JP7462932B2 - Expansion valve and refrigeration cycle device - Google Patents

Expansion valve and refrigeration cycle device Download PDF

Info

Publication number
JP7462932B2
JP7462932B2 JP2020086390A JP2020086390A JP7462932B2 JP 7462932 B2 JP7462932 B2 JP 7462932B2 JP 2020086390 A JP2020086390 A JP 2020086390A JP 2020086390 A JP2020086390 A JP 2020086390A JP 7462932 B2 JP7462932 B2 JP 7462932B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve body
return flow
actuating rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020086390A
Other languages
Japanese (ja)
Other versions
JP2021181838A (en
Inventor
邦俊 今井
隆 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020086390A priority Critical patent/JP7462932B2/en
Publication of JP2021181838A publication Critical patent/JP2021181838A/en
Application granted granted Critical
Publication of JP7462932B2 publication Critical patent/JP7462932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Details Of Valves (AREA)

Description

本発明は、膨張弁および冷凍サイクル装置に係り、特に、冷媒通過音の発生を抑制する膨張弁の構造に関する。 The present invention relates to an expansion valve and a refrigeration cycle device, and in particular to an expansion valve structure that suppresses the generation of refrigerant passing noise.

カーエアコンのような冷凍サイクル装置では、エバポレータ(蒸発器)の能力を十分に引き出すために膨張弁が備えられる。この膨張弁は、エバポレータの出口側配管の冷媒温度に感応してエバポレータに供給される冷媒の流れを絞り、最適流量に制御する。 Refrigeration cycle devices such as car air conditioners are equipped with an expansion valve to fully utilize the capacity of the evaporator. This expansion valve responds to the refrigerant temperature in the evaporator's outlet piping and throttles the flow of refrigerant supplied to the evaporator to control the flow rate to an optimal level.

一方、かかる膨張弁では、弁内を流れる冷媒によって異音(冷媒通過音、弁振動音)が発生することがあり、このような異音を低減させる様々な提案が従来からなされている。 However, such expansion valves can generate abnormal noises (refrigerant passing noise, valve vibration noise) due to the refrigerant flowing through the valve, and various proposals have been made to reduce such abnormal noises.

例えば、下記特許文献1に係る発明では、弁体支持部材に防振ばねを備え、あるいは作動棒を作動棒挿通孔に接触させることにより、弁体や作動棒の振動を抑制することで異音の発生を防止する。 For example, in the invention described in the following Patent Document 1, the valve body support member is provided with a vibration-proof spring, or the actuating rod is brought into contact with the actuating rod insertion hole, thereby suppressing the vibration of the valve body and actuating rod and preventing the generation of abnormal noise.

特開2019-39579号公報JP 2019-39579 A

ところで、上記特許文献1記載の発明は、エバポレータへの冷媒の供給路、つまり流入路から弁室を経て流出路に至る流路上で発生する異音を防ぐものであるが、膨張弁から生じる異音は当該経路を通過する冷媒によるものに限られず、エバポレータから排出される冷媒を通過させる戻り流路においても発生する可能性がある。 The invention described in Patent Document 1 prevents abnormal noises from occurring in the refrigerant supply path to the evaporator, that is, the flow path from the inlet path through the valve chamber to the outlet path. However, abnormal noises from the expansion valve are not limited to those caused by the refrigerant passing through this path, and can also occur in the return flow path that passes through the refrigerant discharged from the evaporator.

具体的には、図6に示すようにかかる戻り流路23は、弁の開度を調整する駆動部(例えばダイアフラム装置)24がエバポレータ内の冷媒の温度と圧力とを検知できるようにエバポレータから排出された冷媒を弁本体12の上面に備えられた駆動部24に供給するもので、このため、弁本体12を水平に貫くように駆動部24の直下に形成されている。 Specifically, as shown in FIG. 6, the return flow path 23 supplies the refrigerant discharged from the evaporator to a drive unit 24 (e.g., a diaphragm device) provided on the upper surface of the valve body 12 so that the drive unit 24, which adjusts the opening degree of the valve, can detect the temperature and pressure of the refrigerant in the evaporator. For this reason, the return flow path 23 is formed directly below the drive unit 24 so as to pass horizontally through the valve body 12.

一方、駆動部24には弁体15を動かす作動棒19を接続する必要があり、この作動棒19が戻り流路23を上下に横切る構造となっている。このため従来の膨張弁1では、戻り流路23内を流れる冷媒が作動棒19に衝突して作動棒19を振動させ、あるいは、作動棒19により冷媒の流れが乱されることにより異音が発生する虞がある。 On the other hand, it is necessary to connect the actuating rod 19 that moves the valve body 15 to the driving part 24, and this actuating rod 19 is structured to cross the return flow passage 23 from top to bottom. For this reason, in the conventional expansion valve 1, the refrigerant flowing in the return flow passage 23 may collide with the actuating rod 19, causing the actuating rod 19 to vibrate, or the actuating rod 19 may disturb the flow of the refrigerant, causing abnormal noise.

したがって、本発明の目的は、戻り流路内を流れる冷媒に起因した異音の発生を防ぐことにある。 Therefore, the object of the present invention is to prevent abnormal noise caused by the refrigerant flowing through the return flow path.

