を半硬化又は硬化する工程を含む。 In order to solve the above-mentioned problems, a method for producing a resin film for a printed wiring board of the present invention includes (A) a saturated thermoplastic elastomer having a styrene unit, (B) an epoxy resin, a cyanate ester resin, a polybutadiene resin, and a maleimide. A thermosetting resin component containing at least one or more thermosetting resins selected from the group consisting of compounds, and a thermosetting resin curing agent and a curing accelerator, which are blended as necessary, (B) The mass ratio W A / W B of the content W A of the component (A) to the content W B of the component is 0.430 to 5.000, and the content of polyphenylene ether is the component (A) and (B ) A resin composition that is 10 parts by mass or less with respect to 100 parts by mass in total of the components is cast-applied on one side of a support substrate, and the resin composition is semi-cured or cured by heat drying. Including the.

本発明の印刷配線板用樹脂フィルムの製造方法では、(A)スチレンユニットを有する飽和型熱可塑性エラストマと、(B)エポキシ樹脂、シアネートエステル樹脂、ポリブタジエン樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種の熱硬化性樹脂、並びに必要に応じて配合される熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分とを含有し、質量比W/Wが0.430〜5.000であり、かつ、ポリフェニレンエーテルの含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下である樹脂組成物を、支持基材の片面に流延塗布し、加熱乾燥により樹脂組成物を半硬化又は硬化する工程を含む。このようにして得られた樹脂フィルムを印刷配線板の製造に用いた場合、ポリフェニレンエーテルを一定量以上含有した樹脂フィルムによる印刷配線板と同等又はそれ以上の誘電特性を印刷配線板に付与できる。なお、本発明者らは、本発明の製造方法で得られた樹脂フィルムの両面に、金属箔(銅箔)を積層させた金属張硬化樹脂フィルムが、本発明の製造方法とは樹脂組成物の構成成分及び質量比W/Wが異なる樹脂フィルムの金属張硬化樹脂フィルムと比較して、高周波領域における比誘電率及び誘電正接がともに低く、誘電特性が優れていることを確認している。なお、本明細書における金属張硬化樹脂フィルムは、樹脂フィルムの表面(片面又は両面)に銅箔などの金属箔を重ねて加熱加圧することにより得られる金属箔付きの樹脂フィルムを指すが、本明細書においては、説明の便宜上、樹脂フィルムの誘電特性との記載は、金属張硬化樹脂フィルムの金属箔をエッチング等で除去した絶縁層部分の誘電特性を意味するものとする。
また、上述した、金属張硬化樹脂フィルムは、支持基材の片面に樹脂組成物を流延塗布した後、加熱乾燥したものであり、ガラスクロスに樹脂組成物を含浸させていない。発明者らは、本発明において樹脂組成物をガラスクロスに含浸させていない点も、低誘電特性の改善効果が奏される一因であると考えている。
In the method for producing a resin film for a printed wiring board of the present invention, (A) a saturated thermoplastic elastomer having a styrene unit, and (B) at least selected from the group consisting of an epoxy resin, a cyanate ester resin, a polybutadiene resin, and a maleimide compound It contains the kind of thermosetting resin, and a thermosetting resin component comprising a curing agent and curing accelerator for the thermosetting resin to be incorporated as required, 0.430~ mass ratio W a / W B A resin composition having a polyphenylene ether content of 5.000 and 10 parts by mass or less with respect to a total of 100 parts by mass of the component (A) and the component (B) is cast on one side of the support substrate. The process of apply | coating and semi-hardening or hardening | curing a resin composition by heat drying is included. When the resin film thus obtained is used in the production of a printed wiring board, the printed wiring board can be provided with dielectric properties equivalent to or higher than those of a printed wiring board made of a resin film containing a certain amount or more of polyphenylene ether. In addition, the inventors of the present invention are a metal-cure cured resin film in which a metal foil (copper foil) is laminated on both surfaces of a resin film obtained by the production method of the present invention. components and the mass ratio W a / W B are compared to the metal-clad cured resin film of a different resin film, the ratio in the high frequency range the dielectric constant and dielectric loss tangent are both low, make sure that the dielectric properties are excellent Yes. In addition, although the metal-clad cured resin film in this specification refers to the resin film with metal foil obtained by laminating | stacking metal foils, such as copper foil, on the surface (one side or both sides) of a resin film, and heating and pressurizing, this book In the specification, for the convenience of explanation, the description of the dielectric property of the resin film means the dielectric property of the insulating layer portion obtained by removing the metal foil of the metal-clad cured resin film by etching or the like.
In addition, the above-described metal-clad cured resin film is obtained by applying a resin composition to one side of a supporting base material and then drying by heating, and does not impregnate a glass cloth with the resin composition. The inventors consider that the point that the resin composition is not impregnated into the glass cloth in the present invention is also one of the reasons why the effect of improving the low dielectric properties is exhibited.

また、本発明の製造方法のようにガラスクロスに樹脂組成物を含浸させないと、取り扱い性に優れ、かつ強度を保持した樹脂組成物を成形できない場合がある。そこで、上述したように本発明の製造方法では樹脂組成物中における(A)成分と(B)成分の種類及び質量比W/Wを調整することにより、ガラスクロスに樹脂組成物を含浸させなくても、薄く取り扱い性(タック性、割れ・粉落ち等)に優れた樹脂フィルムを製造することを可能としている。 Further, if the glass cloth is not impregnated with the resin composition as in the production method of the present invention, a resin composition having excellent handleability and strength may not be molded. Therefore, by the production method of the present invention as described above to adjust the kind of the component (A) and component (B) in the resin composition and the weight ratio W A / W B, impregnated with the resin composition to the glass cloth Even if not, it is possible to produce a resin film that is thin and excellent in handleability (tackiness, cracking, powder falling, etc.).

また、本発明の製造方法で得られる樹脂フィルムは、優れた外観性と多層化成形性とを同時に達成している。なお、発明者らは、多層化成形性が優れる点については、本発明の製造方法で得られた樹脂フィルムを用いて製造した多層配線板(印刷配線基板)に、ボイド、カスレがなく、回路に均一に樹脂が充填されていることを観察することにより確認している。また、当該樹脂フィルムを用いた金属張硬化樹脂フィルムは、実装時のはんだ接続工程に耐えられるはんだ耐熱性を備えるとともに、耐吸湿性に優れるため、屋外での使用用途にも適する。   In addition, the resin film obtained by the production method of the present invention achieves excellent appearance and multilayer formability at the same time. In addition, about the point which the inventors are excellent in multilayer moldability, the multilayer wiring board (printed wiring board) manufactured using the resin film obtained by the manufacturing method of the present invention is free from voids and scrapes, and the circuit. It is confirmed by observing that the resin is uniformly filled. In addition, a metal-clad cured resin film using the resin film has solder heat resistance that can withstand a solder connection process at the time of mounting, and is excellent in moisture absorption resistance. Therefore, it is also suitable for outdoor use.

ところで、高周波用途の印刷配線板に用いられる金属箔としては、導体に起因する伝送損失(導体損失)を低減するために、表面の粗さが小さいロープロファイル箔を用いることが一般的である。しかしながら、本発明者らの検討によれば、上記特許文献1〜3に記載された樹脂組成物やフィルムを用いて、ロープロファイル箔により積層板とした場合、実用レベルの引き剥がし強さを確保できないことが分かった。なお、特許文献4に記載された樹脂フィルムはロープロファイル箔を適用した場合は十分な接着性や耐熱性を得られるが、高周波数領域での誘電特性が不十分であり、誘電特性による伝送損失をロープロファイル箔の適用によって補っても、印刷配線板全体の伝送損失の増大を回避することは難しい。   By the way, as a metal foil used for a printed wiring board for high frequency applications, it is common to use a low profile foil having a small surface roughness in order to reduce transmission loss (conductor loss) caused by a conductor. However, according to the study by the present inventors, when a laminate is formed from a low profile foil using the resin composition or film described in Patent Documents 1 to 3, a practical level of peeling strength is ensured. I found it impossible. The resin film described in Patent Document 4 can obtain sufficient adhesion and heat resistance when a low profile foil is applied, but has insufficient dielectric characteristics in a high frequency region, and transmission loss due to the dielectric characteristics. However, it is difficult to avoid an increase in transmission loss of the entire printed wiring board even if it is compensated for by applying a low profile foil.

一方、本発明により製造した樹脂フィルムは、表面の粗さが小さいロープロファイル箔等との引き剥がし強さが十分に高い。このため、当該樹脂フィルムは、金属箔として表面粗さの小さいロープロファイル箔を用いることで、導体損失を抑えられるため、印刷配線板の伝損損失の更なる低減が図れる。   On the other hand, the resin film produced according to the present invention has a sufficiently high peel strength from a low profile foil or the like having a small surface roughness. For this reason, since the said resin film can suppress a conductor loss by using low profile foil with small surface roughness as a metal foil, the further reduction of the loss loss of a printed wiring board can be aimed at.

本発明の(A)成分としては、スチレン−エチレン−ブチレン共重合体を含有するものを好ましく用いることができる。
また、(A)成分が、スチレン−ブタジエン共重合体の、ブタジエンに由来する構造単位が有する不飽和二重結合への水素添加により得られる飽和型熱可塑性エラストマを含有することが好ましく、中でも(A)成分が、側鎖又は末端に無水マレイン酸基を有しない非変性飽和型熱可塑性エラストマを含有することがより好ましい。
As (A) component of this invention, what contains a styrene-ethylene-butylene copolymer can be used preferably.
The component (A) preferably contains a saturated thermoplastic elastomer obtained by hydrogenation of an unsaturated double bond of a structural unit derived from butadiene of a styrene-butadiene copolymer, More preferably, the component (A) contains a non-modified saturated thermoplastic elastomer having no maleic anhydride group at the side chain or terminal.

(A)成分が、数平均分子量6万未満の飽和型熱可塑性エラストマを含有することが好ましく、当該数平均分子量6万未満の飽和型熱可塑性エラストマの含有割合が、50質量%以上であることが更に好ましい。この場合、得られた樹脂フィルムを、導体や他の樹脂基板材料と接着させた場合に、両者の接着性を高めることができる。   The component (A) preferably contains a saturated thermoplastic elastomer having a number average molecular weight of less than 60,000, and the content ratio of the saturated thermoplastic elastomer having a number average molecular weight of less than 60,000 is 50% by mass or more. Is more preferable. In this case, when the obtained resin film is adhered to a conductor or other resin substrate material, the adhesiveness between the two can be enhanced.

(A)成分が、数平均分子量6万以上の飽和型熱可塑性エラストマを更に含有することが好ましい。(A)成分として、数平均分子量6万未満の飽和型熱可塑性エラストマと数平均分子量6万以上の飽和型熱可塑性エラストマとを含む場合、ロープロファイル箔などの表面粗さの小さい金属箔との引き剥がし強さが大きい樹脂フィルムやタックフリーで、かつ割れや粉落ちがない樹脂フィルムが得られ、また支持基材としてPETフィルムなどを用いる場合に離形性に優れる。   It is preferable that the component (A) further contains a saturated thermoplastic elastomer having a number average molecular weight of 60,000 or more. When the component (A) includes a saturated thermoplastic elastomer having a number average molecular weight of less than 60,000 and a saturated thermoplastic elastomer having a number average molecular weight of 60,000 or more, a metal foil having a small surface roughness such as a low profile foil A resin film having a high peel strength and a tack-free resin film that is free from cracking and powder falling are obtained, and when a PET film or the like is used as a support substrate, it is excellent in releasability.

(A)成分が、側鎖又は末端に無水マレイン酸基を有する化学変性飽和型熱可塑性エラストマを含有することが好ましく、(A)成分が、側鎖又は末端に無水マレイン酸基を有しない非変性飽和型熱可塑性エラストマを更に含むことがより好ましい。
また、当該化学変性飽和型熱可塑性エラストマの割合が、(A)成分の全質量を基準として、20〜50質量%であることが好ましい。この場合、得られた樹脂フィルムを、導体や他の樹脂基板材料と接着させた場合に、両者の接着性を高めるとともに、樹脂フィルムを回路やビアホール付きの基板に接着させて多層板を製造する際の多層化成形性が良好となる。
It is preferable that the component (A) contains a chemically modified saturated thermoplastic elastomer having a maleic anhydride group in the side chain or terminal, and the component (A) has no maleic anhydride group in the side chain or terminal. More preferably, it further contains a modified saturated thermoplastic elastomer.
Moreover, it is preferable that the ratio of the said chemically modified saturated thermoplastic elastomer is 20-50 mass% on the basis of the total mass of (A) component. In this case, when the obtained resin film is bonded to a conductor or another resin substrate material, the adhesiveness between the two is improved and the resin film is bonded to a circuit board or a substrate with via holes to produce a multilayer board. Multi-layer formability at the time is improved.

(B)成分が、ポリフェニレンエーテルと、1,2−ブタジエンに由来する構造単位であって側鎖に1,2−ビニル基を有する構造単位を分子中に40モル%以上含み、かつ、数平均分子量が500〜10000である化学変性されていないポリブタジエン樹脂とを反応させて得られる、ポリフェニレンエーテル変性ブタジエンプレポリマーを含有することが好ましい。   (B) component contains 40 mol% or more of structural units derived from polyphenylene ether and 1,2-butadiene having a 1,2-vinyl group in the side chain, and the number average It is preferable to contain a polyphenylene ether-modified butadiene prepolymer obtained by reacting a non-chemically modified polybutadiene resin having a molecular weight of 500 to 10,000.

この場合、(B)成分を、ポリブタジエン樹脂をプレポリマー化させた、未硬化のポリフェニレンエーテル変性ブタジエンプレポリマーとして用いる。これにより、(A)成分と(B)成分との相容性を一層高めることができ、更に効果的に耐熱性、接着性向上を図ることができる。   In this case, the component (B) is used as an uncured polyphenylene ether-modified butadiene prepolymer obtained by prepolymerizing a polybutadiene resin. Thereby, the compatibility of (A) component and (B) component can be improved further, and heat resistance and adhesiveness can be improved more effectively.

ポリフェニレンエーテル変性ブタジエンプレポリマーが、ポリフェニレンエーテルと、ポリブタジエン樹脂と、N−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(4−メチルフェニル)マレイミド、N−(2、6−ジメチルフェニル)マレイミド、N−(2、6−ジエチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−ベンジルマレイミド、N−ドデシルマレイミド、N−イソプロピルマレイミド及びN−シクロヘキシルマレイミドからなる群より選ばれる少なくとも一種の架橋剤とを反応させて得られるものであることが好ましい。この場合、プレポリマー化の反応プロセスを円滑に制御でき、かつ、得られる樹脂フィルムの特性(誘電特性、耐熱性、耐湿性、接着性、多層化成形性等)が優れる。   Polyphenylene ether-modified butadiene prepolymer is polyphenylene ether, polybutadiene resin, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) ) Selected from the group consisting of maleimide, N- (2,6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N-dodecylmaleimide, N-isopropylmaleimide and N-cyclohexylmaleimide. It is preferably obtained by reacting with at least one crosslinking agent. In this case, the prepolymerization reaction process can be controlled smoothly, and the properties of the resulting resin film (dielectric properties, heat resistance, moisture resistance, adhesiveness, multilayer formability, etc.) are excellent.

ポリフェニレンエーテル変性ブタジエンプレポリマーが、ポリフェニレンエーテルと、ポリブタジエン樹脂と、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種の架橋剤とを反応させて得られるものであることが好ましい。この場合、プレポリマー化の反応プロセスを円滑に制御でき、かつ、得られる樹脂フィルムの特性(誘電特性、耐熱性、耐湿性、接着性、多層化成形性等)が優れる。   Polyphenylene ether-modified butadiene prepolymer is polyphenylene ether, polybutadiene resin, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane It is preferably obtained by reacting with at least one crosslinking agent selected from the group consisting of: In this case, the prepolymerization reaction process can be controlled smoothly, and the properties of the resulting resin film (dielectric properties, heat resistance, moisture resistance, adhesiveness, multilayer formability, etc.) are excellent.

樹脂組成物が、N−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(4−メチルフェニル)マレイミド、N−(2、6−ジメチルフェニル)マレイミド、N−(2、6−ジエチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−ベンジルマレイミド、N−ドデシルマレイミド、N−イソプロピルマレイミド及びN−シクロヘキシルマレイミド、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種の架橋剤を更に含有することが好ましい。   The resin composition is N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2,6-diethyl) Phenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N-dodecylmaleimide, N-isopropylmaleimide and N-cyclohexylmaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane And at least one crosslinking agent selected from the group consisting of 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane.

(B)成分が、エポキシ樹脂、シアネートエステル樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種の熱硬化性樹脂、並びに必要に応じて配合される前記熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分を含有し、(B)成分の含有量Wに対する含有量Wの質量比W/Wが0.700〜5.000であることが好ましい。この範囲内であれば、得られる樹脂フィルムは、良好なフィルム形成能や取り扱い性と高周波帯域での誘電特性を維持しつつ、耐熱性、耐湿性及び高接着性を備える。 The component (B) includes at least one thermosetting resin selected from the group consisting of an epoxy resin, a cyanate ester resin, and a maleimide compound, and a curing agent and a curing accelerator for the thermosetting resin that are blended as necessary. containing a thermosetting resin component comprising, preferably a 0.700 to 5.000 mass ratio W a / W B content W a to the content W B of the component (B). Within this range, the obtained resin film has heat resistance, moisture resistance, and high adhesiveness while maintaining good film forming ability and handleability and dielectric properties in a high frequency band.

(B)成分が、シアネートエステル樹脂と単官能フェノール化合物とをゲル化しない程度に反応させて得られる、フェノール変性シアネートエステルプレポリマーを含有することが好ましい。この場合、未硬化(Bステージ)フィルムの外観や取り扱い性、及び硬化フィルムの硬化性が改善する。   The component (B) preferably contains a phenol-modified cyanate ester prepolymer obtained by reacting a cyanate ester resin and a monofunctional phenol compound to such an extent that they do not gel. In this case, the appearance and handleability of the uncured (B stage) film and the curability of the cured film are improved.

フェノール変性シアネートエステルプレポリマーが、シアネートエステル樹脂とp−t−オクチルフェノール、p−フェニルフェノール、p−(α−クミル)フェノールからなる群より選ばれる少なくとも一種の単官能フェノールとを反応させて得られるものであることが好ましい。   A phenol-modified cyanate ester prepolymer is obtained by reacting a cyanate ester resin with at least one monofunctional phenol selected from the group consisting of pt-octylphenol, p-phenylphenol, and p- (α-cumyl) phenol. It is preferable.