前記課題を解決し目的を達成するため、本発明に係る第1の膨張弁は、冷媒を導入する流入路と冷媒を排出する流出路とに連通する弁室を有する弁本体と、弁座に着座した閉弁状態と弁座から離間した開弁状態との間で弁座に対して進退動することにより冷媒の流量を変更する弁体と、弁体を弁座に向けて付勢する付勢部材と、弁本体の内部に配置され付勢部材による付勢力に抗し弁体を開弁方向へ移動させる作動棒と、作動棒を駆動する駆動部と、冷媒の通過を許容する戻り流路とを備えた膨張弁であって、駆動部は弁本体の上面部に備えられ、戻り流路は弁本体の上部を水平方向に貫通するとともに駆動部の下面部に連通し、作動棒は駆動部に上端部が接続されるとともに弁体に下端部が接触し駆動部に接続される上端部から弁体に接触する下端部まで上下方向に直線状に延びる棒状の形状を有し、作動棒が戻り流路を横切ることがないように戻り流路を配置した。 In order to solve the above problems and achieve the object, a first expansion valve according to the present invention is an expansion valve comprising: a valve body having a valve chamber communicating with an inlet passage for introducing a refrigerant and an outlet passage for discharging the refrigerant; a valve body that changes a flow rate of the refrigerant by moving toward and away from the valve seat between a closed state in which it is seated on the valve seat and an open state in which it is separated from the valve seat; a biasing member that biases the valve body toward the valve seat; an actuating rod that is disposed inside the valve body and moves the valve body in the valve opening direction against the biasing force of the biasing member ; a drive unit that drives the actuating rod ; and a return flow path that allows the passage of refrigerant , wherein the drive unit is provided on an upper surface of the valve body, the return flow path passes horizontally through an upper part of the valve body and communicates with a lower surface of the drive unit, the actuating rod has an upper end connected to the drive unit and a lower end in contact with the valve body, and has a rod-like shape that extends linearly in the vertical direction from the upper end connected to the drive unit to the lower end in contact with the valve body, and the return flow path is arranged so that the actuating rod does not cross the return flow path.

なお、本願では、弁座から駆動部に向かう方向を「上」、駆動部から弁座に向かう方向を「下」とし、上方向および下方向に直交する方向を「水平方向」とする。また、当該「上」および「下」の概念に基づいて「上下」、「上部」、「下部」、「上端部」、「下端部」、「上面部」、「下面部」等の上下に関係する用語を使用する。ただし、本発明の膨張弁(後に述べる実施形態の膨張弁も同様)は様々な向きで使用することが可能であるから、必ずしも「下」が重力の方向で「上」が重力とは逆の方向であるとは限らない。In this application, the direction from the valve seat toward the actuator is referred to as "up", the direction from the actuator toward the valve seat is referred to as "down", and the direction perpendicular to the up and down directions is referred to as the "horizontal direction". Based on the concepts of "up" and "down", terms related to up and down, such as "upper and lower", "upper part", "lower part", "upper end", "lower end", "upper surface part", and "lower surface part", are used. However, since the expansion valve of the present invention (as well as the expansion valves of the embodiments described later) can be used in various orientations, "down" does not necessarily mean the direction of gravity and "up" does not necessarily mean the direction opposite to gravity.

本発明に係る第2の膨張弁は、冷媒を導入する流入路と冷媒を排出する流出路とに連通する弁室を有する弁本体と、弁座に着座した閉弁状態と弁座から離間した開弁状態との間で弁座に対して進退動することにより冷媒の流量を変更する弁体と、弁体を弁座に向けて付勢する付勢部材と、弁本体の内部に配置され付勢部材による付勢力に抗し弁体を開弁方向へ移動させる作動棒と、作動棒を駆動する駆動部と、冷媒の通過を許容する戻り流路とを備えた膨張弁であって、駆動部は弁本体の上面部に備えられ、戻り流路は弁本体の上部を水平方向に貫通するとともに駆動部の下面部に連通し、作動棒は駆動部に上端部が接続されるとともに弁体に下端部が接触し、作動棒が戻り流路を横切ることがないように戻り流路を配置し、弁本体の上部において上下方向に延びて駆動部の下面部に連通するとともに作動棒より径が大きく且つ作動棒が貫通する作動棒挿通孔を備える一方、作動棒挿通孔と戻り流路とを接続して作動棒挿通孔と戻り流路との間の冷媒の流通を可能とする連通路を備えた。A second expansion valve according to the present invention is an expansion valve comprising: a valve body having a valve chamber communicating with an inflow passage for introducing a refrigerant and an outflow passage for discharging the refrigerant; a valve body that changes a flow rate of the refrigerant by moving toward and away from the valve seat between a closed state in which the valve body is seated on the valve seat and an open state in which the valve body is separated from the valve seat; a biasing member that biases the valve body toward the valve seat; an actuating rod that is disposed inside the valve body and moves the valve body in a valve opening direction against the biasing force of the biasing member; a drive unit that drives the actuating rod; and a return flow path that allows the passage of the refrigerant, the drive unit being disposed on an upper surface portion of the valve body. the return flow passage penetrates horizontally through the upper part of the valve body and is connected to the underside of the drive part, the upper end of the actuating rod is connected to the drive part and the lower end is in contact with the valve body, the return flow passage is arranged so that the actuating rod does not cross the return flow passage, and an actuating rod insertion hole is provided at the upper part of the valve body, extending in the vertical direction and communicating with the underside of the drive part, and having a diameter larger than that of the actuating rod and through which the actuating rod passes, and a communication passage is provided that connects the actuating rod insertion hole and the return flow passage to enable the flow of refrigerant between the actuating rod insertion hole and the return flow passage.

本発明の膨張弁(上記第1及び第2の膨張弁)では、作動棒が戻り流路を横切ることがないように配置するから、戻り流路を通過する冷媒が作動棒にダイレクトに(ストレートに勢い良く)衝突することがなくなる。このため、戻り流路内を流れる冷媒が作動棒に衝突して作動棒を振動させ、あるいは、戻り流路内の冷媒の流れが作動棒により乱されることにより異音が発生することを防ぐことが出来る。 In the expansion valve of the present invention (the first and second expansion valves described above) , the working rod is positioned so as not to cross the return flow passage, so the refrigerant passing through the return flow passage does not collide directly (straight and with force) with the working rod. This makes it possible to prevent the refrigerant flowing through the return flow passage from colliding with the working rod and vibrating it, or to prevent the flow of refrigerant in the return flow passage from being disturbed by the working rod, thereby generating abnormal noise.

一方、戻り流路は、前述のように作動棒を介し弁体を作動させる駆動部(例えばダイアフラム装置)がエバポレータ出口の冷媒の温度と圧力とを検知できるように駆動部に冷媒を供給する役割を有する。このため、当該機能を損なうことがないように本発明においても戻り流路と駆動部とを連通させ、両者(戻り流路と駆動部)間で冷媒が流通できるようにしておく。 On the other hand, the return flow passage has a role of supplying refrigerant to the drive section (e.g., a diaphragm device) that operates the valve body via the actuation rod as described above so that the drive section can detect the temperature and pressure of the refrigerant at the evaporator outlet. Therefore, in the present invention, in order not to impair this function, the return flow passage and the drive section are also communicated so that the refrigerant can flow between the two (the return flow passage and the drive section).

上記本発明に係る第1の膨張弁のより具体的な構造としては、例えば次のような各態様が考えられる。 As a more specific structure of the first expansion valve according to the present invention, for example, the following aspects are considered.

第一の態様では、前記膨張弁が、弁本体の上部において上下方向に延びて駆動部の下面部に連通するとともに作動棒より径が大きく且つ作動棒が貫通する作動棒挿通孔を備え、戻り流路の縁部が作動棒挿通孔の縁部と重なるように配置することにより戻り流路と作動棒挿通孔とを連通させる。 In a first aspect, the expansion valve has an actuating rod insertion hole that extends in the vertical direction at the upper part of the valve body, communicates with the underside of the drive part, and has a diameter larger than that of the actuating rod and through which the actuating rod passes, and the return flow path is connected to the actuating rod insertion hole by arranging the edge of the return flow path overlapping the edge of the actuating rod insertion hole.

の態様では、駆動部の下面部と戻り流路とを接続して駆動部の下面部と戻り流路との間の冷媒の流通を可能とする連通路を備える。 In a second aspect, a communication passage is provided that connects the lower surface of the drive unit and the return flow passage to enable the circulation of the coolant between the lower surface of the drive unit and the return flow passage.

また、本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却して液化する凝縮器と、凝縮器で液化された冷媒を減圧膨張させる膨張弁と、膨張弁で減圧膨張された冷媒を蒸発気化する蒸発器とを備えた冷凍サイクル装置であって、前記膨張弁が前述した本発明の第1の膨張弁(第一及び第二の態様を含む)または第2の膨張弁である。 In addition, the refrigeration cycle device of the present invention is a refrigeration cycle device including a compressor that compresses a refrigerant, a condenser that cools and liquefies the refrigerant compressed by the compressor, an expansion valve that reduces the pressure and expands the refrigerant liquefied by the condenser, and an evaporator that evaporates the refrigerant reduced in pressure and expanded by the expansion valve, wherein the expansion valve is the first expansion valve (including the first and second aspects) or the second expansion valve of the present invention described above.

本発明に係る膨張弁によれば、戻り流路を流れる冷媒に起因した冷媒通過音の発生を防ぐことが出来る。 The expansion valve of the present invention can prevent the generation of refrigerant passing noise caused by the refrigerant flowing through the return flow path.

本発明の他の目的、特徴および利点は、図面に基いて述べる以下の本発明の実施の形態の説明により明らかにする。なお、本発明は下記の実施形態に限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。また、各図中、同一の符号は、同一又は相当部分を示す。 Other objects, features, and advantages of the present invention will become apparent from the following description of the embodiments of the present invention based on the drawings. Note that the present invention is not limited to the following embodiments, and it will be apparent to those skilled in the art that various modifications can be made within the scope of the claims. In addition, the same reference numerals in each drawing indicate the same or equivalent parts.

図1は、本発明の第1の実施形態に係る膨張弁(図2のB-B矢視断面)を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing an expansion valve according to a first embodiment of the present invention (cross-section taken along the line BB in FIG. 2). 図2は、前記第1実施形態に係る膨張弁(図1のA-A矢視断面)を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing the expansion valve according to the first embodiment (a cross-section taken along the line AA in FIG. 1). 図3は、本発明の第2の実施形態に係る膨張弁を図1と同様に示す縦断面図である。FIG. 3 is a vertical cross-sectional view similar to FIG. 1, showing an expansion valve according to a second embodiment of the present invention. 図4は、本発明の第3の実施形態に係る膨張弁を図1と同様に示す縦断面図である。FIG. 4 is a vertical cross-sectional view similar to FIG. 1, showing an expansion valve according to a third embodiment of the present invention. 図5は、本発明の第4の実施形態に係る冷凍サイクル装置を示す概念図である。FIG. 5 is a conceptual diagram showing a refrigeration cycle device according to a fourth embodiment of the present invention. 図6は、従来の膨張弁の一例を図1と同様に示す縦断面図である。FIG. 6 is a vertical cross-sectional view similar to FIG. 1 showing an example of a conventional expansion valve.

〔第1実施形態〕
図1および図2を参照して本発明の第1の実施形態について説明する。なお、各図には上下左右または上下前後の各方向を表す二次元直交座標を示し、以下の説明はこれらの方向に基いて行う(後述の第2実施形態及び第3実施形態についても同様)。
First Embodiment
A first embodiment of the present invention will be described with reference to Figures 1 and 2. Each figure shows two-dimensional orthogonal coordinates representing the up/down/left/right or up/down/front/back directions, and the following description will be based on these directions (the same applies to the second and third embodiments described below).