マレイミド化合物が、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種のマレイミド化合物を更に含有することが好ましい。ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタンを用いると、吸湿性及び熱膨張係数を更に低下できる。一方、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いると、破壊強度及び金属箔引き剥がし強さを更に高められる。   And at least one maleimide compound selected from the group consisting of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane. Furthermore, it is preferable to contain. When bis (3-ethyl-5-methyl-4-maleimidophenyl) methane is used, the hygroscopicity and the thermal expansion coefficient can be further reduced. On the other hand, when 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is used, the fracture strength and the metal foil peeling strength can be further increased.

(C)成分として、下記の式(1)〜(3)で表される特定のフェノール系酸化防止剤からなる群より選ばれる少なくとも一種を更に含有することが好ましい。これにより誘電特性、耐湿性、耐熱性等を悪化させることなく、誘電特性に対する経年変化の抑制効果や絶縁信頼性の向上効果を付与できる。   As the component (C), it is preferable to further contain at least one selected from the group consisting of specific phenolic antioxidants represented by the following formulas (1) to (3). As a result, it is possible to impart an effect of suppressing secular change with respect to the dielectric characteristics and an effect of improving the insulation reliability without deteriorating the dielectric characteristics, moisture resistance, heat resistance and the like.

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

上記工程において、樹脂組成物を、溶剤に溶解又は分散させてなる樹脂ワニスの形態で、支持基材の片面に流延塗布することが好ましい。   In the above step, the resin composition is preferably cast-applied on one side of the support substrate in the form of a resin varnish obtained by dissolving or dispersing in a solvent.

支持基材としては、金属箔又はPETフィルムが例示できる。   Examples of the supporting substrate include a metal foil or a PET film.

上記工程後の樹脂フィルムの膜厚が1〜200μmであることが好ましい。この場合、この樹脂フィルムを用いて印刷配線板を作製すると、印刷配線板の薄型化が図れるほか、高周波特性が優れ、かつ膜厚精度の高い絶縁層を形成できる。   It is preferable that the film thickness of the resin film after the said process is 1-200 micrometers. In this case, when a printed wiring board is produced using this resin film, the printed wiring board can be thinned, and an insulating layer having excellent high frequency characteristics and high film thickness accuracy can be formed.

本発明は、上述した印刷配線板用樹脂フィルムの製造方法により作製した印刷配線板用樹脂フィルムを提供するものである。   This invention provides the resin film for printed wiring boards produced by the manufacturing method of the resin film for printed wiring boards mentioned above.

本発明によれば、ポリフェニレンエーテルの含有量が少量又はポリフェニレンエーテルを含有しない樹脂フィルムを用いた場合でも、ポリフェニレンエーテルを一定量以上含有した樹脂フィルムを用いた場合と比較して、高周波領域における誘電特性が同等又はそれ以上となる印刷配線板を得ることが可能な印刷配線板用樹脂フィルムの製造方法を提供できる。また当該製造方法によって得られた樹脂フィルムを提供することが可能となる。   According to the present invention, even when a resin film containing a small amount of polyphenylene ether or containing no polyphenylene ether is used, compared with the case where a resin film containing a certain amount or more of polyphenylene ether is used, the dielectric in the high frequency region is reduced. The manufacturing method of the resin film for printed wiring boards which can obtain the printed wiring board from which a characteristic becomes equivalent or more can be provided. Moreover, it becomes possible to provide the resin film obtained by the said manufacturing method.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

本実施形態に係る印刷配線板用樹脂フィルムの製造方法は、(A)スチレンユニットを有する飽和型熱可塑性エラストマと、(B)エポキシ樹脂、シアネートエステル樹脂、ポリブタジエン樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種以上の熱硬化性樹脂、並びに必要に応じて配合される熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分とを含有し、質量比W/Wが0.430〜5.000であり、かつ、ポリフェニレンエーテルの含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下である樹脂組成物を、支持基材の片面に流延塗布し、加熱乾燥により樹脂組成物を半硬化又は硬化する工程を含む。 The method for producing a resin film for a printed wiring board according to this embodiment is selected from the group consisting of (A) a saturated thermoplastic elastomer having a styrene unit, and (B) an epoxy resin, a cyanate ester resin, a polybutadiene resin, and a maleimide compound. containing a thermosetting resin component containing at least one kind of thermosetting resin, and a curing agent and curing accelerator for the thermosetting resin to be optionally added is the weight ratio W a / W B 0 One side of the supporting base material is a resin composition having a polyphenylene ether content of 430 to 5.000 and 10 parts by mass or less with respect to 100 parts by mass in total of the components (A) and (B). And a step of semi-curing or curing the resin composition by heat drying.

(A)成分の飽和型熱可塑性エラストマは誘電特性、耐吸湿性、導体との接着性に優れ、かつフィルム形成能を付与できる成分である。一方、(B)成分の熱硬化性樹脂及び(A)成分の耐熱性と耐溶剤性等を向上させるための成分である。これらを必須成分として組み合わせることにより、フッ素樹脂系に匹敵する高周波特性と耐湿性を併せ持ち、かつ高接着性や高耐熱性を具備する印刷配線板用樹脂フィルムを製造できる。この結果、ミリ波信号という高周波領域のアプリケーションへの適用が可能となる。以下、本実施形態の製造方法に用いる樹脂組成物の各成分について詳述する。   The saturated thermoplastic elastomer (A) is a component that is excellent in dielectric properties, moisture absorption resistance and adhesion to a conductor, and can impart film forming ability. On the other hand, it is a component for improving the heat resistance and solvent resistance of the (B) component thermosetting resin and the (A) component. By combining these as essential components, it is possible to produce a resin film for a printed wiring board having both high frequency characteristics and moisture resistance comparable to those of a fluororesin system, and having high adhesion and high heat resistance. As a result, it can be applied to high frequency applications such as millimeter wave signals. Hereinafter, each component of the resin composition used for the manufacturing method of this embodiment is explained in full detail.

[(A)成分]
(A)成分は、分子中にスチレンユニットを有する飽和型熱可塑性エラストマである。(A)成分は、分子中にスチレンユニットを有する飽和型熱可塑性エラストマであれば、特に限定されるものではなく、またスチレンブロックの含有比率も特に限定されるものではない。本実施形態において好適に用いられる(A)成分の具体例としては、スチレン−エチレン−ブチレン共重合体(SEBS)が挙げられ、スチレン−ブタジエン共重合体のブタジエンに由来する構造単位が有する不飽和二重結合への水素添加により得ることができる。すなわち、本実施形態における飽和型熱可塑性エラストマとは、芳香族炭化水素部分(スチレンブロック)以外の脂肪族炭化水素部分が飽和結合基からなるものをいう。
[(A) component]
The component (A) is a saturated thermoplastic elastomer having a styrene unit in the molecule. The component (A) is not particularly limited as long as it is a saturated thermoplastic elastomer having a styrene unit in the molecule, and the content ratio of the styrene block is not particularly limited. Specific examples of the component (A) preferably used in the present embodiment include a styrene-ethylene-butylene copolymer (SEBS), and the unsaturated unit contained in the structural unit derived from butadiene of the styrene-butadiene copolymer. It can be obtained by hydrogenation to the double bond. That is, the saturated thermoplastic elastomer in the present embodiment means that an aliphatic hydrocarbon portion other than the aromatic hydrocarbon portion (styrene block) is composed of a saturated bonding group.

また、(A)成分は、側鎖又は末端に無水マレイン酸基を有する化学変性飽和型熱可塑性エラストマを含有することが好ましく、側鎖又は末端に無水マレイン酸基を有しない非変性飽和型熱可塑性エラストマと化学変性飽和型熱可塑性エラストマと含有することがより好ましく、かつ、化学変性飽和型熱可塑性エラストマの割合が、(A)成分の全質量を基準として、20〜50質量%であることが好ましい。   In addition, the component (A) preferably contains a chemically modified saturated thermoplastic elastomer having a maleic anhydride group in the side chain or terminal, and is a non-modified saturated heat having no maleic anhydride group in the side chain or terminal. It is more preferable to contain a plastic elastomer and a chemically modified saturated thermoplastic elastomer, and the proportion of the chemically modified saturated thermoplastic elastomer is 20 to 50% by mass based on the total mass of the component (A). Is preferred.

(A)成分は、数平均分子量6万未満の飽和型熱可塑性エラストマを含有することが好ましい。また、(A)成分中の数平均分子量6万未満の飽和型熱可塑性エラストマの割合が、(A)成分の全質量を基準として、50質量%以上である場合、得られる樹脂フィルムの導体や他の樹脂基板材料との接着性を向上できるため、特に好ましい。また、(A)成分は、数平均分子量6万未満の飽和型熱可塑性エラストマと数平均分子量6万以上の飽和型熱可塑性エラストマを含有することが好ましい。   The component (A) preferably contains a saturated thermoplastic elastomer having a number average molecular weight of less than 60,000. Further, when the proportion of the saturated thermoplastic elastomer having a number average molecular weight of less than 60,000 in the component (A) is 50% by mass or more based on the total mass of the component (A), Since adhesiveness with other resin substrate materials can be improved, it is particularly preferable. The component (A) preferably contains a saturated thermoplastic elastomer having a number average molecular weight of less than 60,000 and a saturated thermoplastic elastomer having a number average molecular weight of 60,000 or more.

ここで、化学変性飽和型熱可塑性エラストマとしては、無水マレイン酸で変性されたSEBS(旭化成ケミカルズ製、タフテックM1911、M1913、M1943等)が挙げられる。一方、非変性飽和型熱可塑性エラストマとしては、非変性のSEBS(旭化成ケミカルズ製、タフテックH1041、H1051、H1043、H1053、H1141等)などが挙げられる。   Here, examples of the chemically-modified saturated thermoplastic elastomer include SEBS (manufactured by Asahi Kasei Chemicals Corporation, Tuftec M1911, M1913, M1943, etc.) modified with maleic anhydride. On the other hand, non-modified saturated thermoplastic elastomers include non-modified SEBS (manufactured by Asahi Kasei Chemicals, Tuftec H1041, H1051, H1043, H1053, H1141, etc.).

[(B)成分]
次に、(B)成分について説明する。(B)成分の第1の態様は、エポキシ樹脂、シアネートエステル樹脂、ポリブタジエン樹脂、マレイミド化合物からなる群より選ばれる熱硬化性樹脂又は必要に応じて配合される熱硬化性樹脂の硬化剤(架橋剤)を含む熱硬化性樹脂成分である。(B)成分が第1の態様である場合、質量比W/Wは、0.430〜5.000であり、かつ、ポリフェニレンエーテルの含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下であることが必須である。この範囲内であれば、得られる樹脂フィルムは、良好なフィルム形成能や取り扱い性と高周波帯域での誘電特性を維持しつつ、耐熱性、耐湿性及び高接着性を備える。また、質量比W/Wは、0.430〜1.500であることがより好ましく、0.430〜1.000であることが更に好ましい。このような熱硬化性樹脂成分であれば、特に限定されるものではないが、中でも誘電特性、耐湿性の観点から、ポリブタジエン樹脂を含むことがより好ましく、ポリブタジエン樹脂とマレイミド化合物を併用することが、誘電特性、耐湿性、耐熱性、熱膨張特性の観点から特に好ましい。
[Component (B)]
Next, the component (B) will be described. The first aspect of the component (B) is a thermosetting resin selected from the group consisting of an epoxy resin, a cyanate ester resin, a polybutadiene resin, and a maleimide compound, or a curing agent for a thermosetting resin blended as necessary (crosslinking). A thermosetting resin component. (B) If the component is a first aspect, the weight ratio W A / W B are 0.430 to 5.000, and the content of the polyphenylene ether (A) component and the (B) component It is essential that it is 10 parts by mass or less with respect to 100 parts by mass in total. Within this range, the obtained resin film has heat resistance, moisture resistance, and high adhesiveness while maintaining good film forming ability and handleability and dielectric properties in a high frequency band. The mass ratio W A / W B is more preferably 0.430 to 1.500, more preferably 0.430 to 1.000. If it is such a thermosetting resin component, it is not particularly limited, but it is more preferable to include a polybutadiene resin from the viewpoint of dielectric properties and moisture resistance, and it is preferable to use a polybutadiene resin and a maleimide compound in combination. Particularly preferred from the viewpoints of dielectric properties, moisture resistance, heat resistance, and thermal expansion properties.

(B)成分の第1の態様としてエポキシ樹脂を用いる場合、分子内に2つ以上のエポキシ基を有するものであればどのようなものでもよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、フェノール類のジグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、およびこれらのアルキル置換体、ハロゲン化物などが挙げられ、これらは併用されてもよい。また、高周波特性を考慮するとナフタレン骨格型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂を用いることがより好ましい。   When an epoxy resin is used as the first embodiment of the component (B), any epoxy resin having two or more epoxy groups in the molecule may be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy Resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthalene skeleton type epoxy resin, bifunctional biphenyl type Epoxy resins, biphenyl aralkyl type epoxy resins, dicyclopentadiene type epoxy resins, dihydroanthracene type epoxy resins, diglycidyl ethers of phenols, diglycidyl ethers of alcohols, and alkyl-substituted products thereof Such as a halide and the like, which may be used in combination. In consideration of high frequency characteristics, it is more preferable to use a naphthalene skeleton type epoxy resin, a bifunctional biphenyl type epoxy resin, a biphenyl aralkyl type epoxy resin, or a dicyclopentadiene type epoxy resin.

また、エポキシ樹脂を用いる場合、エポキシ樹脂の硬化剤や硬化促進剤が含まれていてもよく、例えば、多官能フェノール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物などが挙げられる。   Moreover, when using an epoxy resin, a curing agent or a curing accelerator for the epoxy resin may be included. For example, polyfunctional phenols, amines, imidazole compounds, acid anhydrides, organophosphorus compounds, and halides thereof. Etc.

(B)成分の第1の態様としてシアネートエステル樹脂を用いる場合、分子内にシアナート基を2つ以上有するシアネートエステル化合物であれば、特に限定されるものではないが、例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物及びクレゾールノボラック型シアネートエステル化合物等が挙げられる。シアネートエステル化合物の具体例としては、フェノールノボラック型シアネートエステル化合物及びクレゾールノボラック型シアネートエステル化合物等が挙げられ、これらは一種類単独で用いてもよく、又は二種類以上を混合して用いてもよい。   When a cyanate ester resin is used as the first embodiment of the component (B), it is not particularly limited as long as it is a cyanate ester compound having two or more cyanate groups in the molecule. For example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1, 1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -m-diisopropylbenzene, cyanate ester compound of phenol-added dicyclopentadiene polymer, phenol novolac type cyanate ester Examples thereof include compounds and cresol novolac type cyanate ester compounds. Specific examples of the cyanate ester compound include a phenol novolac-type cyanate ester compound and a cresol novolac-type cyanate ester compound. These may be used alone or in combination of two or more. .

(B)成分の第1の態様としてシアネートエステル樹脂を用いる場合、シアネートエステル樹脂の硬化剤や硬化促進剤が含まれていてもよく、例えば、単官能フェノール類、多官能フェノール類、アミン類、酸無水物及びマンガン、鉄、コバルト、ニッケル、銅、亜鉛等の2−エチルヘキサン酸塩、ナフテン酸塩、アセチルアセトン錯体等の有機金属化合物などが挙げられる。また高周波特性、耐湿性等を考慮すると単官能フェノール類及び有機金属化合物を併用することがより好ましい。また耐熱性を考慮すると前記エポキシ樹脂を併用することが好ましく、前記エポキシ樹脂が好適に使用できる。   When the cyanate ester resin is used as the first aspect of the component (B), a curing agent or a curing accelerator for the cyanate ester resin may be included. For example, monofunctional phenols, polyfunctional phenols, amines, Examples thereof include acid anhydrides and organic metal compounds such as 2-ethylhexanoate such as manganese, iron, cobalt, nickel, copper, and zinc, naphthenate, and acetylacetone complex. In consideration of high frequency characteristics, moisture resistance, etc., it is more preferable to use a monofunctional phenol and an organometallic compound in combination. In consideration of heat resistance, the epoxy resin is preferably used in combination, and the epoxy resin can be suitably used.

(B)成分の第1の態様としてポリブタジエン樹脂を用いる場合、後述するポリフェニレンエーテルと、1,2−ブタジエンに由来する構造単位であって側鎖に1,2−ビニル基を有する構造単位を分子中に40モル%以上含み、かつ、数平均分子量が500〜10000である化学変性されていないポリブタジエン樹脂とを反応させて得られる、ポリフェニレンエーテル変性ブタジエンポリマーを含有することが好ましい。この場合におけるポリブタジエン樹脂は、分子中の側鎖1,2−ビニル基や末端の両方又は片方を、エポキシ化、グリコール化、フェノール化、マレイン化、(メタ)アクリル化及びウレタン化等の化学変性された変性ポリブタジエンではなく、未変性のブタジエン樹脂であることがより好ましい。またポリブタジエン樹脂は、硬化性を考慮して、1,2−ブタジエンに由来する構造単位であって側鎖に1,2−ビニル基を有する構造単位を、分子中に50モル%以上含むことがより好ましく、65モル%以上含むことが更に好ましい。また数平均分子量は、樹脂組成物の硬化性や硬化物とした時の誘電特性と、印刷配線板とした時の樹脂の流動性とのバランスを考慮すると、700〜8000の範囲であることがより好ましく、1000〜5000の範囲であることが更に好ましい。   When a polybutadiene resin is used as the first aspect of the component (B), the polyphenylene ether described later and a structural unit derived from 1,2-butadiene and having a 1,2-vinyl group in the side chain are molecules. It is preferable to contain a polyphenylene ether-modified butadiene polymer that is obtained by reacting with a polybutadiene resin that is contained in an amount of 40 mol% or more and that has a number average molecular weight of 500 to 10,000 and is not chemically modified. In this case, the polybutadiene resin is chemically modified, such as epoxidation, glycolation, phenolization, maleation, (meth) acrylation, and urethanization, on the side chain 1,2-vinyl group and / or one end of the molecule. More preferably, the modified butadiene resin is not a modified polybutadiene. The polybutadiene resin may contain 50 mol% or more of a structural unit derived from 1,2-butadiene and having a 1,2-vinyl group in the side chain in consideration of curability. More preferably, it is more preferably 65 mol% or more. Further, the number average molecular weight is in the range of 700 to 8000 in consideration of the balance between the curability of the resin composition and the dielectric properties when the cured product is used and the fluidity of the resin when the printed wiring board is used. More preferably, it is still more preferably in the range of 1000 to 5000.