図1および図2に示すように本発明の第1の実施形態に係る膨張弁11は、弁室13を内部に備えた弁本体12と、弁室13に冷媒を導入する流入路21と、弁室13からのど部20を介して冷媒を排出する流出路22と、弁室13内で上下動することにより弁室13内に流入する冷媒の量を変更する弁体15と、弁体15を下方から支持する弁体支持部材16と、弁体15が当接することにより閉弁を可能とする弁座14とを有する。 As shown in Figures 1 and 2, the expansion valve 11 according to the first embodiment of the present invention has a valve body 12 with a valve chamber 13 therein, an inflow passage 21 for introducing refrigerant into the valve chamber 13, an outflow passage 22 for discharging refrigerant from the valve chamber 13 through a throat 20, a valve body 15 that moves up and down within the valve chamber 13 to change the amount of refrigerant flowing into the valve chamber 13, a valve body support member 16 that supports the valve body 15 from below, and a valve seat 14 that allows the valve to be closed by the valve body 15 coming into contact with it.

また当該膨張弁11は、弁本体12の下面部に装着して弁室13を密閉するばね受け部材18と、弁体15を上方へ付勢するためにばね受け部材18と弁体支持部材16との間に配置したコイルばね(付勢部材)17と、コイルばね17の付勢力に抗して弁体15を下方へ移動させる作動棒19と、作動棒19を上下動させるため弁本体12の上面部に備えたダイアフラム装置(駆動部)24と、エバポレータ64(図5参照/以下同様)から排出された冷媒をダイアフラム装置24に供給するため弁本体12の上部を貫通するように冷媒を流通させる戻り流路23をさらに有する。 The expansion valve 11 also has a spring receiving member 18 attached to the underside of the valve body 12 to seal the valve chamber 13, a coil spring (biasing member) 17 arranged between the spring receiving member 18 and the valve body support member 16 to bias the valve body 15 upward, an actuating rod 19 that moves the valve body 15 downward against the biasing force of the coil spring 17, a diaphragm device (drive unit) 24 provided on the upper surface of the valve body 12 to move the actuating rod 19 up and down, and a return flow path 23 that passes through the upper part of the valve body 12 to supply the refrigerant discharged from the evaporator 64 (see Figure 5 / the same below) to the diaphragm device 24 and allows the refrigerant to flow.

また、上記流入路21と流出路22は弁室13を介して互いに連通するが、コイルばね17の上方への付勢力によって弁体15が弁座14に当接し着座した閉弁状態では流入路21と流出路22とは連通せずに遮断状態となる。一方、作動棒19に押されて弁体15が下方へ移動して弁座14から離れると(図1および図2の状態)、流入路21と流出路22とが連通し、流入路21を通って流入口21aから弁室13の内部に流入した冷媒は、のど部20および流出路22を通って膨張弁11の外へ排出される。なお、排出された冷媒は、エバポレータ64に導入される。またこの冷媒の流量は、弁体15の上下方向の位置(弁体15と弁座14との距離)が変更されることにより調整される。 The inflow passage 21 and outflow passage 22 communicate with each other through the valve chamber 13, but in the closed state in which the valve body 15 abuts and seats on the valve seat 14 due to the upward biasing force of the coil spring 17, the inflow passage 21 and outflow passage 22 are not communicated and are in a blocked state. On the other hand, when the valve body 15 is pushed by the operating rod 19 and moves downward and away from the valve seat 14 (the state shown in Figures 1 and 2), the inflow passage 21 and outflow passage 22 communicate with each other, and the refrigerant that flows into the inside of the valve chamber 13 from the inlet 21a through the inflow passage 21 is discharged outside the expansion valve 11 through the throat 20 and outflow passage 22. The discharged refrigerant is introduced into the evaporator 64. The flow rate of this refrigerant is adjusted by changing the vertical position of the valve body 15 (the distance between the valve body 15 and the valve seat 14).

膨張弁11の開閉を行う作動棒19は、弁本体12の内部において上下方向に延び、上端をダイアフラム装置24に接続する一方、下端を弁体15に接触させてある。またこのように作動棒19を配置するため、弁本体12には、のど部20が接続された流出路22の前端部上面から、ダイアフラム装置24が設置された弁本体12の上面部まで延びる作動棒挿通孔31を穿設してある。さらにこの作動棒挿通孔31は、戻り流路23が貫通する弁本体12の上部において径が大きな拡径部31aを有し、この拡径部31aがダイアフラム装置24の下面部(後述する第2空間30)と連通している。さらに、作動棒挿通孔31の拡径部31aの下端部には、Oリングが付設されており、流出路22近傍と戻り流路23近傍の間の気密性を確保している。さらに当該部位にリング状防振ばねを付設し、作動棒19が弁体15から受ける振動を摺動抵抗により抑制するようにしても良い。 The actuating rod 19 that opens and closes the expansion valve 11 extends vertically inside the valve body 12, with its upper end connected to the diaphragm device 24 and its lower end in contact with the valve body 15. In order to position the actuating rod 19 in this manner, the valve body 12 is provided with an actuating rod insertion hole 31 that extends from the upper surface of the front end of the outflow passage 22 to which the throat portion 20 is connected to the upper surface of the valve body 12 to which the diaphragm device 24 is installed. Furthermore, this actuating rod insertion hole 31 has a large diameter enlarged portion 31a at the upper portion of the valve body 12 through which the return passage 23 passes, and this enlarged portion 31a is connected to the lower surface of the diaphragm device 24 (the second space 30 described later). Furthermore, an O-ring is attached to the lower end of the enlarged portion 31a of the actuating rod insertion hole 31 to ensure airtightness between the vicinity of the outflow passage 22 and the vicinity of the return passage 23. Furthermore, a ring-shaped vibration-proof spring may be attached to this portion to suppress the vibration that the actuating rod 19 receives from the valve body 15 through sliding resistance.