(B)成分の第1の態様としてマレイミド化合物を用いる場合、分子内にマレイミド基を2個以上含有するポリマレイミド化合物が好ましい。ポリマレイミド化合物の具体例としては、1,2−ジマレイミドエタン、1,3−ジマレイミドプロパン、ビス(4−マレイミドフェニル)メタン、ビス(3−エチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,7−ジマレイミドフルオレン、N,N′−(1,3−フェニレン)ビスマレイミド、N,N′−(1,3−(4−メチルフェニレン))ビスマレイミド、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)エ−テル、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(3−(3−マレイミドフェノキシ)フェノキシ)ベンゼン、ビス(4−マレイミドフェニル)ケトン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−(4−マレイミドフェノキシ)フェニル)スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、4,4′−ビス(3−マレイミドフェノキシ)ビフェニル、1,3−ビス(2−(3−マレイミドフェニル)プロピル)ベンゼン、1,3−ビス(1−(4−(3−マレイミドフェノキシ)フェニル)−1−プロピル)ベンゼン、ビス(マレイミドシクロヘキシル)メタン、2、2−ビス[4−(3−マレイミドフェノキシ) フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス(マレイミドフェニル)チオフェンが挙げられ、その中でも、特に吸湿性及び熱膨張係数を更に低くする点では、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタンを用いることがより好ましく、破壊強度及び金属箔引き剥がし強さを更に高める点では、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いることがより好ましい。   When a maleimide compound is used as the first aspect of the component (B), a polymaleimide compound containing two or more maleimide groups in the molecule is preferable. Specific examples of the polymaleimide compound include 1,2-dimaleimidoethane, 1,3-dimaleimidopropane, bis (4-maleimidophenyl) methane, bis (3-ethyl-4-maleimidophenyl) methane, bis (3 -Ethyl-5-methyl-4-maleimidophenyl) methane, 2,7-dimaleimidofluorene, N, N '-(1,3-phenylene) bismaleimide, N, N'-(1,3- (4- Methylphenylene)) bismaleimide, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ether, 1,3-bis (3-maleimidophenoxy) benzene, 1 , 3-bis (3- (3-maleimidophenoxy) phenoxy) benzene, bis (4-maleimidophenyl) ketone, , 2-bis (4- (4-maleimidophenoxy) phenyl) propane, bis (4- (4-maleimidophenoxy) phenyl) sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfoxide, 4,4′- Bis (3-maleimidophenoxy) biphenyl, 1,3-bis (2- (3-maleimidophenyl) propyl) benzene, 1,3-bis (1- (4- (3-maleimidophenoxy) phenyl) -1-propyl ) Benzene, bis (maleimidocyclohexyl) methane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis (maleimidophenyl) thiophene Among them, bis (3-ethyl-5-methyl) is particularly preferred in terms of further reducing the hygroscopicity and the coefficient of thermal expansion. It is more preferable to use -4-maleimidophenyl) methane, and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is used in terms of further increasing the breaking strength and the metal foil peeling strength. More preferred.

(B)成分の第1の態様としてポリブタジエン樹脂を用いる場合、マレイミド化合物を架橋剤として併用することが誘電特性、耐湿性、耐熱性、熱膨張特性の観点から特に好ましい。マレイミド化合物をポリブタジエン樹脂の架橋剤として用いる場合、上述したポリマレイミド化合物が使用できるほか、分子内にマレイミド基を1個含有するものモノマレイミド化合物を用いることもできる。モノマレイミド化合物の具体例としては、N−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(4−メチルフェニル)マレイミド、N−(2、6−ジメチルフェニル)マレイミド、N−(2、6−ジエチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−ベンジルマレイミド、N−ドデシルマレイミド、N−イソプロピルマレイミド及びN−シクロヘキシルマレイミド等が挙げられ、その中でもコストの点でN−フェニルマレイミドを用いることがより好ましい。   When a polybutadiene resin is used as the first aspect of the component (B), it is particularly preferable to use a maleimide compound as a crosslinking agent from the viewpoints of dielectric properties, moisture resistance, heat resistance, and thermal expansion properties. When using a maleimide compound as a cross-linking agent for a polybutadiene resin, the above-described polymaleimide compound can be used, and a monomaleimide compound containing one maleimide group in the molecule can also be used. Specific examples of the monomaleimide compound include N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2 , 6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N-dodecylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide and the like, among which N- More preferably, phenylmaleimide is used.

また、ポリブタジエン樹脂とマレイミド化合物を併用する場合、マレイミド化合物の配合割合が、熱膨張係数、Tg及び金属箔引き剥がし強さと誘電特性とのバランスを考慮して、ポリブタジエン樹脂100質量部に対して2〜200質量部の範囲とするのが好ましく、5〜100質量部とすることがより好ましく、10〜75質量部とすることが特に好ましい。   When the polybutadiene resin and the maleimide compound are used in combination, the blending ratio of the maleimide compound is 2 with respect to 100 parts by mass of the polybutadiene resin in consideration of the balance between the thermal expansion coefficient, Tg, peel strength of the metal foil, and dielectric properties. It is preferable to set it as the range of -200 mass parts, It is more preferable to set it as 5-100 mass parts, It is especially preferable to set it as 10-75 mass parts.

(B)成分の第1の態様として、ポリブタジエン樹脂又はマレイミド化合物を併用する場合は、硬化促進剤としてラジカル反応開始剤を含有していることが好ましい。ラジカル重合開始剤の具体例としては、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ(t−ブチルパーオキシ)シクロヘキシル)プロパン、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、ジ−t−ブチルパーオキサイド、1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(t−ブチルパーオキシ)オクタン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、ビス(t−ブチルパーオキシ)イソフタレート、イソブチリルパーオキサイド、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物や2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、ベンゾインメチルエーテル、メチル−o−ベンゾイルベンゾエート等が挙げられるが、これらに限定されない。   As a 1st aspect of (B) component, when using a polybutadiene resin or a maleimide compound together, it is preferable to contain the radical reaction initiator as a hardening accelerator. Specific examples of the radical polymerization initiator include dicumyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, cumene hydroperoxide, 1,1-bis (t-hexylperoxy) -3,3,5- Trimethylcyclohexane, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2 , 2-bis (4,4-di (t-butylperoxy) cyclohexyl) propane, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis (t -Butylperoxy) hexyne-3, di-t-butyl peroxide, 1,1'-bis (t-butylperoxy) Isopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, t-butylperoxyacetate, 2,2 -Bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, bis (t-butylperoxy) ) Peroxides such as isophthalate, isobutyryl peroxide, di (trimethylsilyl) peroxide, trimethylsilyltriphenylsilyl peroxide, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4 -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzo Down methyl ether, methyl -o- benzoyl benzoate, but not limited thereto.

(B)成分が第1の態様である場合、樹脂組成物は、ポリフェニレンエーテル(以下、「(B’)成分」ともいう)を含んでも含まなくてもよいが、含む場合の含有量は、(A)成分及び(B)成分の合計100質量部に対して10質量部以下である。(B’)成分の含有量は、8質量部以下であることが好ましく、7質量部以下であることがより好ましい。
なお、(B’)成分の含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下である限りにおいては、樹脂組成物に(B’)成分を含ませることによって、樹脂組成物の相容性、耐熱性及び接着性等の向上のほか、高Tg化を図ることができる。ポリフェニレンエーテルとしては、2,6−ジメチルフェノールや2,3,6,−トリメチルフェノールの単独重合で得られるポリ(2,6−ジメチル−1,4−フェニレン)エーテルやポリ(2,3,6−トリメチル−1,4−フェニレン)エーテルや2,6−ジメチルフェノールと2,3,6,−トリメチルフェノールとの共重合体等が挙げられる。また、これらとポリスチレンやスチレン−ブタジエンコポリマー等とのアロイ化ポリマーなど、いわゆる変性ポリフェニレンエーテルも用いることができる。
When the component (B) is the first embodiment, the resin composition may or may not contain polyphenylene ether (hereinafter, also referred to as “component (B ′)”). It is 10 mass parts or less with respect to a total of 100 mass parts of (A) component and (B) component. The content of the component (B ′) is preferably 8 parts by mass or less, and more preferably 7 parts by mass or less.
In addition, as long as content of (B ') component is 10 mass parts or less with respect to a total of 100 mass parts of (A) component and (B) component, (B') component is included in a resin composition. As a result, the compatibility, heat resistance and adhesion of the resin composition can be improved, and a high Tg can be achieved. Examples of polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6) obtained by homopolymerization of 2,6-dimethylphenol and 2,3,6, -trimethylphenol. -Trimethyl-1,4-phenylene) ether or a copolymer of 2,6-dimethylphenol and 2,3,6, -trimethylphenol. In addition, so-called modified polyphenylene ether such as an alloyed polymer of these with polystyrene or styrene-butadiene copolymer can also be used.

また、本実施形態における樹脂組成物が(B’)成分であるポリフェニレンエーテルを含む場合、該ポリフェニレンエーテルと、1,2−ブタジエンに由来する構造単位であって側鎖に1,2−ビニル基を有する構造単位を分子中に40モル%以上含み、かつ、数平均分子量が500〜10000である化学変性されていないポリブタジエン樹脂とを反応させて得られる、ポリフェニレンエーテル変性ブタジエンポリマーの形態で含有することが好ましい。特にポリブタジエン樹脂は、ポリフェニレンエーテルとの相容性が乏しく、それぞれをそのまま用いるとフィルムの取り扱い性(タック性)、外観、接着性、誘電特性、耐熱性、熱膨張特性等に悪影響を及ぼす可能性が高い。そこで、ポリブタブタジエン樹脂を、ゲル化しない程度に予めプレポリマー化したポリフェニレンエーテル変性ブタジエンポリマーとして用いることにより、(B’)成分と(B)成分の相容性を改善することができる。また、上記ポリフェニレンエーテル変性ブタジエンプレポリマーを含有することにより、(A)成分と(B)成分との相容性を一層高めることができ、更に効果的に高Tg化、耐熱性、接着性向上を図ることができる。   Moreover, when the resin composition in this embodiment contains the polyphenylene ether which is (B ') component, it is a structural unit derived from this polyphenylene ether and 1, 2- butadiene, and a 1, 2- vinyl group is in a side chain. In the form of a polyphenylene ether-modified butadiene polymer obtained by reacting with a non-chemically modified polybutadiene resin having a number average molecular weight of 500 to 10,000. It is preferable. In particular, polybutadiene resins are poorly compatible with polyphenylene ether, and using each of these as they are can adversely affect the handling (tackiness), appearance, adhesiveness, dielectric properties, heat resistance, thermal expansion properties, etc. of the film. Is expensive. Therefore, the compatibility of the component (B ′) and the component (B) can be improved by using the polybutabutadiene resin as a polyphenylene ether-modified butadiene polymer prepolymerized to such an extent that it does not gel. In addition, by containing the polyphenylene ether-modified butadiene prepolymer, the compatibility between the component (A) and the component (B) can be further improved, and the Tg, heat resistance, and adhesiveness can be improved more effectively. Can be achieved.

本実施形態においてポリフェニレンエーテル変性ブタジエンプレポリマーを製造する場合、例えば、(B’)成分を溶媒に溶解させる等により媒体中に展開させた後、この溶液中にポリブタジエン樹脂及び必要に応じて架橋剤及びラジカル重合開始剤を溶解又は分散させて、60〜170℃で、0.1〜20時間、加熱・撹拌させることにより製造することができる。溶液中でポリフェニレンエーテル変性ブタジエンプレポリマーを製造する場合、溶液中の固形分(不揮発分)濃度が通常5〜80質量%となるように溶媒の使用量を調節することが好ましい。またポリフェニレンエーテル変性ブタジエンプレポリマーを製造した後は、濃縮等により溶媒を完全に除去して無溶媒の樹脂組成物としてもよく、又はそのまま溶媒に溶解又は分散させたポリフェニレンエーテル変性ブタジエンプレポリマー溶液としてもよい。また、溶液とする場合においても、濃縮等により固形分(不揮発分)濃度を高くした溶液としてもよい。   In the case of producing a polyphenylene ether-modified butadiene prepolymer in the present embodiment, for example, after the component (B ′) is developed in a medium by dissolving it in a solvent, the polybutadiene resin and, if necessary, a crosslinking agent in this solution. And a radical polymerization initiator can be dissolved or dispersed and heated and stirred at 60 to 170 ° C. for 0.1 to 20 hours. When producing a polyphenylene ether-modified butadiene prepolymer in a solution, it is preferable to adjust the amount of the solvent used so that the solid content (nonvolatile content) concentration in the solution is usually 5 to 80% by mass. In addition, after producing the polyphenylene ether-modified butadiene prepolymer, the solvent may be completely removed by concentration or the like to obtain a solvent-free resin composition, or as a polyphenylene ether-modified butadiene prepolymer solution dissolved or dispersed in the solvent as it is. Also good. Also, in the case of a solution, a solution having a solid content (nonvolatile content) concentration increased by concentration or the like may be used.

本実施形態のポリフェニレンエーテル変性ブタジエンプレポリマーを製造する際には、ポリブタジエン樹脂の架橋剤、好ましくはマレイミド化合物、より好ましくはモノマレイミド化合物を用いることが、プレポリマー化反応プロセスを円滑に制御でき、かつ得られるフィルム特性(誘電特性、耐熱性、耐湿性、接着性、多層化成形性等)の観点から望ましい。架橋剤にマレイミド化合物を用いたポリフェニレンエーテル変性ブタジエンプレポリマーを製造する際は、マレイミド化合物の転化率(反応率)が5〜100%の範囲となるように予備反応させることが好ましい。より好ましい範囲としては、上記ポリブタジエン樹脂及び架橋剤の配合割合によって異なり、架橋剤の配合割合が、ポリブタジエン樹脂100質量部に対して2〜10質量部の範囲の場合は、架橋剤の転化率(反応率)が10〜100%の範囲とするのがより好ましく、10〜100質量部の範囲の場合は、架橋剤の転化率(反応率)が7〜90%の範囲とするのがより好ましく、100〜200質量部の範囲の場合は、架橋剤の転化率(反応率)が5〜80%の範囲とするのがより好ましい。なお、架橋剤の転化率(反応率)は、ゲルパーミエーションクロマトグラフィーにより測定したポリフェニレンエーテル変性ブタジエンプレポリマー中の架橋剤の残存量と予め作成した架橋剤の検量線とから換算して得られる。   When producing the polyphenylene ether-modified butadiene prepolymer of the present embodiment, it is possible to smoothly control the prepolymerization reaction process by using a polybutadiene resin crosslinking agent, preferably a maleimide compound, more preferably a monomaleimide compound, In addition, it is desirable from the viewpoint of the obtained film characteristics (dielectric characteristics, heat resistance, moisture resistance, adhesiveness, multilayer formability, etc.). When producing a polyphenylene ether-modified butadiene prepolymer using a maleimide compound as a crosslinking agent, it is preferable to carry out a preliminary reaction so that the conversion (reaction rate) of the maleimide compound is in the range of 5 to 100%. A more preferable range varies depending on the blending ratio of the polybutadiene resin and the crosslinking agent. When the blending ratio of the crosslinking agent is in the range of 2 to 10 parts by mass with respect to 100 parts by mass of the polybutadiene resin, the conversion rate of the crosslinking agent ( The reaction rate is more preferably in the range of 10 to 100%, and in the case of 10 to 100 parts by mass, the conversion rate (reaction rate) of the crosslinking agent is more preferably in the range of 7 to 90%. In the range of 100 to 200 parts by mass, the conversion rate (reaction rate) of the crosslinking agent is more preferably in the range of 5 to 80%. The conversion rate (reaction rate) of the crosslinking agent is obtained by conversion from the remaining amount of the crosslinking agent in the polyphenylene ether-modified butadiene prepolymer measured by gel permeation chromatography and a calibration curve of the crosslinking agent prepared in advance. .

本実施形態において、樹脂組成物の調製後に、該樹脂組成物中でポリフェニレンエーテル変性ブタジエンプレポリマーを製造する場合には、ポリフェニレンエーテル変性ブタジエンプレポリマーの製造に伴いポリブタジエン樹脂の架橋剤が消費され得る。そのため、ポリフェニレンエーテル変性ブタジエンプレポリマーの製造後に、ポリブタジエン樹脂の架橋剤を樹脂組成物に追加することが好ましい。プレポリマー製造時において消費された架橋剤を補充することによって、(A)成分と(B)成分との反応プロセスを円滑に制御できる。追加する架橋剤は、ポリフェニレンエーテル変性ブタジエンプレポリマーを製造の際に用いた架橋剤と同じであっても、別の種類であってもよい。架橋剤としては、マレイミド化合物を用いることが好ましく、上述したポリマレイミド化合物を用いることがより好ましく、その中でも上述のように、特に吸湿性及び熱膨張係数を更に低くする点では、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタンを用いることがより好ましく、破壊強度及び金属箔引き剥がし強さを更に高める点では、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いることがより好ましい。また、コストの点では、N−フェニルマレイミドを用いることがより好ましい。架橋剤は一種類を単独で用いても、2種類以上を併用して用いてもよい。   In this embodiment, when a polyphenylene ether-modified butadiene prepolymer is produced in the resin composition after the resin composition is prepared, a polybutadiene resin crosslinking agent may be consumed with the production of the polyphenylene ether-modified butadiene prepolymer. . Therefore, it is preferable to add a polybutadiene resin crosslinking agent to the resin composition after the production of the polyphenylene ether-modified butadiene prepolymer. By replenishing the crosslinking agent consumed during the production of the prepolymer, the reaction process between the component (A) and the component (B) can be controlled smoothly. The additional crosslinking agent may be the same as or different from the crosslinking agent used in the production of the polyphenylene ether-modified butadiene prepolymer. As the crosslinking agent, it is preferable to use a maleimide compound, and it is more preferable to use the above-described polymaleimide compound. Among them, as described above, bis (3- (Ethyl-5-methyl-4-maleimidophenyl) methane is more preferable, and 2,2-bis (4- (4-maleimidophenoxy) phenyl) is more preferable in terms of further increasing the breaking strength and the metal foil peeling strength. More preferably, propane is used. In terms of cost, it is more preferable to use N-phenylmaleimide. A crosslinking agent may be used individually by 1 type, or may be used in combination of 2 or more types.

(B)成分の第2の態様は、エポキシ樹脂、シアネートエステル樹脂、マレイミド化合物からなる群より選ばれる熱硬化性樹脂又は必要に応じて配合される熱硬化性樹脂の硬化剤(架橋剤)を含む熱硬化性樹脂成分である。(B)成分が第2の態様である場合、質量比W/Wは、0.7〜5.0であり、かつ、ポリフェニレンエーテルの含有量が(A)成分及び(B)成分の合計100質量部に対して10質量部以下であることが必須である。この範囲内であれば、得られる樹脂フィルムは、良好なフィルム形成能や取り扱い性と高周波帯域での誘電特性を維持しつつ、耐熱性、耐湿性及び高接着性を備える。質量比W/Wは、0.8〜2.0であることがより好ましく、0.9〜1.5であることが更に好ましい。このような熱硬化性樹脂成分であれば、特に限定されるものではないが、中でも誘電特性、耐熱性、接着性の観点から、シアネートエステル樹脂が好ましく、さらに単官能フェノール化合物を併用又は予め単官能フェノール化合物で変性したフェノール変性シアネートエステル樹脂として用いることが、誘電特性、耐湿性、耐熱性の観点から特に好ましい。 (B) The 2nd aspect of a component is a hardening agent (crosslinking agent) of the thermosetting resin chosen from the group which consists of an epoxy resin, cyanate ester resin, and a maleimide compound, or the thermosetting resin mix | blended as needed. It is a thermosetting resin component containing. Component (B) be a second aspect, the weight ratio W A / W B are 0.7 to 5.0, and the content of the polyphenylene ether component (A) and component (B) It is essential that it is 10 parts by mass or less with respect to 100 parts by mass in total. Within this range, the obtained resin film has heat resistance, moisture resistance, and high adhesiveness while maintaining good film forming ability and handleability and dielectric properties in a high frequency band. Mass ratio W A / W B is more preferably 0.8 to 2.0, more preferably 0.9 to 1.5. Such a thermosetting resin component is not particularly limited, but among these, cyanate ester resins are preferable from the viewpoint of dielectric properties, heat resistance, and adhesiveness, and a monofunctional phenol compound is used in combination or in advance. Use as a phenol-modified cyanate ester resin modified with a functional phenol compound is particularly preferred from the viewpoints of dielectric properties, moisture resistance, and heat resistance.

(B)成分の第2の態様として、エポキシ樹脂を用いる場合、分子内に2つ以上のエポキシ基を有するものであればどのようなものでもよく、第1の態様としてエポキシ樹脂を用いる場合と同様の化合物を用いることができる。   (B) When using an epoxy resin as a 2nd aspect of a component, what kind of thing may be sufficient as long as it has two or more epoxy groups in a molecule | numerator, and the case where an epoxy resin is used as a 1st aspect Similar compounds can be used.

また、エポキシ樹脂を用いる場合、エポキシ樹脂の硬化剤や硬化促進剤が含まれていてもよく、例えば、多官能フェノール化合物、アミン化合物、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物などが挙げられる。   Moreover, when using an epoxy resin, a curing agent or a curing accelerator for the epoxy resin may be included. For example, a polyfunctional phenol compound, an amine compound, an imidazole compound, an acid anhydride, an organic phosphorus compound, and a halide thereof. Etc.

(B)成分の第2の態様として、シアネートエステル樹脂を用いる場合、分子内にシアナート基を2つ以上有するシアネートエステル化合物であれば、特に限定されるものでなく、第1の態様としてシアネートエステル樹脂を用いる場合と同様の化合物を用いることができる。   (B) As a 2nd aspect of a component, when using cyanate ester resin, if it is a cyanate ester compound which has two or more cyanate groups in a molecule | numerator, it will not specifically limit, Cyanate ester as a 1st aspect A compound similar to the case of using a resin can be used.

また、シアネートエステル樹脂を用いる場合、シアネートエステル樹脂の硬化剤や硬化促進剤が含まれていてもよく、例えば、単官能フェノール化合物、多官能フェノール化合物、アミン化合物、酸無水物及びマンガン、鉄、コバルト、ニッケル、銅及び亜鉛等の2−エチルヘキサン酸塩、ナフテン酸塩、アセチルアセトン錯体等の有機金属化合物などが挙げられる。また高周波特性、耐湿性、耐熱性等を考慮すると単官能フェノール化合物及び有機金属化合物を併用することがより好ましい。また耐熱性を考慮すると前記エポキシ樹脂を併用することが好ましく、前記エポキシ樹脂が好適に使用できる。   Moreover, when using cyanate ester resin, the hardening | curing agent and hardening accelerator of cyanate ester resin may be contained, for example, a monofunctional phenol compound, a polyfunctional phenol compound, an amine compound, an acid anhydride, manganese, iron, Examples include 2-ethylhexanoate such as cobalt, nickel, copper, and zinc, naphthenate, and organometallic compounds such as acetylacetone complex. In consideration of high-frequency characteristics, moisture resistance, heat resistance, etc., it is more preferable to use a monofunctional phenol compound and an organometallic compound in combination. In consideration of heat resistance, the epoxy resin is preferably used in combination, and the epoxy resin can be suitably used.

シアネートエステル樹脂と単官能フェノール化合物を併用する場合、シアネートエステル樹脂と単官能フェノール化合物をゲル化しない程度に反応させて予めプレポリマー化して用いることが未硬化(Bステージ)フィルムの外観や取り扱い性及び硬化フィルムの硬化性の観点から好ましい。配合する単官能フェノール化合物はプレポリマー化時に規定量全てを配合してもよく、プレポリマー化前後で規定量を分けて配合してもよいが、分けて配合する方がワニスの保存安定性の観点から好ましい。   When a cyanate ester resin and a monofunctional phenol compound are used in combination, it is necessary to react the cyanate ester resin and the monofunctional phenol compound to such an extent that they do not gel, and prepolymerize them before use. And from the viewpoint of curability of the cured film. The monofunctional phenol compound to be blended may be blended in all prescribed amounts at the time of prepolymerization, or may be blended in a prescribed amount before and after prepolymerization, but it is better to preserve the storage stability of the varnish. It is preferable from the viewpoint.

単官能フェノール化合物の具体例としては、p−t-オクチルフェノール、p−フェニルフェノール、p-(α−クミル)フェノールが好適に用いられ、単官能フェノール化合物の配合量は、シアネートエステル樹脂のシアナート基に対するフェノール化合物の水酸基の当量比で0.01〜1.00の範囲が誘電特性、耐湿性、耐熱性の観点から好ましい。   As specific examples of the monofunctional phenol compound, pt-octylphenol, p-phenylphenol, and p- (α-cumyl) phenol are preferably used, and the compounding amount of the monofunctional phenol compound is the cyanate group of the cyanate ester resin. The equivalent ratio of the hydroxyl group of the phenol compound to 0.01 to 1.00 is preferable from the viewpoints of dielectric properties, moisture resistance, and heat resistance.

(B)成分の第2の態様として、マレイミド化合物を用いる場合、分子内にマレイミド基を2個以上含有するポリマレイミド化合物が好ましい。ポリマレイミド化合物の具体例としては、第1の態様の場合と同様の化合物を好ましく用いることができる。   (B) As a 2nd aspect of a component, when using a maleimide compound, the polymaleimide compound which contains two or more maleimide groups in a molecule | numerator is preferable. As a specific example of the polymaleimide compound, the same compound as in the first embodiment can be preferably used.

(B)成分の第2の態様として、マレイミド化合物を用いる場合、硬化剤や硬化促進剤が含まれていてもよく、例えば、アミン化合物や有機過酸化物などが挙げられる。   As a 2nd aspect of (B) component, when using a maleimide compound, the hardening | curing agent and hardening accelerator may be contained, for example, an amine compound, an organic peroxide, etc. are mentioned.

[(C)成分]
本実施形態における樹脂組成物は、(C)成分として特定のフェノール系酸化防止剤を用いることもできる。この場合、式(1)〜(3)で表される酸化防止剤の群より選ばれる少なくとも一種のフェノール系酸化防止剤が好適に用いられる。なお、(C)成分の含有量が、(A)成分、(B)成分及び(B’)成分の合計100質量部に対して0.01〜5質量部の範囲で含有することが好ましい。この場合、樹脂フィルムの誘電特性、耐湿性、耐熱性等を悪化させることなく、高温処理による誘電特性の酸化劣化の抑制及び絶縁信頼性を向上できる。特に(A)成分として、化学変性SEBSを用いる場合に、加熱酸化による誘電特性の経年変化の抑制効果を発揮できる。
[Component (C)]
The resin composition in this embodiment can also use a specific phenolic antioxidant as the component (C). In this case, at least one phenolic antioxidant selected from the group of antioxidants represented by formulas (1) to (3) is preferably used. In addition, it is preferable that content of (C) component contains in 0.01-5 mass parts with respect to a total of 100 mass parts of (A) component, (B) component, and (B ') component. In this case, without deteriorating the dielectric properties, moisture resistance, heat resistance and the like of the resin film, it is possible to suppress the oxidative deterioration of the dielectric properties due to the high temperature treatment and improve the insulation reliability. In particular, when chemically modified SEBS is used as the component (A), the effect of suppressing the secular change of dielectric characteristics due to thermal oxidation can be exhibited.

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

[難燃剤、無機充填剤、各種添加剤]
また、本実施形態における樹脂組成物には、必要に応じて難燃剤、無機充填剤、各種添加剤をフィルム特性(取り扱い性、誘電特性、耐熱性、導体及び他の樹脂材料との接着性、耐湿性、Tg、熱膨張特性等)を悪化させない範囲の配合量で、更に配合してもよい。
[Flame retardant, inorganic filler, various additives]
In addition, the resin composition in the present embodiment includes a flame retardant, an inorganic filler, and various additives as necessary, with film characteristics (handleability, dielectric characteristics, heat resistance, adhesion to conductors and other resin materials, You may mix | blend further with the compounding quantity of the range which does not deteriorate a moisture resistance, Tg, a thermal expansion characteristic, etc.).

難燃剤としては、特に限定されないが、臭素系、リン系、金属水酸化物等の難燃剤が好適に用いられる。より具体的には、臭素系難燃剤としては、臭素化ビスフェノールA型エポキシ樹脂及び臭素化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン及び2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン等の臭素化添加型難燃剤、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート及び臭素化スチレン等の不飽和二重結合基含有の臭素化反応型難燃剤などが挙げられる。   Although it does not specifically limit as a flame retardant, Flame retardants, such as a bromine type, a phosphorus type, and a metal hydroxide, are used suitably. More specifically, brominated flame retardants include brominated epoxy resins such as brominated bisphenol A type epoxy resin and brominated phenol novolac type epoxy resin, hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl). , Ethylenebistetrabromophthalimide, 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated Brominated flame retardants such as polystyrene and 2,4,6-tris (tribromophenoxy) -1,3,5-triazine, tribromophenyl maleimide, tribromophenyl acrylate, tribromophenyl methacrylate, tetrabromide Bisphenol A dimethacrylate, and unsaturated double bond group brominated reactive flame retardants containing such pentabromobenzylacrylate and brominated styrene.

リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート及びレゾルシノールビス(ジフェニルホスフェート)等の芳香族系リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル及びフェニルホスホン酸ビス(1−ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体等のホスフィン酸エステル、ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物及び赤リン等のリン系難燃剤を例示でき、金属水酸化物難燃剤としては水酸化マグネシウムや水酸化アルミニウム等が例示される。また、上述の難燃剤は一種類を単独で用いてもよく、二種類以上を組み合わせて用いてもよい。   Phosphorus flame retardants include aromatic phosphoric acids such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate and resorcinol bis (diphenyl phosphate) Esters, phosphonic esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and bis (1-butenyl) phenylphosphonate, phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phos Phosphinic acid esters such as faphenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene, dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Phosphorus flame retardants such as melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and red phosphorus can be exemplified, and examples of metal hydroxide flame retardants include magnesium hydroxide and aluminum hydroxide. . Moreover, the above-mentioned flame retardant may be used individually by 1 type, and may be used in combination of 2 or more types.

難燃剤の配合割合は、特に限定されないが、(A)成分及び(B)成分の合計量100質量部に対して、10〜200質量部とすることが好ましく、15〜150質量部とすることがより好ましく、20〜100質量部とすることが更に好ましい。難燃剤の配合割合が10質量部未満では耐燃性が不十分となる傾向があり、200質量部を超えると耐熱性、接着性、フィルム形成能、成形性が低下する傾向にある。   The blending ratio of the flame retardant is not particularly limited, but is preferably 10 to 200 parts by mass, and preferably 15 to 150 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B). Is more preferable, and it is still more preferable to set it as 20-100 mass parts. If the blending ratio of the flame retardant is less than 10 parts by mass, the flame resistance tends to be insufficient, and if it exceeds 200 parts by mass, the heat resistance, adhesiveness, film-forming ability, and moldability tend to decrease.

無機充填剤としては、特に限定されないが、具体的には、アルミナ、酸化チタン、マイカ、シリカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、ホウ酸アルミニウム、ホウ酸アルミニウム、炭化ケイ素などが用いられる。これらの無機充填剤は単独で用いてもよいし、二種類以上併用してもよい。また、無機充填剤の形状及び粒径についても特に制限はなく、通常、粒径0.01〜50μm、好ましくは0.1〜15μmのものが好適に用いられる。   The inorganic filler is not particularly limited, and specifically, alumina, titanium oxide, mica, silica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, Aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay such as calcined clay, talc, aluminum borate, aluminum borate, silicon carbide and the like are used. These inorganic fillers may be used alone or in combination of two or more. Moreover, there is no restriction | limiting in particular also about the shape and particle size of an inorganic filler, Usually, the particle size of 0.01-50 micrometers, Preferably 0.1-15 micrometers is used suitably.

無機充填剤の配合割合は、特に限定されないが、(A)成分及び(B)成分の合計量100質量部に対して、5〜100質量部が好ましく、10〜80質量部がより好ましいが、所望の誘電特性とフィルム特性のバランスに合わせて配合することができる。   The blending ratio of the inorganic filler is not particularly limited, but is preferably 5 to 100 parts by mass and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B). It can mix | blend according to the balance of a desired dielectric property and a film characteristic.

各種添加剤としては、特に限定されないが、例えば、シランカップリング剤、チタネートカップリング剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤等が挙げられる。それぞれ、単独で用いてもよいし、二種類以上を併用してもよい。   Although it does not specifically limit as various additives, For example, a silane coupling agent, a titanate coupling agent, antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, a lubricant, etc. are mentioned. Each may be used alone or in combination of two or more.

本実施形態における樹脂組成物を調製する際、(A)成分、(B)成分及び必要に応じて併用される(B’)成分、(C)成分、架橋剤、難燃剤、無機充填剤及び各種添加剤の混合方法は、特に限定されないが、有機溶媒を加えて公知の方法で攪拌し、溶解、分散させた樹脂ワニスの形態で用いることが好ましい。この場合に用いられる溶媒としては、特に限定するものではないが、具体例としては、メタノール、エタノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、カルビトール、ブチルカルビトール等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、メシチレン等の芳香族炭化水素類、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素類などの溶媒が挙げられる。(A)成分の良溶媒であるトルエン、キシレン、メシチレン等の芳香族炭化水素類又は芳香族炭化水素類とアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類との混合溶媒がフィルムとした時の外観が良好となるため好ましい。また、これらは一種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   When preparing the resin composition in the present embodiment, the (A) component, the (B) component, and the (B ′) component, the (C) component, the crosslinking agent, the flame retardant, the inorganic filler, and the combination used as necessary. The mixing method of various additives is not particularly limited, but it is preferable to use in the form of a resin varnish which is added with an organic solvent and stirred, dissolved and dispersed by a known method. The solvent used in this case is not particularly limited, but specific examples include alcohols such as methanol, ethanol and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol, butyl carbitol and the like. Ethers, acetone, methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N , N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and other solvents. (A) When a mixed solvent of aromatic hydrocarbons such as toluene, xylene and mesitylene or aromatic hydrocarbons and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, which is a good solvent of component (A), is used as a film Is preferable because the appearance of the is good. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.

また、樹脂組成物をワニス化する際は、ワニス中の固形分(不揮発分)濃度が、5〜80質量%となるように溶媒の使用量を調節することが好ましいが、樹脂フィルムの製造する際に溶媒量を調節することにより、塗工作業に最適な(例えば、良好な外観及び所望の膜厚となるように)固形分(不揮発分)濃度やワニス粘度に調整することができる。   Further, when the resin composition is varnished, it is preferable to adjust the amount of the solvent used so that the solid content (nonvolatile content) concentration in the varnish is 5 to 80% by mass, but the resin film is produced. In this case, by adjusting the amount of the solvent, it is possible to adjust the solid content (non-volatile content) concentration and the varnish viscosity that are optimal for the coating operation (for example, to obtain a good appearance and a desired film thickness).

[樹脂フィルム]
本実施形態では、上記のようにして得られた樹脂ワニスを用いて公知の方法により樹脂フィルムを製造することができる。例えば、上述の樹脂組成物又は樹脂ワニスを、金属箔や耐熱性フィルム(PET等)等の支持基材の片面にキスコーター、ロールコーター、コンマコーター等を用いて塗布した後、加熱乾燥炉中等で通常70〜250℃(溶媒を使用した場合は溶媒の揮発可能な温度以上)、好ましくは70〜200℃の温度で1〜30分間、好ましくは3〜15分間乾燥することにより、半硬化(Bステージ化)の樹脂フィルム、更にこれを加熱炉で更に170〜250℃、好ましくは185〜230℃の温度で60〜150分間加熱させることによって硬化した樹脂フィルムが得られる。
[Resin film]
In the present embodiment, a resin film can be produced by a known method using the resin varnish obtained as described above. For example, after applying the above-mentioned resin composition or resin varnish to one side of a supporting substrate such as a metal foil or a heat-resistant film (PET, etc.) using a kiss coater, roll coater, comma coater, etc., in a heating and drying furnace, etc. Usually 70-250 ° C. (above the temperature at which the solvent can be volatilized when a solvent is used), preferably 70-200 ° C., for 1-30 minutes, preferably 3-15 minutes, and then semi-cured (B A staged resin film, and a cured resin film obtained by heating the resin film at a temperature of 170 to 250 ° C., preferably 185 to 230 ° C. for 60 to 150 minutes in a heating furnace, are obtained.