他方、エバポレータ64から排出された冷媒を導入する戻り流路23は、弁本体12の上部を水平に(前後に)貫通するように延び、戻り流路23の縁部が作動棒挿通孔31の拡径部31aの縁部と重なり合うように配置してある(図1参照)。前述した従来の膨張弁(図6)と比較して言い換えると、従来の膨張弁1における戻り流路23は、作動棒19が配置されている膨張弁1の中心線Cを通るように配置されていたのに対し、本実施形態の膨張弁11では戻り流路23を当該中心線Cから水平方向に(本実施形態では左方であるが、右方でも構わない)ずらして作動棒19と重なることがないようにし、且つ、戻り流路23の縁部と拡径部31aの縁部とが交差する(重なる)ように配置する。 On the other hand, the return flow passage 23, which introduces the refrigerant discharged from the evaporator 64, extends horizontally (front to back) through the upper part of the valve body 12, and is arranged so that the edge of the return flow passage 23 overlaps with the edge of the enlarged diameter portion 31a of the actuating rod insertion hole 31 (see FIG. 1). In other words, compared to the conventional expansion valve (FIG. 6) described above, the return flow passage 23 in the conventional expansion valve 1 is arranged to pass through the center line C of the expansion valve 1 on which the actuating rod 19 is arranged, whereas in the expansion valve 11 of this embodiment, the return flow passage 23 is shifted horizontally (to the left in this embodiment, but it can also be to the right) from the center line C so as not to overlap with the actuating rod 19, and is arranged so that the edge of the return flow passage 23 and the edge of the enlarged diameter portion 31a intersect (overlap).

このような配置構造により本実施形態の膨張弁11では、戻り流路23と拡径部31aとが交差した部分に、戻り流路23と拡径部31aとを連通させる連通口32が形成され、この連通口32を通じて戻り流路23内の冷媒が拡径部31aを通ってダイアフラム装置24の下面部に浸入し、ダイアフラム装置24を作動させることが可能となる。然も、従来の膨張弁1と異なり、弁本体12を貫くように戻り流路23を真っ直ぐに流れる冷媒が作動棒19に直接衝突することがないから、戻り流路23を通過する冷媒が作動棒19を振動させて異音を発生させることがなく、戻り流路23内の冷媒の流れが作動棒19によって乱されて異音が生じることもない。 In the expansion valve 11 of this embodiment, due to this arrangement, a communication port 32 that communicates the return flow path 23 and the enlarged diameter portion 31a is formed at the intersection of the return flow path 23 and the enlarged diameter portion 31a, and the refrigerant in the return flow path 23 can enter the lower surface of the diaphragm device 24 through the enlarged diameter portion 31a through this communication port 32, thereby operating the diaphragm device 24. Moreover, unlike the conventional expansion valve 1, the refrigerant flowing straight through the return flow path 23 so as to pass through the valve body 12 does not directly collide with the operating rod 19, so the refrigerant passing through the return flow path 23 does not vibrate the operating rod 19 to generate abnormal noise, and the flow of refrigerant in the return flow path 23 is not disturbed by the operating rod 19 to generate abnormal noise.

なお、ダイアフラム装置24は、中央部に開口を有し弁本体12の上面に固定した皿状部材25と、皿状部材25の上面を覆う上蓋部材26と、皿状部材25と上蓋部材26との間に配置したダイアフラム27とを有する。上蓋部材26とダイアフラム27とによって囲まれる第1空間29には、作動ガスを充填する。また、ダイアフラム27の下面には作動棒受け部材28を固定し、この作動棒受け部材28を介して作動棒19の上端がダイアフラム27に接続されている。そして、第1空間29内の作動ガスの圧力と第2空間30内の冷媒の圧力との差に応じてダイアフラム27が上方へ引き上げられ、或いは下方へ押し下げられ、膨張弁11の開弁状態と閉弁状態との間の切り換えが行われる。 The diaphragm device 24 has a dish-shaped member 25 with an opening in the center, fixed to the upper surface of the valve body 12, a top cover member 26 that covers the upper surface of the dish-shaped member 25, and a diaphragm 27 arranged between the dish-shaped member 25 and the top cover member 26. A first space 29 surrounded by the top cover member 26 and the diaphragm 27 is filled with working gas. A working rod receiving member 28 is fixed to the lower surface of the diaphragm 27, and the upper end of the working rod 19 is connected to the diaphragm 27 via the working rod receiving member 28. The diaphragm 27 is pulled up or pushed down depending on the difference between the pressure of the working gas in the first space 29 and the pressure of the refrigerant in the second space 30, and the expansion valve 11 is switched between the open and closed states.

また、ダイアフラム27と皿状部材25との間の第2空間30は、上述した皿状部材25の中央の開口を通じ、作動棒挿通孔31の拡径部31aおよび前記連通口32を介して戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度と圧力に応じて、第1空間29内の作動ガスの圧力および体積が変化し、この変化に応じて作動棒19が上下動する。このようにして膨張弁11では、エバポレータ64から膨張弁11に戻る冷媒の温度と圧力に対応して、膨張弁11からエバポレータ64に向けて供給される冷媒の量が自動的に調整される。 The second space 30 between the diaphragm 27 and the dish-shaped member 25 is connected to the return flow passage 23 through the central opening of the dish-shaped member 25 described above, the enlarged diameter portion 31a of the working rod insertion hole 31, and the communication port 32. Therefore, the pressure and volume of the working gas in the first space 29 change depending on the temperature and pressure of the refrigerant flowing through the return flow passage 23, and the working rod 19 moves up and down in response to this change. In this way, the expansion valve 11 automatically adjusts the amount of refrigerant supplied from the expansion valve 11 to the evaporator 64 in response to the temperature and pressure of the refrigerant returning from the evaporator 64 to the expansion valve 11.

〔第2実施形態〕
図3を参照して本発明の第2の実施形態に係る膨張弁41について説明する。なお、第1実施形態と同様の構成については同一の符号を付して重複した説明を省略し、相違点を中心に説明を行う(後述の第3実施形態についても同様)。
Second Embodiment
An expansion valve 41 according to a second embodiment of the present invention will be described with reference to Fig. 3. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and duplicated descriptions will be omitted, and differences will be mainly described (the same applies to a third embodiment described later).

本発明の第2の実施形態に係る膨張弁41は、図3に示すように前記第1実施形態と同様に作動棒19が戻り流路23を横切ることがないように戻り流路23を水平方向にずらしたものであるが、前記第1実施形態と異なり、作動棒挿通孔31の拡径部31aと戻り流路23とが重なっていない。 In the expansion valve 41 according to the second embodiment of the present invention, as shown in FIG. 3, the return flow passage 23 is shifted horizontally so that the actuating rod 19 does not cross the return flow passage 23, as in the first embodiment. However, unlike the first embodiment, the enlarged diameter portion 31a of the actuating rod insertion hole 31 does not overlap with the return flow passage 23.

このため本実施形態では、戻り流路23と拡径部31aを連通させる連通路33を備え、この連通路33を通じて戻り流路23内の冷媒を拡径部31aに流入させる。拡径部31aに流入した冷媒は、前記第1実施形態の膨張弁11と同様に、ダイアフラム装置24の下面部(第2空間30)に供給され、ダイアフラム装置24を作動させる。 For this reason, in this embodiment, a communication passage 33 is provided that connects the return flow passage 23 and the enlarged diameter portion 31a, and the refrigerant in the return flow passage 23 flows into the enlarged diameter portion 31a through this communication passage 33. The refrigerant that flows into the enlarged diameter portion 31a is supplied to the underside portion (second space 30) of the diaphragm device 24, as in the expansion valve 11 of the first embodiment, and operates the diaphragm device 24.

〔第3実施形態〕
図4は本発明の第3の実施形態に係る膨張弁を示すものである。この図に示すように本実施形態の膨張弁51は、前記第2実施形態の膨張弁41と同様に戻り流路23を水平方向にずらして作動棒挿通孔31の拡径部31aと戻り流路23とが重ならない配置構造を有するとともに、戻り流路23内の冷媒が流入可能な連通路33を備える。
Third Embodiment
4 shows an expansion valve according to a third embodiment of the present invention. As shown in this figure, an expansion valve 51 of this embodiment has an arrangement structure in which the return flow passage 23 is shifted horizontally so that the enlarged diameter portion 31a of the working rod insertion hole 31 does not overlap with the return flow passage 23, similar to the expansion valve 41 of the second embodiment, and is provided with a communication passage 33 through which the refrigerant in the return flow passage 23 can flow.

一方、本実施形態では、前記第2実施形態と異なり、連通路33をダイアフラム装置24の下面部に直接接続する。したがって、戻り流路23内の冷媒は作動棒挿通孔31の拡径部31aを経ることなく、ダイアフラム装置24の下面部(第2空間30)に直接供給され、ダイアフラム装置24を作動させる。 In contrast, in this embodiment, unlike the second embodiment, the communication passage 33 is directly connected to the underside of the diaphragm device 24. Therefore, the refrigerant in the return flow path 23 is supplied directly to the underside (second space 30) of the diaphragm device 24 without passing through the enlarged diameter portion 31a of the actuating rod insertion hole 31, and operates the diaphragm device 24.

〔第4実施形態〕
本発明の第4の実施形態として前記第1実施形態の膨張弁を用いた冷凍サイクル装置について説明する。
Fourth Embodiment
A refrigeration cycle device using the expansion valve of the first embodiment will be described as a fourth embodiment of the present invention.

図5に示すようにこの冷凍サイクル装置61は、冷媒を圧縮するコンプレッサ(圧縮機)62と、コンプレッサ62で圧縮された冷媒を冷却して液化するコンデンサ(凝縮器)63と、コンデンサ63で液化された冷媒を減圧膨張させる膨張弁11と、膨張弁11で減圧膨張された冷媒を蒸発気化するエバポレータ(蒸発器)64を備えたもので、膨張弁として前述した第1実施形態に係る膨張弁11を使用する。 As shown in FIG. 5, this refrigeration cycle device 61 includes a compressor 62 that compresses the refrigerant, a condenser 63 that cools and liquefies the refrigerant compressed by the compressor 62, an expansion valve 11 that reduces the pressure and expands the refrigerant liquefied by the condenser 63, and an evaporator 64 that evaporates the refrigerant reduced in pressure and expanded by the expansion valve 11. The expansion valve used is the expansion valve 11 described above in the first embodiment.

かかる冷凍サイクル装置61では、コンプレッサ62で加圧された冷媒は、コンデンサ63で液化されて膨張弁11に送られる。また、膨張弁11で断熱膨張された冷媒はエバポレータ64に送り出され、エバポレータ64で、エバポレータ64の周囲を流れる空気と熱交換される。エバポレータ64から戻る冷媒は、膨張弁11の戻り流路23を通ってコンプレッサ62へ戻される。 In this refrigeration cycle device 61, the refrigerant pressurized by the compressor 62 is liquefied by the condenser 63 and sent to the expansion valve 11. The refrigerant adiabatically expanded by the expansion valve 11 is sent to the evaporator 64, where it is heat exchanged with the air flowing around the evaporator 64. The refrigerant returning from the evaporator 64 is returned to the compressor 62 through the return flow path 23 of the expansion valve 11.