[金属張硬化樹脂フィルム]
また、半硬化の金属箔付き樹脂フィルムや耐熱性フィルム付き又は耐熱性フィルムを剥離した樹脂フィルムを用いて金属張硬化樹脂フィルムを製造することができる。すなわち、樹脂フィルムを1枚又は複数枚重ね、その片面又は両面に金属箔を配置し、170〜250℃、好ましくは185〜230℃の温度及び0.5〜5.0MPaの圧力で60〜150分間加熱・加圧することにより両面又は片面の金属張樹脂フィルムが得られる。加熱・加圧は真空中で行うことが好ましく、真空度は10kPa以下、好ましくは5kPa以下で加熱・加圧開始から30分間以上〜成形終了時間実施することが好ましい。
[Metal-clad cured resin film]
Moreover, a metal-clad cured resin film can be manufactured using the resin film with a semi-hardened metal foil, the resin film with a heat resistant film, or the heat resistant film peeled off. That is, one or a plurality of resin films are stacked, and a metal foil is disposed on one or both sides thereof, and a temperature of 170 to 250 ° C., preferably 185 to 230 ° C. and a pressure of 0.5 to 5.0 MPa, 60 to 150. A double-sided or single-sided metal-clad resin film is obtained by heating and pressurizing for a minute. The heating / pressurization is preferably performed in a vacuum, and the degree of vacuum is preferably 10 kPa or less, preferably 5 kPa or less, and it is preferably performed for 30 minutes or more to the molding end time from the start of heating / pressurization.

[多層印刷配線板]
更に、上記半硬化の金属箔付き樹脂フィルムや耐熱性フィルム付き又はこれを剥がした樹脂フィルムをビルドアップ配線板等の多層印刷配線板の製造に用いることができる。すなわち、回路形成加工されたコア基板の片面又は両面に本実施形態の製造方法で得られた上記半硬化の樹脂フィルムを配置、あるいは複数枚のコア基板の間に上記半硬化樹脂フィルムを配置し、加熱・加圧ラミネート成形又は加熱・加圧プレス成形して多層化接着加工後、公知の方法によって、レーザー穴開け加工、ドリル穴開け加工、金属めっき加工、金属エッチング等による回路形成加工を行うことによって、多層印刷配線板を製造することができる。
[Multilayer printed wiring board]
Furthermore, the resin film with a semi-cured metal foil, the resin film with a heat-resistant film, or the resin film peeled off can be used for the production of a multilayer printed wiring board such as a build-up wiring board. That is, the semi-cured resin film obtained by the manufacturing method of the present embodiment is disposed on one or both sides of the core substrate subjected to circuit formation processing, or the semi-cured resin film is disposed between a plurality of core substrates. After heat / pressure laminate molding or heat / pressure press molding and multilayer adhesive processing, laser drilling, drilling, metal plating, metal etching, etc. are performed by known methods. Thus, a multilayer printed wiring board can be manufactured.

以下、実施例および比較例を挙げて、本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
[樹脂ワニスの調製]
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
[Preparation of resin varnish]

下記手順及び表1〜表3の配合量に従って、樹脂ワニスを調製した。   A resin varnish was prepared according to the following procedure and the blending amounts shown in Tables 1 to 3.

(調製例1)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容量のセパラブルフラスコに、トルエンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ製)を投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分としてビフェニルアラルキル型エポキシ樹脂(NC−3000H、日本化薬製)及びクレゾールノボラック樹脂(KA1165、DIC製)を配合して溶解確認後、フラスコを室温まで冷却した。その後、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ、四国化成製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 1)
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene and hydrogenated styrene-butadiene copolymer as component (A) (Tuftec H1051, styrene content ratio) : 42%, Mn: 66,000, manufactured by Asahi Kasei Chemicals Corporation), the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, as a component (B), a biphenyl aralkyl type epoxy resin (NC-3000H, manufactured by Nippon Kayaku Co., Ltd.) and a cresol novolac resin (KA 1165, manufactured by DIC) were blended and dissolved, and then the flask was cooled to room temperature. Thereafter, 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei) was added as a curing accelerator, and then methyl ethyl ketone was blended and stirred to prepare a resin varnish having a solid content concentration of about 35% by mass.

(調製例2)
調製例1において、(A)成分のタフテックH1051の1/2量を、数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1031、スチレン含有比率:30%、Mn:47,000、旭化成ケミカルズ製)に置き換えた以外は調製例1と同様にして樹脂ワニスを調製した。
(Preparation Example 2)
In Preparation Example 1, ½ amount of (A) component Tuftec H1051 was replaced with hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1031, styrene content ratio: 30%, Mn: Resin varnish was prepared in the same manner as in Preparation Example 1 except that it was replaced with 47,000 (manufactured by Asahi Kasei Chemicals).

(調製例3)
調製例2において、(A)成分のタフテックH1051の一部を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913、スチレン含有比率:30%、Mn:55,000、旭化成ケミカルズ製)に置き換えて表1に示す配合量で配合したこと以外は調製例2と同様にして樹脂ワニスを調製した。
(Preparation Example 3)
In Preparation Example 2, a part of (A) component Tuftec H1051 was added to a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913, styrene content ratio: 30%, Mn: 55,000, manufactured by Asahi Kasei Chemicals Corporation. ), And a resin varnish was prepared in the same manner as in Preparation Example 2, except that the compounding amounts shown in Table 1 were used.

(調製例4)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコにトルエン、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)、p−(α−クミル)フェノール(東京化成工業製)を投入し、溶解確認後に液温を110℃に保った後で反応促進剤としてナフテン酸マンガン(和光純薬工業製)を配合し、約3時間加熱反応させてシアネートプレポリマー溶液を得た。次いで反応液を冷却し、内温が80℃になったら、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ製)、トルエン及びメチルエチルケトンを攪拌しながら配合して溶解を確認後にフラスコを室温まで冷却した後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 4)
Into a 1-liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer, toluene, and as component (B), 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) ), P- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) is added, and after confirming dissolution, the liquid temperature is kept at 110 ° C. and then manganese naphthenate (manufactured by Wako Pure Chemical Industries) is blended as a reaction accelerator. Then, a cyanate prepolymer solution was obtained by heating for about 3 hours. Next, the reaction liquid was cooled, and when the internal temperature reached 80 ° C., a hydrogenated styrene-butadiene copolymer (Tuftec H1051, styrene content ratio: 42%, Mn: 66,000, Asahi Kasei Chemicals Co., Ltd.) as component (A) ), Toluene and methyl ethyl ketone were mixed with stirring, and after dissolution was confirmed, the flask was cooled to room temperature. Then, zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was blended as a curing accelerator, and the solid content concentration was about 35% by mass. A resin varnish was prepared.

(調製例5)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容量のセパラブルフラスコにトルエンとポリフェニレンエーテル(S202A、旭化成ケミカルズ製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)とp−(α−クミル)フェノール(東京化成工業製)を投入し、溶解確認後に液温を110℃に保った後で反応促進剤としてナフテン酸マンガン(和光純薬工業製)を配合し、約3時間加熱反応させてポリフェニレンエーテル変性シアネートプレポリマー溶液を合成した。次いで反応液を冷却し、内温が80℃になったら、(B)成分としてビフェニル型エポキシ樹脂(YX−4000、JER製)、(A)成分として、タフテックH1051及びH1031、トルエン及びメチルエチルケトンを攪拌しながら配合して溶解を確認した後、室温まで冷却した後に、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)及び2−エチル−4−メチルイミダゾール(2E4MZ)を配合して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 5)
Toluene and polyphenylene ether (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) were charged into a 1-liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer. The solution was stirred and dissolved. Next, as component (B), 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) and p- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the solution was confirmed after dissolution was confirmed. After maintaining the temperature at 110 ° C., manganese naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was blended as a reaction accelerator and heated for about 3 hours to synthesize a polyphenylene ether-modified cyanate prepolymer solution. Next, the reaction solution was cooled, and when the internal temperature reached 80 ° C., biphenyl type epoxy resin (YX-4000, manufactured by JER) was used as component (B), and Tuftec H1051 and H1031, toluene and methyl ethyl ketone were stirred as component (A). After mixing and confirming dissolution, after cooling to room temperature, zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) and 2-ethyl-4-methylimidazole (2E4MZ) are blended as a curing accelerator, and the solid content concentration About 35% by mass of a resin varnish was prepared.

(調製例6)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容量のセパラブルフラスコに、トルエンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ製)を投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分としてビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン(BMI−5100、大和化成製)を配合して溶解確認後、フラスコを室温まで冷却した。その後、硬化促進剤として1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 6)
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene and hydrogenated styrene-butadiene copolymer as component (A) (Tuftec H1051, styrene content ratio) : 42%, Mn: 66,000, manufactured by Asahi Kasei Chemicals Corporation), the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-5100, manufactured by Daiwa Kasei) was blended as the component (B), and after confirming dissolution, the flask was cooled to room temperature. Thereafter, 1,1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation) was added as a curing accelerator, and then mixed and stirred with methyl ethyl ketone to a resin varnish having a solid content concentration of about 35% by mass. Was prepared.

(調製例7)
調製例6において、(B)成分をBMI−5100の代わりに、化学変性されていないポリブタジエン樹脂(B−3000、日本曹達製、1,2−ビニル構造:90%)を表1に示す配合量で配合した以外は調製例6と同様にして樹脂ワニスを調製した。
(Preparation Example 7)
In Preparation Example 6, instead of BMI-5100, component (B) is a chemically modified polybutadiene resin (B-3000, manufactured by Nippon Soda, 1,2-vinyl structure: 90%) shown in Table 1. A resin varnish was prepared in the same manner as in Preparation Example 6 except that it was blended.

(調製例8)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容量のセパラブルフラスコに、トルエンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1053、スチレン含有比率:29%、Mn:68,000、旭化成ケミカルズ製)と数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1031、スチレン含有比率:30%、Mn:47,000、旭化成ケミカルズ製)を投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分としてビスマレイミド(BMI−5100)とポリブタジエン樹脂(B−3000)、日本曹達製、1,2−ビニル構造:90%)配合して溶解確認後、フラスコを室温まで冷却した。その後、硬化促進剤として1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 8)
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene and hydrogenated styrene-butadiene copolymer as component (A) (Tuftec H1053, styrene content ratio) : 29%, Mn: 68,000, manufactured by Asahi Kasei Chemicals) and a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1031, styrene content ratio: 30%, Mn: 47,000, Asahi Kasei Chemicals) was added, and the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, as a component (B), bismaleimide (BMI-5100) and a polybutadiene resin (B-3000), manufactured by Nippon Soda Co., Ltd., 1,2-vinyl structure: 90%) were blended, and after confirmation of dissolution, the flask was cooled to room temperature. . Thereafter, 1,1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation) was added as a curing accelerator, and then mixed and stirred with methyl ethyl ketone to a resin varnish having a solid content concentration of about 35% by mass. Was prepared.

(調製例9)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容量のセパラブルフラスコに、トルエン、ポリフェニレンエーテル(S202A、旭化成ケミカルズ製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、成分(B)として、化学変性されていないポリブタジエン樹脂(B−3000)及びN−フェニルマレイミド(イミレックス−P、日本触媒製)を投入し、撹拌を続け、これらが溶解したことを確認した。その後、液温を110℃に上昇させ、その温度を保ったまま、反応開始剤として、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン(パーヘキサTMH、日本油脂製)0.5質量部を配合し、撹拌しながら約1時間予備反応させて、ポリフェニレンエーテル変性ブタジエンプレポリマー溶液を得た。このポリフェニレンエーテル変性ブタジエンプレポリマー溶液中のN−フェニルマレイミドの転化率をゲルパーミエーションクロマトグラフィーにより測定したところ、転化率33%であった。
次いで、フラスコ内の液温を80℃に設定後、撹拌しながら溶液の固形分濃度が約45質量%となるように濃縮した。次に、溶液を室温まで冷却した後、成分(A)としてタフテックH1051を配合し、溶解を確認後、硬化促進剤としてパーブチルPを添加後、トルエン及びメチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 9)
Toluene and polyphenylene ether (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer. The solution was stirred and dissolved at a temperature of C. Next, as a component (B), a polybutadiene resin (B-3000) that was not chemically modified and N-phenylmaleimide (Imirex-P, manufactured by Nippon Shokubai Co., Ltd.) were added, and stirring was continued to confirm that these were dissolved. . Thereafter, the liquid temperature was raised to 110 ° C., and 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane (Perhexa TMH, Nippon Oil & Fats was used as a reaction initiator while maintaining the temperature. (Product made) 0.5 part by mass was mixed and pre-reacted with stirring for about 1 hour to obtain a polyphenylene ether-modified butadiene prepolymer solution. When the conversion rate of N-phenylmaleimide in the polyphenylene ether-modified butadiene prepolymer solution was measured by gel permeation chromatography, the conversion rate was 33%.
Subsequently, after setting the liquid temperature in a flask to 80 degreeC, it concentrated so that solid content concentration of a solution might be about 45 mass%, stirring. Next, after the solution is cooled to room temperature, Tuftec H1051 is blended as component (A). After confirming dissolution, Perbutyl P is added as a curing accelerator, and toluene and methyl ethyl ketone are blended and stirred to obtain a solid concentration of about A 35% by weight resin varnish was prepared.

(調製例10)
調製例9において、(A)成分のタフテックH1051の1/2量を、数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1141、スチレン含有比率:30%、Mn:41,000、旭化成ケミカルズ製)に置き換えた以外は調製例9と同様にして樹脂ワニスを調製した。
(Preparation Example 10)
In Preparation Example 9, ½ amount of (A) component Tuftec H1051 was replaced with hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1141, styrene content ratio: 30%, Mn: Resin varnish was prepared in the same manner as in Preparation Example 9 except that it was replaced with 41,000 (manufactured by Asahi Kasei Chemicals).

(調製例11)
調製例10において、(A)成分のタフテックH1051の代わりに、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913)に置き換えた以外は調製例10と同様にして樹脂ワニスを調製した。
(Preparation Example 11)
A resin varnish was prepared in the same manner as in Preparation Example 10 except that instead of Tuftec H1051 as Component (A), a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913) was used. .

(調製例12)
調製例9において、(A)成分をタフテックH1051の代わりに、タフテックH1141に置き換え、更に(B)成分として、表1に示す配合量でBMI−5100を追加配合した以外は調製例9と同様にして樹脂ワニスを調製した。
(Preparation Example 12)
In Preparation Example 9, the same procedure as in Preparation Example 9 was conducted except that (A) component was replaced with Tuftec H1141 instead of Tuftec H1051, and BMI-5100 was further added as Component (B) in the amount shown in Table 1. A resin varnish was prepared.

(調製例13)
調製例12において、(A)成分をタフテックH1051の代わりに、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913)に置き換えた以外は調製例12と同様にして樹脂ワニスを調製した。
(Preparation Example 13)
A resin varnish was prepared in the same manner as in Preparation Example 12, except that component (A) was replaced with a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913) instead of Tuftec H1051. .

(調製例14)
調製例12において、BMI−5100の代わりに、2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン(BMI−4000、大和化成製)に置き換えて表1に示す配合量で配合したこと以外は調製例12と同様にして樹脂ワニスを調製した。
(Preparation Example 14)
In Preparation Example 12, instead of BMI-5100, it was replaced with 2-bis (4- (4-maleimidophenoxy) phenyl) propane (BMI-4000, manufactured by Daiwa Kasei Co., Ltd.), except that it was blended in the blending amounts shown in Table 1. Prepared a resin varnish in the same manner as in Preparation Example 12.

(調製例15)
調製例12において、(A)成分をタフテックH1141の1/2量を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913)に置き換えた以外は調製例12と同様にして樹脂ワニスを調製した。
(Preparation Example 15)
Resin varnish was prepared in the same manner as in Preparation Example 12 except that (1/2) the amount of Tuftec H1141 was replaced with a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913) in Preparation Example 12. Was prepared.

(調製例16)
調製例4において、(A)成分のタフテックH1051の一部を、タフテックH1031に置き換えて、希釈溶媒をトルエンのみにして、用いた材料を表1に示す配合量で配合したこと以外は調製例4と同様にして樹脂ワニスを調製した。
(Preparation Example 16)
In Preparation Example 4, a part of the (A) component Tuftec H1051 was replaced with Tuftec H1031, and only the toluene was used as the diluent solvent, and the materials used were blended in the blending amounts shown in Table 1. A resin varnish was prepared in the same manner as described above.

(調製例17)
調製例4において、(A)成分のタフテックH1051の一部を、タフテックH1031及びM1913に置き換えて、希釈溶媒をトルエンのみにして、用いた材料を表1に示す配合量で配合したこと以外は調製例4と同様にして樹脂ワニスを調製した。
(Preparation Example 17)
In Preparation Example 4, except that a part of the (A) component Tuftec H1051 was replaced with Tuftec H1031 and M1913, the diluent solvent was only toluene, and the materials used were blended in the blending amounts shown in Table 1. A resin varnish was prepared in the same manner as in Example 4.

(調製例18)
調製例6において、(A)成分のタフテックH1051の一部を、タフテックH1031及びM1913に置き換えて、用いた材料を表1に示す配合量で配合したこと以外は調製例6と同様にして樹脂ワニスを調製した。
(Preparation Example 18)
Resin varnish was prepared in the same manner as in Preparation Example 6 except that a part of (A) component Tuftec H1051 was replaced with Tuftec H1031 and M1913 and the materials used were blended in the blending amounts shown in Table 1. Was prepared.

(調製例19)
調製例8において、(A)成分のタフテックH1053及びH1031の代わりに、タフテックH1051及びH1141に置き換えて、用いた材料を表1に示す配合量で配合したこと以外は調製例8と同様にして樹脂ワニスを調製した。
(Preparation Example 19)
Resin in the same manner as in Preparation Example 8 except that instead of Tuftec H1053 and H1031 as component (A) in Preparation Example 8, the materials used were blended in the blending amounts shown in Table 1 instead of Tuftech H1051 and H1141. A varnish was prepared.