膨張弁11には、コンデンサ63から高圧の冷媒が供給される。より具体的には、コンデンサ63から送られた高圧冷媒は、流入路21を通って弁室13に流れ込む。コイルばね17によって弁体15が弁座14に押し付けられて着座した閉弁状態では、流入路21と流出路22とは連通せず、弁室13内の冷媒は膨張弁11から排出されない。 The expansion valve 11 is supplied with high-pressure refrigerant from the condenser 63. More specifically, the high-pressure refrigerant sent from the condenser 63 flows into the valve chamber 13 through the inlet passage 21. In the closed valve state in which the valve body 15 is pressed against the valve seat 14 by the coil spring 17 and seated, the inlet passage 21 and the outlet passage 22 do not communicate, and the refrigerant in the valve chamber 13 is not discharged from the expansion valve 11.

一方、コイルばね17の付勢力に抗して作動棒19が下方へ移動することにより弁体15を下方へ移動させ、弁座14から弁体15が後退すると(図5に示す状態)、流入路21と流出路22とが連通状態(開弁状態)となり、弁室13内の冷媒が流出路22を通って排出されエバポレータ64へ送り出される。かかる作動棒19の動作は、第1実施形態の説明で述べたように、弁本体12の上面部に備えたダイアフラム装置24により行われる。 Meanwhile, when the actuating rod 19 moves downward against the biasing force of the coil spring 17, moving the valve body 15 downward and retracting the valve body 15 from the valve seat 14 (as shown in FIG. 5), the inlet passage 21 and the outlet passage 22 communicate (open valve state), and the refrigerant in the valve chamber 13 is discharged through the outlet passage 22 and sent to the evaporator 64. Such movement of the actuating rod 19 is performed by the diaphragm device 24 provided on the upper surface of the valve body 12, as described in the explanation of the first embodiment.

本実施形態の冷凍サイクル装置61は、前記第1実施形態の膨張弁11を使用しているから、戻り流路23を通過する冷媒と作動棒19を原因とする異音の発生を防ぐことが出来る。 The refrigeration cycle device 61 of this embodiment uses the expansion valve 11 of the first embodiment, so it is possible to prevent abnormal noise caused by the refrigerant passing through the return flow path 23 and the actuating rod 19.

なお、膨張弁としては、前記第2実施形態や第3実施形態の膨張弁41,51、あるいは本発明に基いて構成可能な他の膨張弁を使用することが可能である。また、本実施形態ならびに前記本発明や各実施形態に係る膨張弁11,41,51において、本発明に基く戻り流路23の配置構造と、前記防振ばね等の防振構造を併用すれば、膨張弁からの異音の発生をより効果的に低減させることが出来る。 As the expansion valve, the expansion valves 41 and 51 of the second and third embodiments, or other expansion valves that can be constructed based on the present invention, can be used. In addition, in the expansion valves 11, 41, and 51 of this embodiment and the present invention and each embodiment, by combining the arrangement structure of the return flow path 23 based on the present invention with the vibration-proof structure such as the vibration-proof spring, the generation of abnormal noise from the expansion valve can be more effectively reduced.

1,11,41,51 膨張弁
12 弁本体
13 弁室
14 弁座
15 弁体
16 弁体支持部材
17 コイルばね(付勢部材)
18 ばね受け部材
19 作動棒
20 のど部
21 流入路
22 流出路
23 戻り流路
24 ダイアフラム装置
25 皿状部材
26 上蓋部材
27 ダイアフラム
28 作動棒受け部材
29 第1空間
30 第2空間
31 作動棒挿通孔
31a 拡径部
32 連通口
33 連通路
61 冷凍サイクル装置
62 コンプレッサ(圧縮機)
63 コンデンサ(凝縮器)
64 エバポレータ(蒸発器)
REFERENCE SIGNS LIST 1, 11, 41, 51 Expansion valve 12 Valve body 13 Valve chamber 14 Valve seat 15 Valve body 16 Valve body support member 17 Coil spring (biasing member)
DESCRIPTION OF SYMBOLS 18 Spring receiving member 19 Actuating rod 20 Throat portion 21 Inflow passage 22 Outflow passage 23 Return passage 24 Diaphragm device 25 Dish-shaped member 26 Upper cover member 27 Diaphragm 28 Actuating rod receiving member 29 First space 30 Second space 31 Actuating rod insertion hole 31a Enlarged diameter portion 32 Communication port 33 Communication passage 61 Refrigeration cycle device 62 Compressor
63 Condenser
64 Evaporator

Claims (5)