(調製例20)
調製例6において、H1051の配合量と、BMI−5100及びパーブルPの合計量との比率を表1に示すように変更したこと以外は調製例6と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Preparation Example 20)
A resin varnish (solid content concentration of about 35) was prepared in the same manner as in Preparation Example 6 except that the ratio of the blending amount of H1051 and the total amount of BMI-5100 and Pable P was changed as shown in Table 1. % By weight) was prepared.

(調製例21)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコに、トルエンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ社製)を投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分としてビフェニルアラルキル型エポキシ樹脂(NC−3000H、日本化薬製)及びクレゾールノボラック樹脂(KA1165、DIC製)を配合して溶解確認後、フラスコを室温まで冷却した。その後、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ、四国化成製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 21)
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene and hydrogenated styrene-butadiene copolymer as component (A) (Tuftec H1051, styrene content ratio) : 42%, Mn: 66,000, manufactured by Asahi Kasei Chemicals Corporation), the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, as a component (B), a biphenyl aralkyl type epoxy resin (NC-3000H, manufactured by Nippon Kayaku Co., Ltd.) and a cresol novolac resin (KA 1165, manufactured by DIC) were blended and dissolved, and then the flask was cooled to room temperature. Thereafter, 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei) was added as a curing accelerator, and then methyl ethyl ketone was blended and stirred to prepare a resin varnish having a solid content concentration of about 35% by mass.

(調製例22)
調製例21において、(A)成分のタフテックH1051の1/2量を、数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1041、スチレン含有比率:30%、Mn:58,000、旭化成ケミカルズ社製)に置き換えた以外は調製例21と同様にして樹脂ワニスを調製した。
(Preparation Example 22)
In Preparation Example 21, ½ amount of (A) component Tuftec H1051 was replaced with hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1041, styrene content ratio: 30%, Mn: A resin varnish was prepared in the same manner as in Preparation Example 21, except that the product was replaced with 58,000 (manufactured by Asahi Kasei Chemicals Corporation).

(調製例23)
調製例22において、(A)成分のタフテックH1051の一部を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913、スチレン含有比率:30%、Mn:55,000、旭化成ケミカルズ社製)に置き換えて表2に示す配合量で配合したこと以外は調製例22と同様にして樹脂ワニスを調製した。
(Preparation Example 23)
In Preparation Example 22, a part of (A) component Tuftec H1051 was mixed with a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913, styrene content ratio: 30%, Mn: 55,000, Asahi Kasei Chemicals Corporation A resin varnish was prepared in the same manner as in Preparation Example 22 except that it was mixed in the amount shown in Table 2 instead of

(調製例24)
調製例23において、(C)成分として、フェノール系酸化防止剤(アデカ社製アデカスタブAO−20)を表2に示す配合量で配合したこと以外は調製例23と同様にして樹脂ワニスを調製した。
(Preparation Example 24)
In Preparation Example 23, a resin varnish was prepared in the same manner as Preparation Example 23 except that a phenolic antioxidant (Adeka Stub AO-20 manufactured by Adeka Corporation) was added in the amount shown in Table 2 as the component (C). .

(調製例25)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコにトルエン、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)、p−(α−クミル)フェノール(東京化成工業製)を投入し、溶解確認後に液温を110℃に保った後で反応促進剤としてナフテン酸マンガン(和光純薬工業製)を配合し、約3時間加熱反応させてフェノール変性シアネートプレポリマー溶液を得た。次いで反応液を冷却し、内温が80℃になったら、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ社製)、トルエン及びメチルエチルケトンを攪拌しながら配合して溶解を確認後にフラスコを室温まで冷却した後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 25)
Into a 1-liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer, toluene, and as component (B), 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) ), P- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) is added, and after confirming dissolution, the liquid temperature is kept at 110 ° C. and then manganese naphthenate (manufactured by Wako Pure Chemical Industries) is blended as a reaction accelerator. The mixture was heated for about 3 hours to obtain a phenol-modified cyanate prepolymer solution. Next, the reaction liquid was cooled, and when the internal temperature reached 80 ° C., a hydrogenated styrene-butadiene copolymer (Tuftec H1051, styrene content ratio: 42%, Mn: 66,000, Asahi Kasei Chemicals Co., Ltd.) as component (A) ), Toluene and methyl ethyl ketone were mixed with stirring, and after dissolution was confirmed, the flask was cooled to room temperature. Then, zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was blended as a curing accelerator, and the solid concentration was about 35 mass. % Resin varnish was prepared.

(調製例26)
調製例25において、(A)成分のタフテックH1051の一部を、数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1043、スチレン含有比率:67%、Mn:47,000、旭化成ケミカルズ社製)とマレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913、スチレン含有比率:30%、Mn:55,000、旭化成ケミカルズ社製)に置き換えて表2に示す配合量で配合したこと以外は調製例25と同様にして樹脂ワニスを調製した。
(Preparation Example 26)
In Preparation Example 25, a part of (A) component Tuftec H1051 was added to a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1043, styrene content ratio: 67%, Mn: 47, 000, manufactured by Asahi Kasei Chemicals) and a hydrogenated product of maleic acid-modified styrene-butadiene copolymer (Tuftec M1913, styrene content ratio: 30%, Mn: 55,000, manufactured by Asahi Kasei Chemicals) and shown in Table 2. A resin varnish was prepared in the same manner as in Preparation Example 25 except that it was blended in the blending amount.

(調製例27)
調製例25において、(C)成分として、フェノール系酸化防止剤(アデカ社製アデカスタブAO−80)を表2に示す配合量で配合したこと以外は調製例25と同様にして樹脂ワニスを調製した。
(Preparation Example 27)
In Preparation Example 25, a resin varnish was prepared in the same manner as in Preparation Example 25 except that a phenolic antioxidant (Adeka Stub AO-80 manufactured by Adeka Corporation) was added in the amount shown in Table 2 as the component (C). .

(調製例28)
調製例26において、(C)成分として、フェノール系酸化防止剤(アデカ社製アデカスタブAO−330)を表2に示す配合量で配合したこと以外は調製例26と同様にして樹脂ワニスを調製した。
(Preparation Example 28)
In Preparation Example 26, a resin varnish was prepared in the same manner as in Preparation Example 26 except that a phenolic antioxidant (Adeka Stab AO-330 manufactured by Adeka Corporation) was added in the amount shown in Table 2 as the component (C). .

(調製例29)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコに、トルエンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ社製)を投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分としてビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン(BMI−5100、大和化成製)を配合して溶解確認後、フラスコを室温まで冷却した。その後、硬化促進剤として1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂社製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約35質量%の樹脂ワニスを調製した。
(Preparation Example 29)
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene and hydrogenated styrene-butadiene copolymer as component (A) (Tuftec H1051, styrene content ratio) : 42%, Mn: 66,000, manufactured by Asahi Kasei Chemicals Corporation), the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-5100, manufactured by Daiwa Kasei) was blended as the component (B), and after confirming dissolution, the flask was cooled to room temperature. Thereafter, 1,1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation) was added as a curing accelerator, and then methyl ethyl ketone was mixed and stirred to obtain a resin having a solid content concentration of about 35% by mass. A varnish was prepared.

(調製例30)
調製例29において、(A)成分のタフテックH1051の一部を、数平均分子量が6万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1041、スチレン含有比率:30%、Mn:58,000、旭化成ケミカルズ社製)とマレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913、スチレン含有比率:30%、Mn:55,000、旭化成ケミカルズ社製)に置き換えて表2に示す配合量で配合したこと以外は調製例29と同様にして樹脂ワニスを調製した。
(Preparation Example 30)
In Preparation Example 29, a part of (A) component Tuftec H1051 was added to a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or less (Tuftec H1041, styrene content ratio: 30%, Mn: 58, 000, manufactured by Asahi Kasei Chemicals) and a hydrogenated product of maleic acid-modified styrene-butadiene copolymer (Tuftec M1913, styrene content ratio: 30%, Mn: 55,000, manufactured by Asahi Kasei Chemicals) and shown in Table 2. A resin varnish was prepared in the same manner as in Preparation Example 29 except that it was blended in the blending amount.

(調製例31)
調製例30において、(C)成分として、フェノール系酸化防止剤(アデカ社製アデカスタブAO−20)を表2に示す配合量で配合したこと以外は調製例30と同様にして樹脂ワニスを調製した。
(Preparation Example 31)
In Preparation Example 30, a resin varnish was prepared in the same manner as in Preparation Example 30 except that a phenolic antioxidant (Adeka Stub AO-20 manufactured by Adeka Corporation) was added in the amount shown in Table 2 as the component (C). .

(調製例32)
調製例25において、(A)成分のタフテックH1051の一部を、タフテックH1043に置き換えて、希釈溶媒をトルエンのみにして、用いた材料を表2に示す配合量で配合したこと以外は調製例25と同様にして樹脂ワニスを調製した。
(Preparation Example 32)
In Preparation Example 25, a part of the (A) component Tuftec H1051 was replaced with Tuftec H1043, and only the toluene was used as the diluent solvent, and the materials used were blended in the blending amounts shown in Table 2. A resin varnish was prepared in the same manner as described above.

(調製例33)
調製例29において、(A)成分のタフテックH1051の一部を、タフテックH1041及びM1913に置き換えて、用いた材料を表2に示す配合量で配合したこと以外は調製例29と同様にして樹脂ワニスを調製した。
(Preparation Example 33)
In Preparation Example 29, resin varnish was prepared in the same manner as in Preparation Example 29 except that a part of (A) component Tuftec H1051 was replaced with Tuftech H1041 and M1913, and the materials used were blended in the blending amounts shown in Table 2. Was prepared.

(比較調製例1)
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、トリアリルイソシアヌレート(TAIC、日本化成製)を配合し、溶解又は均一分散したことを確認後、室温まで冷却した。次いで、撹拌しながら室温まで冷却後、硬化促進剤として1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂製)を添加した後、メチルエチルケトンを配合して、比較調製例1の樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 1)
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1 liter separable flask equipped with a thermometer, a reflux condenser, and a stirrer, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Next, triallyl isocyanurate (TAIC, manufactured by Nippon Kasei Chemical Co., Ltd.) was blended, and after confirming that it was dissolved or uniformly dispersed, it was cooled to room temperature. Next, after cooling to room temperature with stirring, 1,1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation) is added as a curing accelerator, and then methylethylketone is blended for comparative preparation. The resin varnish of Example 1 (solid content concentration of about 35% by mass) was prepared.

(比較調製例2)
調製例1において、タフテックH1051の代わりに、ポリフェニレンエーテル樹脂(S202A)を用いたこと以外は、調製例1と同様にして比較調製例2の樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 2)
In Preparation Example 1, a resin varnish (solid content concentration of about 35% by mass) of Comparative Preparation Example 2 was prepared in the same manner as Preparation Example 1, except that polyphenylene ether resin (S202A) was used instead of Tuftec H1051. .

(比較調製例3)
比較調製例1において、トリアリルイソシアヌレートの代わりに、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン(BMI−5100、大和化成工業製)を表3に示す配合量で配合したこと以外は、比較調製例1と同様にして比較調製例2の樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 3)
In Comparative Preparation Example 1, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-5100, manufactured by Daiwa Kasei Kogyo Co., Ltd.) was blended in the blending amounts shown in Table 3 instead of triallyl isocyanurate. Except that, a resin varnish (solid content concentration of about 35% by mass) of Comparative Preparation Example 2 was prepared in the same manner as Comparative Preparation Example 1.

(比較調製例4)
比較調製例1において、トリアリルイソシアヌレートの代わりに、ポリブタジエン樹脂(B−3000、日本曹達製、1,2−ビニル構造:90%)を表3に示す配合量で配合したこと以外は、比較調製例1と同様にして比較調製例1の樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 4)
In Comparative Preparation Example 1, in place of triallyl isocyanurate, a polybutadiene resin (B-3000, manufactured by Nippon Soda Co., Ltd., 1,2-vinyl structure: 90%) was compared except that it was blended in the blending amounts shown in Table 3. In the same manner as in Preparation Example 1, a resin varnish of Comparative Preparation Example 1 (solid content concentration of about 35% by mass) was prepared.

(比較調製例5)
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)、p−tert−オクチルフェノール(和光純薬工業製)を投入、溶解後、ナフテン酸マンガン(和光純薬工業製)を配合して約3時間加熱反応させた。次いで、トルエン及びメチルエチルケトンを攪拌しながら配合した後、フラスコを室温まで冷却した後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して樹脂ワニス(固形分濃度=35質量%)を製造した。
(Comparative Preparation Example 5)
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1 liter separable flask equipped with a thermometer, a reflux condenser, and a stirrer, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Subsequently, 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) and p-tert-octylphenol (manufactured by Wako Pure Chemical Industries) were added and dissolved, and then manganese naphthenate (manufactured by Wako Pure Chemical Industries). Were mixed and allowed to react by heating for about 3 hours. Next, after mixing toluene and methyl ethyl ketone with stirring, the flask was cooled to room temperature, then zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was blended as a curing accelerator, and resin varnish (solid content concentration = 35% by mass) Manufactured.

(比較調製例6)
調製例6において、H1051の配合量と、BMI−5100及びパーブチルPの合計量との比率を表3に示すように変更したこと以外は調製例6と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 6)
Resin varnish (solid content concentration of about 35) was prepared in the same manner as in Preparation Example 6 except that the ratio of the blending amount of H1051 and the total amount of BMI-5100 and perbutyl P was changed as shown in Table 3. % By weight) was prepared.

(比較調製例7)
調製例6において、H1051の代わりに、スチレン−ブタジエン共重合体のブタジエン部分の不飽和二重結合基を水素添加していない不飽和型熱可塑性エラストマ(タフプレン125、旭化成ケミカルズ製)に変更したこと以外は実施例6と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 7)
In Preparation Example 6, instead of H1051, the unsaturated double bond group of the butadiene portion of the styrene-butadiene copolymer was changed to an unsaturated thermoplastic elastomer (Tufprene 125, manufactured by Asahi Kasei Chemicals) without hydrogenation. Except for the above, a resin varnish (solid content concentration of about 35% by mass) was prepared in the same manner as in Example 6.

(比較調製例8)
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ社製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、トリアリルイソシアヌレート(TAIC、日本化成社製)を配合し、溶解又は均一分散したことを確認後、室温まで冷却した。次いで、撹拌しながら室温まで冷却後、硬化促進剤として1,1′−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂社製)を添加した後、メチルエチルケトンを配合して樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 8)
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1-liter separable flask equipped with a thermometer, a reflux condenser, and a stirring device, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Subsequently, triallyl isocyanurate (TAIC, manufactured by Nippon Kasei Co., Ltd.) was blended, and after confirming that it was dissolved or uniformly dispersed, it was cooled to room temperature. Next, after cooling to room temperature with stirring, 1,1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation) is added as a curing accelerator, and then methyl ketones are added to the resin varnish. (Solid content concentration of about 35% by mass) was prepared.

(比較調製例9)
調製例21において、タフテックH1051の代わりに、ポリフェニレンエーテル樹脂(S202A)を用いたこと以外は、調製例21と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 9)
In Preparation Example 21, a resin varnish (solid content concentration of about 35% by mass) was prepared in the same manner as Preparation Example 21 except that polyphenylene ether resin (S202A) was used instead of Tuftec H1051.

(比較調製例10)
調製例25において、H1051の代わりにM1913を用いて表3に示す配合量で配合したこと以外は、調製例25と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 10)
In Preparation Example 25, a resin varnish (solid content concentration of about 35% by mass) was prepared in the same manner as in Preparation Example 25 except that M1913 was used instead of H1051 in the amount shown in Table 3.

(比較調製例11)
比較調製例23において、フェノール変性シアネートエステルプレポリマーの代わりに2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)を用いて表3に示す配合量で配合したこと以外は、比較調製例23と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 11)
In Comparative Preparation Example 23, except that it was blended in the blending amounts shown in Table 3 using 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) instead of the phenol-modified cyanate ester prepolymer, In the same manner as in Comparative Preparation Example 23, a resin varnish (solid content concentration of about 35% by mass) was prepared.

(比較調製例12)
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ社製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、2,2−ビス(4−シアナトフェニル)プロパン(BADCY、ロンザ製)、p−tert−オクチルフェノール(和光純薬工業株式会社製)を投入、溶解後、ナフテン酸マンガン(和光純薬工業製)を配合して約3時間加熱反応させた。次いで、トルエン及びメチルエチルケトンを攪拌しながら配合した後、フラスコを室温まで冷却した後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して樹脂ワニス(固形分濃度=35質量%)を製造した。
(Comparative Preparation Example 12)
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1-liter separable flask equipped with a thermometer, a reflux condenser, and a stirring device, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Next, 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza) and p-tert-octylphenol (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved, and then manganese naphthenate (Wako Pure Chemical Industries, Ltd.). And the mixture was reacted by heating for about 3 hours. Next, after mixing toluene and methyl ethyl ketone with stirring, the flask was cooled to room temperature, then zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was blended as a curing accelerator, and resin varnish (solid content concentration = 35% by mass) Manufactured.

(比較調製例13)
比較調製例12において、エポキシ変性ポリブタジエン系エラストマ(ダイセル化学工業社製、PB―3600)を表3に示す配合量で追加配合したこと以外は、比較調製例12と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 13)
In Comparative Preparation Example 12, a resin varnish (solid content) was obtained in the same manner as in Comparative Preparation Example 12, except that an epoxy-modified polybutadiene elastomer (manufactured by Daicel Chemical Industries, Ltd., PB-3600) was additionally added in the amounts shown in Table 3. A concentration of about 35% by weight) was prepared.

(比較調製例14)
調製例29において、H1051の配合量と、BMI−5100及びパーブチルPの合計量との比率を表3に示すように変更したこと以外は調製例29と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 14)
A resin varnish (solid content concentration of about 35) was prepared in the same manner as in Preparation Example 29 except that the ratio of the blending amount of H1051 and the total amount of BMI-5100 and perbutyl P was changed as shown in Table 3 in Preparation Example 29. % By weight) was prepared.

(比較調製例15)
調製例29において、H1051の配合量と、BMI−5100及びパーブチルPの合計量との比率を表3に示すように変更したこと以外は調製例29と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 15)
A resin varnish (solid content concentration of about 35) was prepared in the same manner as in Preparation Example 29 except that the ratio of the blending amount of H1051 and the total amount of BMI-5100 and perbutyl P was changed as shown in Table 3 in Preparation Example 29. % By weight) was prepared.

(比較調製例16)
調製例29において、H1051の代わりに、スチレン−ブタジエン共重合体のブタジエン部分の不飽和二重結合基を水素添加していない不飽和型熱可塑性エラストマ(タフプレン125、旭化成ケミカルズ社製)に変更したこと以外は調製例29と同様にして樹脂ワニス(固形分濃度約35質量%)を調製した。
(Comparative Preparation Example 16)
In Preparation Example 29, instead of H1051, the unsaturated double bond group in the butadiene portion of the styrene-butadiene copolymer was changed to an unsaturated thermoplastic elastomer (Tufprene 125, manufactured by Asahi Kasei Chemicals Corporation) without hydrogenation. Except for this, a resin varnish (solid content concentration of about 35% by mass) was prepared in the same manner as in Preparation Example 29.

調製例1〜33及び比較調製例1〜16の樹脂ワニスの調製に用いた各原材料の使用量を表1〜表3にまとめて示す。   The amount of each raw material used for the preparation of the resin varnishes of Preparation Examples 1 to 33 and Comparative Preparation Examples 1 to 16 is summarized in Tables 1 to 3.

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

[半硬化(Bステージ)樹脂フィルムの作製]
調製例1〜33及び比較調製例1〜16で得られた樹脂ワニスを、コンマコータを用いて、支持基材として厚さ38μmのPETフィルム(G2−38、帝人製)上に塗工し(乾燥温度:130℃)、膜厚50μmのPETフィルム付き樹脂フィルムを作製した。なお、調製例1〜33の樹脂ワニスを用いて作製した半硬化樹脂フィルムが実施例1〜33、比較調製例1〜16の樹脂ワニスを用いて作製した半硬化樹脂フィルムが比較例1〜16にそれぞれ相当する。
[Preparation of semi-cured (B stage) resin film]
The resin varnishes obtained in Preparation Examples 1 to 33 and Comparative Preparation Examples 1 to 16 were coated on a 38 μm-thick PET film (G2-38, manufactured by Teijin) using a comma coater (dried). (Temperature: 130 ° C.), and a resin film with a PET film having a thickness of 50 μm was produced. In addition, the semi-hardened resin films produced using the resin varnishes of Preparation Examples 1-33 are Examples 1-33, and the semi-cured resin films produced using the resin varnishes of Comparative Preparation Examples 1-16 are Comparative Examples 1-16. Respectively.

[半硬化樹脂フィルムの評価]
実施例1〜33及び比較例1〜16の半硬化樹脂フィルムの外観及び取り扱い性を評価した。評価結果を表4〜6に示す。外観は目視により評価し、樹脂フィルムの表面に多少なりともムラ、スジ等があり、表面平滑性に欠けるものを×、ムラ、スジ等がなく、均一なものを○とした。また取り扱い性は、25℃において表面に多少なりともべたつき(タック)があるもの又はカッターナイフで切断しても樹脂割れや粉落ちがあるものを×、それ以外を○とした。
[Evaluation of semi-cured resin film]
The appearance and handleability of the semi-cured resin films of Examples 1 to 33 and Comparative Examples 1 to 16 were evaluated. The evaluation results are shown in Tables 4-6. The appearance was evaluated by visual observation, and the surface of the resin film had some unevenness, streaks, and the like. In addition, the handling property was evaluated as x when the surface was somewhat sticky (tack) at 25 ° C., or when the resin was cracked or crushed even when cut with a cutter knife, and otherwise.

回路パターンが形成させたガラス布基材エポキシ樹脂銅張積層板を内層回路基板とし、その両面に、PETフィルムを剥離した上記半硬化樹脂フィルムを1枚載せ、その上に厚さ12μmの電解銅箔(YGP−12、日本電解製)を配置し、その上に鏡板を載せ、200℃/3.0MPa/70分のプレス条件で加熱加圧成形して、4層配線板を作製した。この4層配線板の最外層の銅箔をエッチングし、回路埋め込み性(多層化成形性)を評価した。評価結果を表4〜6に示す。多層化成形性は目視により評価し、ボイド、カスレが多少なりともあるものを×、回路に均一に樹脂が充填されており均一なものを○とした。   A glass cloth base epoxy resin copper-clad laminate having a circuit pattern formed thereon is used as an inner circuit board, and one of the above-mentioned semi-cured resin films from which a PET film has been peeled is placed on both surfaces thereof, and electrolytic copper having a thickness of 12 μm is placed thereon. A foil (YGP-12, manufactured by Nippon Electrolytic Co., Ltd.) was placed, a mirror plate was placed thereon, and heat-press molding was performed under press conditions of 200 ° C./3.0 MPa / 70 minutes to produce a four-layer wiring board. The copper foil of the outermost layer of this four-layer wiring board was etched to evaluate circuit embedding property (multilayered formability). The evaluation results are shown in Tables 4-6. The multilayer formability was evaluated by visual observation. The case where there were some voids and scumming was rated as x, and the circuit was uniformly filled with resin, and the uniformity was marked as ◯.

[両面金属張硬化樹脂フィルムの作製]
上述の半硬化樹脂フィルムのPETフィルムを剥離し、これを2枚重ね、その両面に、厚さ18μmのロープロファイル銅箔(F3−WS、M面Rz:3μm、古河電気工業製)を粗化(M)面が接するように配置し、その上に鏡板を載せ、200℃/3.0MPa/70分のプレス条件で加熱加圧成形して、両面金属張硬化樹脂フィルム(厚さ:0.1mm)を作製した。
[Production of double-sided metal-clad cured resin film]
The PET film of the semi-cured resin film described above is peeled off, two of them are stacked, and a low profile copper foil (F3-WS, M surface Rz: 3 μm, manufactured by Furukawa Electric Co., Ltd.) with a thickness of 18 μm is roughened on both surfaces. (M) It arrange | positions so that a surface may contact | connect, it mounts a mirror plate on it, heat-press-molds on the press conditions of 200 degreeC / 3.0MPa / 70 minutes, and double-sided metal-clad cured resin film (thickness: 0.00). 1 mm).

[両面金属張硬化樹脂フィルムの特性評価]
上述の実施例1〜33及び比較例1〜16の金属張硬化樹脂フィルムについて、取り扱い性、誘電特性、銅箔引きはがし強さ、はんだ耐熱性、熱膨張係数、吸水率を評価した。その評価結果を表4〜6に示す。金属張硬化樹脂フィルムの特性評価方法は以下の通りである。
[Characteristic evaluation of double-sided metal-clad cured resin film]
The metal-clad cured resin films of Examples 1 to 33 and Comparative Examples 1 to 16 described above were evaluated for handleability, dielectric properties, copper foil peeling strength, solder heat resistance, thermal expansion coefficient, and water absorption rate. The evaluation results are shown in Tables 4-6. The characteristic evaluation method of the metal-clad cured resin film is as follows.

[取り扱い性の評価]
取り扱い性は、硬化樹脂フィルムの外層銅箔をエッチングしたものを180度折り曲げることにより評価した。折り曲げた際、割れやクラックが多少なりとも発生したものを×、折り曲げを止めた際、変化のないものを○とした。
[Evaluation of handleability]
The handleability was evaluated by bending a cured resin film obtained by etching the outer layer copper foil by 180 degrees. When bending, cracks or cracks that occurred somewhat were marked with ×, and when bending was stopped, those with no change were marked with ○.

[誘電特性(比誘電率、誘電正接)の測定]
誘電特性は、硬化樹脂フィルムの外層銅箔をエッチングしたものを空洞共振器摂動法により測定した。条件は、周波数:1GHz、測定温度:25℃とした。また、実施例21〜33及び比較例8〜16については、105℃の恒温層で1000時間放置した後のサンプルについても同様に測定した。なお、表中の加熱処理後は常態からの変動量を示した。
[Measurement of dielectric properties (dielectric constant, dielectric loss tangent)]
Dielectric properties were measured by etching the outer layer copper foil of the cured resin film using the cavity resonator perturbation method. The conditions were a frequency of 1 GHz and a measurement temperature of 25 ° C. Moreover, about Examples 21-33 and Comparative Examples 8-16, it measured similarly about the sample after leaving to stand in a 105 degreeC thermostat for 1000 hours. In addition, after the heat processing in a table | surface, the fluctuation | variation amount from a normal state was shown.

[銅箔引きはがし強さの測定]
銅箔引きはがし強さは、銅張積層板試験規格JIS−C−6481に準拠して測定した。
[Measurement of peeling strength of copper foil]
The copper foil peeling strength was measured in accordance with the copper clad laminate test standard JIS-C-6481.

[はんだ耐熱性の評価]
はんだ耐熱性は、50mm角に切断した上述の硬化樹脂フィルムの片側の銅箔をエッチングし、その常態及びプレッシャークッカーテスト(PCT)装置(条件:121℃、2.2気圧)中に所定時間(1、3及び5時間)処理した後のものを、288℃の溶融はんだ上に20秒間フロートし、外観を目視で調べた。なお、表中の数字は、はんだフロート後の硬化樹脂フィルム3枚のうち、フィルム内部及びフィルムと銅箔間に膨れやミーズリングの発生が認められなかったものの枚数を意味する。
[Evaluation of solder heat resistance]
The solder heat resistance is determined by etching a copper foil on one side of the above-mentioned cured resin film cut to a 50 mm square, and in a normal state and a pressure cooker test (PCT) apparatus (conditions: 121 ° C., 2.2 atm) for a predetermined time ( After processing for 1, 3 and 5 hours, the product was floated on a molten solder at 288 ° C. for 20 seconds, and the appearance was visually examined. In addition, the number in a table | surface means the number of the thing in which the generation | occurrence | production of a swelling and a measling was not recognized among the inside of a film and between a film and copper foil among three cured resin films after a solder float.

[熱膨張係数の測定]
熱膨張係数は、両面の銅箔をエッチングし、5mm×30mmに切断したものを試験片とし、TMAを用いて引張方向(30〜100℃)で測定した。
[Measurement of thermal expansion coefficient]
The thermal expansion coefficient was measured in a tensile direction (30 to 100 ° C.) using TMA by etching a copper foil on both sides and cutting it to 5 mm × 30 mm as a test piece.

[吸水率の測定]
吸水率は、50mm角に切断した上述の硬化樹脂フィルムの両面の銅箔をエッチングし、その常態及びプレッシャークッカーテスト(PCT)装置(条件:121℃、2.2気圧)中に所定時間(5時間)処理した後のものの質量差から算出した。
[Measurement of water absorption rate]
The water absorption is determined by etching the copper foils on both sides of the above cured resin film cut to a 50 mm square, and in a normal time and pressure cooker test (PCT) apparatus (conditions: 121 ° C., 2.2 atm) for a predetermined time (5 Time) It was calculated from the difference in mass after the treatment.

[絶縁信頼性の評価]
絶縁信頼性は、片面の銅箔をエッチングにより、L/S=100/100(μm)のくし型パターンを形成し、85℃/85%RHの恒温高湿下で100V印加/1000時間処理前後のライン間の絶縁抵抗を測定した。表5及び表6中の数字は評価した数n(n=5)のうち、抵抗値が1×1013Ω以上を確保したものの数を意味する。
[Evaluation of insulation reliability]
Insulation reliability is obtained by etching a copper foil on one side to form a comb pattern of L / S = 100/100 (μm), and applying 100 V under a constant temperature and high humidity of 85 ° C./85% RH before and after treatment for 1000 hours. The insulation resistance between the lines was measured. The numbers in Tables 5 and 6 indicate the number of resistances with a resistance value of 1 × 10 13 Ω or more among the evaluated numbers n (n = 5).

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

Figure 2012122046
Figure 2012122046

表4〜6に示した結果から明らかなように、本発明の半硬化樹脂フィルム(実施例1〜33)によれば、比較例1〜16の樹脂フィルムと比較して、外観性(表面均一性)、取り扱い性(タック性、割れ・粉落ち等)に問題がなく、多層化成形性も良好であることが確認された。
また、本発明の半硬化樹脂フィルムを用いて作製した硬化樹脂フィルムは、いずれも比誘電率2.6以下、誘電正接0.009以下と優れていた。また、はんだ耐熱性や銅箔引きはがし強さ、熱膨張係数、吸水率に関しても実用特性を満足していた。さらに、(C)成分を配合した系は、絶縁信頼性が優れ、配合していない同様配合系と比較して、誘電特性の加熱ドリフト性が良好となった。
As is clear from the results shown in Tables 4 to 6, according to the semi-cured resin films (Examples 1 to 33) of the present invention, compared with the resin films of Comparative Examples 1 to 16, the appearance (surface uniformity) ) And handleability (tackiness, cracking, powder falling, etc.) were confirmed, and it was confirmed that the multilayered formability was also good.
Moreover, all the cured resin films produced using the semi-cured resin film of the present invention were excellent with a relative dielectric constant of 2.6 or less and a dielectric loss tangent of 0.009 or less. Moreover, the soldering heat resistance, the copper foil peeling strength, the thermal expansion coefficient, and the water absorption rate satisfied the practical characteristics. Furthermore, the system in which the component (C) was blended was excellent in insulation reliability, and the heating drift property of the dielectric characteristics was improved as compared with the similar blend system that was not blended.

一方、比較例1〜16では、外観性、取り扱い性に問題があったり、実施例と比較して誘電特性、はんだ耐熱性、銅箔引きはがし強さ、吸水率等が比較的劣る結果が示された。
例えば、比較例2〜5を、それぞれ実施例1、実施例6、実施例7、実施例4と対比することにより、半硬化樹脂フィルムの特性、硬化樹脂フィルムの取り扱い性、誘電特性、はんだ耐熱性、銅箔引きはがし強さ、吸水率等が比較的劣ることが確認された。
On the other hand, in Comparative Examples 1 to 16, there are problems in appearance and handling, and the results are relatively inferior in dielectric properties, solder heat resistance, copper foil peeling strength, water absorption, and the like as compared with Examples. It was done.
For example, by comparing Comparative Examples 2 to 5 with Example 1, Example 6, Example 7, and Example 4, respectively, the properties of the semi-cured resin film, the handleability of the cured resin film, the dielectric properties, and the solder heat resistance It was confirmed that the properties, copper foil peeling strength, water absorption, etc. were relatively inferior.

本発明の製造方法を用いた樹脂フィルムは、ビルドアップ配線板の製造に適したフィルム形成能や取り扱い性を保持しつつ、約2.6以下とフッ素樹脂基板材料と同等レベルの比誘電率を有し、かつ誘電正接も低いことから、ミリ波帯を越えるような高周波帯域でも伝送損特性を発現し、かつ良好な低吸湿性、はんだ耐熱性、銅箔引きはがし強さを兼ね備えている。したがって、1GHz以上の高周波信号を扱う移動体通信機器やその基地局装置、サーバー、ルーター等のネットワーク関連電子機器及び大型コンピュータ等の各種電気・電子機器に使用される印刷配線板の部材・部品用途として有用である。   The resin film using the manufacturing method of the present invention has a relative dielectric constant of about 2.6 or less, which is equivalent to that of a fluororesin substrate material, while maintaining film forming ability and handleability suitable for manufacturing a build-up wiring board. In addition, since it has a low dielectric loss tangent, it exhibits transmission loss characteristics even in a high frequency band exceeding the millimeter wave band, and also has good low moisture absorption, solder heat resistance, and copper foil peeling strength. Therefore, components and parts for printed wiring boards used in mobile communication devices that handle high-frequency signals of 1 GHz or higher, base station devices, network-related electronic devices such as servers and routers, and various electric and electronic devices such as large computers. Useful as.

Claims (23)

(A)スチレンユニットを有する飽和型熱可塑性エラストマと、(B)エポキシ樹脂、シアネートエステル樹脂、ポリブタジエン樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種の熱硬化性樹脂、並びに必要に応じて配合される前記熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分とを含有し、前記(B)成分の含有量Wに対する含有量Wの質量比W/Wが0.430〜5.000であり、かつ、ポリフェニレンエーテルの含有量が前記(A)成分及び前記(B)成分の合計100質量部に対して10質量部以下である樹脂組成物を、支持基材の片面に流延塗布し、加熱乾燥により前記樹脂組成物を半硬化又は硬化する工程を含む、印刷配線板用樹脂フィルムの製造方法。 (A) a saturated thermoplastic elastomer having a styrene unit, (B) at least one thermosetting resin selected from the group consisting of epoxy resins, cyanate ester resins, polybutadiene resins and maleimide compounds, and blended as necessary. that contains a thermosetting resin component comprising a curing agent and curing accelerator for the thermosetting resin, the component (B) weight ratio W a / W B content W a to the content W B 0 And a resin composition having a polyphenylene ether content of 10 parts by mass or less with respect to a total of 100 parts by mass of the component (A) and the component (B). A method for producing a resin film for a printed wiring board, comprising a step of cast-coating on one side of the film and semi-curing or curing the resin composition by heat drying. 前記(A)成分が、スチレン−エチレン−ブチレン共重合体を含有する、請求項1に記載の印刷配線板用樹脂フィルムの製造方法。   The manufacturing method of the resin film for printed wiring boards of Claim 1 in which the said (A) component contains a styrene-ethylene-butylene copolymer. 前記(A)成分が、スチレン−ブタジエン共重合体の、ブタジエンに由来する構造単位が有する不飽和二重結合への水素添加により得られる飽和型熱可塑性エラストマを含有する、請求項1又は2に記載の印刷配線板用樹脂フィルムの製造方法。   The component (A) contains a saturated thermoplastic elastomer obtained by hydrogenation of an unsaturated double bond of a structural unit derived from butadiene of a styrene-butadiene copolymer. The manufacturing method of the resin film for printed wiring boards of description. 前記(A)成分が、数平均分子量6万未満の飽和型熱可塑性エラストマを含有する、請求項1〜3のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The method for producing a resin film for a printed wiring board according to any one of claims 1 to 3, wherein the component (A) contains a saturated thermoplastic elastomer having a number average molecular weight of less than 60,000. 前記数平均分子量6万未満の飽和型熱可塑性エラストマの含有割合が、前記(A)成分の全質量を基準として、50質量%以上である、請求項4に記載の印刷配線板用樹脂フィルムの製造方法。   5. The resin film for a printed wiring board according to claim 4, wherein the content ratio of the saturated thermoplastic elastomer having a number average molecular weight of less than 60,000 is 50% by mass or more based on the total mass of the component (A). Production method. 前記(A)成分が、数平均分子量6万以上の飽和型熱可塑性エラストマを更に含有する、請求項4又は5に記載の印刷配線板用樹脂フィルムの製造方法。   The method for producing a resin film for a printed wiring board according to claim 4 or 5, wherein the component (A) further contains a saturated thermoplastic elastomer having a number average molecular weight of 60,000 or more. 前記(A)成分が、側鎖又は末端に無水マレイン酸基を有する化学変性飽和型熱可塑性エラストマを含有する、請求項1〜6のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The production of the resin film for a printed wiring board according to any one of claims 1 to 6, wherein the component (A) contains a chemically modified saturated thermoplastic elastomer having a maleic anhydride group at a side chain or at a terminal. Method. 前記(A)成分が、側鎖又は末端に無水マレイン酸基を有しない非変性飽和型熱可塑性エラストマを更に含有する、請求項7に記載の印刷配線板用樹脂フィルムの製造方法。   The method for producing a resin film for a printed wiring board according to claim 7, wherein the component (A) further contains a non-modified saturated thermoplastic elastomer having no maleic anhydride group at a side chain or at a terminal. 前記化学変性飽和型熱可塑性エラストマの割合が、前記(A)成分の全質量を基準として、20〜50質量%である、請求項7又は8に記載の印刷配線板用樹脂フィルムの製造方法。   The manufacturing method of the resin film for printed wiring boards of Claim 7 or 8 whose ratio of the said chemical modification | denaturation type | mold thermoplastic elastomer is 20-50 mass% on the basis of the total mass of the said (A) component. 前記(B)成分が、ポリフェニレンエーテルと、1,2−ブタジエンに由来する構造単位であって側鎖に1,2−ビニル基を有する構造単位を分子中に40モル%以上含み、かつ、数平均分子量が500〜10000である化学変性されていないポリブタジエン樹脂とを反応させて得られる、ポリフェニレンエーテル変性ブタジエンプレポリマーを含有する、請求項1〜9のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The component (B) contains 40 mol% or more of structural units derived from polyphenylene ether and 1,2-butadiene having a 1,2-vinyl group in the side chain, and several The printed wiring board according to any one of claims 1 to 9, comprising a polyphenylene ether-modified butadiene prepolymer obtained by reacting with an unmodified polybutadiene resin having an average molecular weight of 500 to 10,000. A method for producing a resin film. 前記ポリフェニレンエーテル変性ブタジエンプレポリマーが、前記ポリフェニレンエーテルと、前記ポリブタジエン樹脂と、N−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(4−メチルフェニル)マレイミド、N−(2、6−ジメチルフェニル)マレイミド、N−(2、6−ジエチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−ベンジルマレイミド、N−ドデシルマレイミド、N−イソプロピルマレイミド及びN−シクロヘキシルマレイミドからなる群より選ばれる少なくとも一種の架橋剤とを反応させて得られるものである、請求項10に記載の印刷配線板用樹脂フィルムの製造方法。   The polyphenylene ether-modified butadiene prepolymer includes the polyphenylene ether, the polybutadiene resin, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2, 6 -Dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N-dodecylmaleimide, N-isopropylmaleimide and N-cyclohexylmaleimide The manufacturing method of the resin film for printed wiring boards of Claim 10 obtained by making it react with the at least 1 sort (s) of crosslinking agent chosen from more. 前記ポリフェニレンエーテル変性ブタジエンプレポリマーが、前記ポリフェニレンエーテルと、前記ポリブタジエン樹脂と、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種の架橋剤とを反応させて得られるものである、請求項10又は11に記載の印刷配線板用樹脂フィルムの製造方法。   The polyphenylene ether-modified butadiene prepolymer includes the polyphenylene ether, the polybutadiene resin, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and 2,2-bis (4- (4-maleimidophenoxy). The method for producing a resin film for a printed wiring board according to claim 10 or 11, which is obtained by reacting at least one crosslinking agent selected from the group consisting of phenyl) propane. 前記樹脂組成物が、N−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(4−メチルフェニル)マレイミド、N−(2、6−ジメチルフェニル)マレイミド、N−(2、6−ジエチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−ベンジルマレイミド、N−ドデシルマレイミド、N−イソプロピルマレイミド及びN−シクロヘキシルマレイミド、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種の架橋剤を更に含有する、請求項10〜12のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The resin composition is N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2,6- Diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N-dodecylmaleimide, N-isopropylmaleimide and N-cyclohexylmaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) The printed wiring according to any one of claims 10 to 12, further comprising at least one crosslinking agent selected from the group consisting of methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane. Manufacturing method of resin film for board. 前記(B)成分が、エポキシ樹脂、シアネートエステル樹脂及びマレイミド化合物からなる群より選ばれる少なくとも一種の熱硬化性樹脂、並びに必要に応じて配合される前記熱硬化性樹脂の硬化剤及び硬化促進剤を含む熱硬化性樹脂成分を含有し、
前記(B)成分の含有量Wに対する含有量Wの質量比W/Wが0.700〜5.000である、請求項1〜9のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。
The component (B) is at least one thermosetting resin selected from the group consisting of an epoxy resin, a cyanate ester resin and a maleimide compound, and a curing agent and a curing accelerator for the thermosetting resin blended as necessary. Containing a thermosetting resin component containing
(B) the weight ratio W A / W B content W A to the content W B component is 0.700 to 5.000, printed wiring board according to any one of claims 1 to 9 For producing a resin film for an automobile.
前記(B)成分が、シアネートエステル樹脂と単官能フェノール化合物とを反応させて得られる、フェノール変性シアネートエステルプレポリマーを含有する、請求項14に記載の印刷配線板用樹脂フィルムの製造方法。   The method for producing a resin film for a printed wiring board according to claim 14, wherein the component (B) contains a phenol-modified cyanate ester prepolymer obtained by reacting a cyanate ester resin with a monofunctional phenol compound. 前記フェノール変性シアネートエステルプレポリマーが、シアネートエステル樹脂とp−t−オクチルフェノール、p−フェニルフェノール、p−(α−クミル)フェノールからなる群より選ばれる少なくとも一種の単官能フェノールとを反応させて得られるものである、請求項15に記載の印刷配線板用樹脂フィルムの製造方法。   The phenol-modified cyanate ester prepolymer is obtained by reacting a cyanate ester resin with at least one monofunctional phenol selected from the group consisting of pt-octylphenol, p-phenylphenol, and p- (α-cumyl) phenol. The manufacturing method of the resin film for printed wiring boards of Claim 15 which is what is obtained. 前記マレイミド化合物が、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン及び2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンからなる群より選ばれる少なくとも一種のマレイミド化合物を更に含有する、請求項14に記載の印刷配線板用樹脂フィルムの製造方法。   The maleimide compound is at least one maleimide compound selected from the group consisting of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane. The manufacturing method of the resin film for printed wiring boards of Claim 14 which contains further. (C)成分として、下記の式(1)〜(3)で表される特定のフェノール系酸化防止剤からなる群より選ばれる少なくとも一種を更に含有する、請求項1〜17のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。
Figure 2012122046

Figure 2012122046

Figure 2012122046
The component (C) further contains at least one selected from the group consisting of specific phenolic antioxidants represented by the following formulas (1) to (3): The manufacturing method of the resin film for printed wiring boards of description.
Figure 2012122046

Figure 2012122046

Figure 2012122046
前記樹脂組成物を、溶剤に溶解又は分散させてなる樹脂ワニスの形態で、前記支持基材の片面に流延塗布する、請求項1〜18のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The resin for printed wiring boards according to any one of claims 1 to 18, wherein the resin composition is cast and applied to one side of the support base material in the form of a resin varnish obtained by dissolving or dispersing the resin composition in a solvent. A method for producing a film. 前記支持基材が金属箔である、請求項1〜19のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The manufacturing method of the resin film for printed wiring boards as described in any one of Claims 1-19 whose said support base material is metal foil. 前記支持基材がPETフィルムである、請求項1〜20のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The manufacturing method of the resin film for printed wiring boards as described in any one of Claims 1-20 whose said support base material is a PET film. 前記工程後の前記樹脂フィルムの膜厚が1〜200μmである、請求項1〜21のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法。   The manufacturing method of the resin film for printed wiring boards as described in any one of Claims 1-21 whose film thickness of the said resin film after the said process is 1-200 micrometers. 請求項1〜22のいずれか一項に記載の印刷配線板用樹脂フィルムの製造方法により作製した印刷配線板用樹脂フィルム。   The resin film for printed wiring boards produced by the manufacturing method of the resin film for printed wiring boards as described in any one of Claims 1-22.
JP2011064849A 2010-11-15 2011-03-23 Resin film for printed wiring board and method for producing the same Active JP5724503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064849A JP5724503B2 (en) 2010-11-15 2011-03-23 Resin film for printed wiring board and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010255107 2010-11-15
JP2010255107 2010-11-15
JP2011064849A JP5724503B2 (en) 2010-11-15 2011-03-23 Resin film for printed wiring board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012122046A true JP2012122046A (en) 2012-06-28
JP5724503B2 JP5724503B2 (en) 2015-05-27

Family

ID=46503830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064849A Active JP5724503B2 (en) 2010-11-15 2011-03-23 Resin film for printed wiring board and method for producing the same

Country Status (1)

Country Link
JP (1) JP5724503B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080478A (en) * 2012-10-15 2014-05-08 Hitachi Chemical Co Ltd Resin composition for printed wiring board, resin film for printed wiring board and method for producing the same
JP2014165529A (en) * 2013-02-21 2014-09-08 Hitachi Chemical Co Ltd Multilayer transmission line plate, electromagnetic coupling module having the same, and antenna module
WO2014148155A1 (en) * 2013-03-22 2014-09-25 ナミックス株式会社 Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2015168704A (en) * 2014-03-05 2015-09-28 三菱瓦斯化学株式会社 Resin composition for printed wiring board
JP2017210546A (en) * 2016-05-25 2017-11-30 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared therewith
WO2019216425A1 (en) * 2018-05-11 2019-11-14 日立化成株式会社 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2020173945A (en) * 2019-04-10 2020-10-22 信越化学工業株式会社 Low-dielectric heat dissipation film composition and low-dielectric heat dissipation film
JP2021028368A (en) * 2019-08-09 2021-02-25 味の素株式会社 Resin composition, cured product of resin composition, resin sheet, printed wiring board, and semiconductor device
JP2021076743A (en) * 2019-11-11 2021-05-20 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
CN114207021A (en) * 2019-07-17 2022-03-18 松下知识产权经营株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
CN114316389A (en) * 2020-10-10 2022-04-12 台光电子材料(昆山)有限公司 Resin composition and product thereof
CN114561170A (en) * 2022-03-28 2022-05-31 深圳市纽菲斯新材料科技有限公司 Insulating adhesive film and preparation method and application thereof
CN114641531A (en) * 2019-11-05 2022-06-17 三井金属矿业株式会社 Resin composition and copper foil with resin
TWI805377B (en) * 2022-05-20 2023-06-11 聯茂電子股份有限公司 Thermal-curable resin composition, prepreg, laminates, printed circuit board using the same
TWI859358B (en) 2019-11-05 2024-10-21 日商三井金屬鑛業股份有限公司 Resin composition and resin-coated copper foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089683A (en) * 2004-09-27 2006-04-06 Nippon Steel Chem Co Ltd Flame retardant resin composition
JP2007302877A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Thermosetting resin composition of ipn type composite, and varnish, prepreg and metal-clad laminate using the same
JP2008074929A (en) * 2006-09-20 2008-04-03 Matsushita Electric Works Ltd Flame retardant epoxy resin composition, resin film, prepreg and multilayered printed circuit board
JP2009263569A (en) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd Prepreg comprising thin layer quartz glass cloth, and wiring plate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089683A (en) * 2004-09-27 2006-04-06 Nippon Steel Chem Co Ltd Flame retardant resin composition
JP2007302877A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Thermosetting resin composition of ipn type composite, and varnish, prepreg and metal-clad laminate using the same
JP2008074929A (en) * 2006-09-20 2008-04-03 Matsushita Electric Works Ltd Flame retardant epoxy resin composition, resin film, prepreg and multilayered printed circuit board
JP2009263569A (en) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd Prepreg comprising thin layer quartz glass cloth, and wiring plate using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080478A (en) * 2012-10-15 2014-05-08 Hitachi Chemical Co Ltd Resin composition for printed wiring board, resin film for printed wiring board and method for producing the same
JP2014165529A (en) * 2013-02-21 2014-09-08 Hitachi Chemical Co Ltd Multilayer transmission line plate, electromagnetic coupling module having the same, and antenna module
KR102138174B1 (en) 2013-03-22 2020-07-27 나믹스 가부시끼가이샤 Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
WO2014148155A1 (en) * 2013-03-22 2014-09-25 ナミックス株式会社 Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
KR20150132195A (en) * 2013-03-22 2015-11-25 나믹스 가부시끼가이샤 Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
TWI609921B (en) * 2013-03-22 2018-01-01 納美仕有限公司 Resin composition, and adhesive film, cover lay film and interlayer adhesive formed therefrom
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2015168704A (en) * 2014-03-05 2015-09-28 三菱瓦斯化学株式会社 Resin composition for printed wiring board
JP2017210546A (en) * 2016-05-25 2017-11-30 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared therewith
WO2019216425A1 (en) * 2018-05-11 2019-11-14 日立化成株式会社 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP7468610B2 (en) 2018-05-11 2024-04-16 株式会社レゾナック Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP7468609B2 (en) 2018-05-11 2024-04-16 株式会社レゾナック Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JPWO2019216425A1 (en) * 2018-05-11 2021-05-27 昭和電工マテリアルズ株式会社 Manufacturing method of conductor board, wiring board, stretchable device and wiring board
JP7338621B2 (en) 2018-05-11 2023-09-05 株式会社レゾナック Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP7468611B2 (en) 2018-05-11 2024-04-16 株式会社レゾナック Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP2020173945A (en) * 2019-04-10 2020-10-22 信越化学工業株式会社 Low-dielectric heat dissipation film composition and low-dielectric heat dissipation film
JP7066654B2 (en) 2019-04-10 2022-05-13 信越化学工業株式会社 Composition for low-dielectric heat-dissipating film and low-dielectric heat-dissipating film
CN114207021A (en) * 2019-07-17 2022-03-18 松下知识产权经营株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
CN114207021B (en) * 2019-07-17 2024-06-11 松下知识产权经营株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal foil-clad laminate, and wiring board
JP2021028368A (en) * 2019-08-09 2021-02-25 味の素株式会社 Resin composition, cured product of resin composition, resin sheet, printed wiring board, and semiconductor device
JP7298383B2 (en) 2019-08-09 2023-06-27 味の素株式会社 Resin composition, cured product of resin composition, resin sheet, printed wiring board and semiconductor device
CN114641531A (en) * 2019-11-05 2022-06-17 三井金属矿业株式会社 Resin composition and copper foil with resin
TWI859358B (en) 2019-11-05 2024-10-21 日商三井金屬鑛業股份有限公司 Resin composition and resin-coated copper foil
CN114641531B (en) * 2019-11-05 2024-10-25 三井金属矿业株式会社 Resin composition and copper foil with resin
JP7415461B2 (en) 2019-11-11 2024-01-17 株式会社レゾナック Photosensitive resin composition, photosensitive element, semiconductor device, and method for forming resist pattern
JP2021076743A (en) * 2019-11-11 2021-05-20 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive element, semiconductor device and method for forming resist pattern
CN114316389A (en) * 2020-10-10 2022-04-12 台光电子材料(昆山)有限公司 Resin composition and product thereof
CN114316389B (en) * 2020-10-10 2023-05-23 台光电子材料(昆山)有限公司 Resin composition and product thereof
CN114561170B (en) * 2022-03-28 2023-08-08 深圳市纽菲斯新材料科技有限公司 Insulating adhesive film and preparation method and application thereof
CN114561170A (en) * 2022-03-28 2022-05-31 深圳市纽菲斯新材料科技有限公司 Insulating adhesive film and preparation method and application thereof
TWI805377B (en) * 2022-05-20 2023-06-11 聯茂電子股份有限公司 Thermal-curable resin composition, prepreg, laminates, printed circuit board using the same

Also Published As

Publication number Publication date
JP5724503B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5724503B2 (en) Resin film for printed wiring board and method for producing the same
KR101321235B1 (en) Thermocurable resin composition comprising semi-ipn-type complex, and varnish, prepreg and metal-clad laminate sheet using the same
JP5261943B2 (en) Semi-IPN type thermosetting resin composition and varnish, prepreg and metal-clad laminate using the same
JP6684822B2 (en) High frequency thermosetting resin composition, prepreg using the same, laminated sheet, and printed circuit board
JP5104507B2 (en) Process for producing resin varnish containing thermosetting resin of semi-IPN type composite, and resin varnish for printed wiring board, prepreg and metal-clad laminate using the same
JP5303854B2 (en) Novel semi-IPN composite thermosetting resin composition and varnish, prepreg and metal-clad laminate using the same
JP6167621B2 (en) Resin composition, resin film for printed wiring board and method for producing the same
JP5549055B2 (en) Thermosetting resin composition, resin varnish for printed wiring board, prepreg and metal-clad laminate using the same
KR101819949B1 (en) Ultra low loss dielectric thermosetting resin compositions and high preformance laminates manufactured therefrom
JP5303852B2 (en) Semi-IPN type composite resin composition and varnish, prepreg and metal-clad laminate using the same
JP2011225639A (en) Thermosetting resin composition, and resin varnish, prepreg and metal-clad laminate using the same
JP6345384B2 (en) Resin composition for printed wiring board, resin film for printed wiring board, and method for producing the same
JP6089615B2 (en) Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board
JP2008133454A (en) Resin composition for printed circuit board and resin varnish using the same, prepreg and metal-clad laminate
JP5374891B2 (en) Process for producing resin varnish containing semi-IPN type thermosetting resin, resin varnish for printed wiring board, prepreg and metal-clad laminate
JP5303853B2 (en) Thermosetting resin composition of IPN type composite and varnish, prepreg and metal-clad laminate using the same
KR101614581B1 (en) Coppor clad laminate using modified polyphenylene oxide
KR101708146B1 (en) Thermoplastic resin composition for high frequency having low permittivity, prepreg and copper clad laminate using the same
KR20150068181A (en) Thermoplastic resin composition for high frequency having low permittivity, prepreg and copper clad laminate using the same
JP5641093B2 (en) Resin composition for printed wiring board and resin varnish, prepreg and metal-clad laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350