冷媒を導入する流入路と前記冷媒を排出する流出路とに連通する弁室を有する弁本体と、
弁座に着座した閉弁状態と前記弁座から離間した開弁状態との間で前記弁座に対して進退動することにより前記冷媒の流量を変更する弁体と、
前記弁体を前記弁座に向けて付勢する付勢部材と、
前記弁本体の内部に配置され、前記付勢部材による付勢力に抗し前記弁体を開弁方向へ移動させる作動棒と、
前記作動棒を駆動する駆動部と、
前記冷媒の通過を許容する戻り流路と
を備えた膨張弁であって、
前記弁座から前記駆動部に向かう方向を「上」、前記駆動部から前記弁座に向かう方向を「下」とし、上方向および下方向に直交する方向を「水平方向」としたときに、
前記駆動部は、前記弁本体の上面部に備えられ、
前記戻り流路は、前記弁本体の上部を水平方向に貫通するとともに前記駆動部の下面部に連通し、
前記作動棒は、前記駆動部に上端部が接続されるとともに、前記弁体に下端部が接触し、前記駆動部に接続される前記上端部から前記弁体に接触する前記下端部まで上下方向に直線状に延びる棒状の形状を有し、
前記作動棒が前記戻り流路を横切ることがないように前記戻り流路を配置した
ことを特徴とする膨張弁。
a valve body having a valve chamber communicating with an inlet passage for introducing a refrigerant and an outlet passage for discharging the refrigerant;
a valve element that moves toward and away from the valve seat between a closed state in which the valve element is seated on the valve seat and an open state in which the valve element is spaced from the valve seat to change a flow rate of the refrigerant;
a biasing member that biases the valve body toward the valve seat;
an actuating rod disposed inside the valve body and configured to move the valve body in a valve opening direction against the biasing force of the biasing member;
A drive unit that drives the operating rod;
and a return flow path that allows the refrigerant to pass through.
When the direction from the valve seat to the actuator is defined as "up", the direction from the actuator to the valve seat is defined as "down", and the direction perpendicular to the up and down directions is defined as the "horizontal direction",
The drive portion is provided on an upper surface portion of the valve body,
the return flow passage horizontally passes through an upper portion of the valve body and communicates with a lower surface portion of the drive portion,
The actuating rod has an upper end connected to the drive unit and a lower end in contact with the valve body, and has a rod-like shape extending linearly in the vertical direction from the upper end connected to the drive unit to the lower end in contact with the valve body,
An expansion valve, characterized in that the return flow passage is arranged so that the operating rod does not cross the return flow passage.
前記弁本体の上部において上下方向に延びて前記駆動部の下面部に連通するとともに前記作動棒より径が大きく且つ前記作動棒が貫通する作動棒挿通孔を備え、
前記戻り流路の縁部が前記作動棒挿通孔の縁部と重なることにより前記戻り流路と前記作動棒挿通孔とが連通している
請求項1に記載の膨張弁。
an actuating rod insertion hole extending in the vertical direction at an upper portion of the valve body, communicating with a lower surface portion of the drive portion, having a diameter larger than that of the actuating rod and through which the actuating rod passes;
The expansion valve according to claim 1 , wherein an edge of the return flow passage overlaps an edge of the actuation rod insertion hole, thereby communicating the return flow passage with the actuation rod insertion hole.
冷媒を導入する流入路と前記冷媒を排出する流出路とに連通する弁室を有する弁本体と、
弁座に着座した閉弁状態と前記弁座から離間した開弁状態との間で前記弁座に対して進退動することにより前記冷媒の流量を変更する弁体と、
前記弁体を前記弁座に向けて付勢する付勢部材と、
前記弁本体の内部に配置され、前記付勢部材による付勢力に抗し前記弁体を開弁方向へ移動させる作動棒と、
前記作動棒を駆動する駆動部と、
前記冷媒の通過を許容する戻り流路と
を備えた膨張弁であって、
前記弁座から前記駆動部に向かう方向を「上」、前記駆動部から前記弁座に向かう方向を「下」とし、上方向および下方向に直交する方向を「水平方向」としたときに、
前記駆動部は、前記弁本体の上面部に備えられ、
前記戻り流路は、前記弁本体の上部を水平方向に貫通するとともに前記駆動部の下面部に連通し、
前記作動棒は、前記駆動部に上端部が接続されるとともに、前記弁体に下端部が接触し、
前記作動棒が前記戻り流路を横切ることがないように前記戻り流路を配置し、
前記弁本体の上部において上下方向に延びて前記駆動部の下面部に連通するとともに前記作動棒より径が大きく且つ前記作動棒が貫通する作動棒挿通孔を備える一方、
前記作動棒挿通孔と前記戻り流路とを接続して前記作動棒挿通孔と前記戻り流路との間の前記冷媒の流通を可能とする連通路を備える
ことを特徴とする膨張弁。
a valve body having a valve chamber communicating with an inlet passage for introducing a refrigerant and an outlet passage for discharging the refrigerant;
a valve element that moves toward and away from the valve seat between a closed state in which the valve element is seated on the valve seat and an open state in which the valve element is spaced from the valve seat to change a flow rate of the refrigerant;
a biasing member that biases the valve body toward the valve seat;
an actuating rod disposed inside the valve body and configured to move the valve body in a valve opening direction against the biasing force of the biasing member;
A drive unit that drives the operating rod;
a return flow path that allows the coolant to pass through;
An expansion valve comprising:
When the direction from the valve seat to the actuator is defined as "up", the direction from the actuator to the valve seat is defined as "down", and the direction perpendicular to the up and down directions is defined as the "horizontal direction",
The drive portion is provided on an upper surface portion of the valve body,
the return flow passage horizontally passes through an upper portion of the valve body and communicates with a lower surface portion of the drive portion,
The actuating rod has an upper end connected to the drive portion and a lower end in contact with the valve body,
Positioning the return passage such that the actuation rod does not cross the return passage;
An actuating rod insertion hole is provided at an upper portion of the valve body, the actuating rod insertion hole extending in the vertical direction and communicating with a lower surface portion of the drive portion, the actuating rod having a larger diameter than the actuating rod and through which the actuating rod passes,
a communication passage that connects the working rod insertion hole and the return flow passage to enable the refrigerant to flow between the working rod insertion hole and the return flow passage;
An expansion valve characterized by :
前記駆動部の下面部と前記戻り流路とを接続して前記駆動部の下面部と前記戻り流路との間の冷媒の流通を可能とする連通路を備える
請求項1に記載の膨張弁。
The expansion valve according to claim 1 , further comprising a communication passage that connects a lower surface of the drive portion and the return flow passage to enable refrigerant to flow between the lower surface of the drive portion and the return flow passage.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却して液化する凝縮器と、
前記凝縮器で液化された前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁で減圧膨張された前記冷媒を蒸発気化する蒸発器と
を備えた冷凍サイクル装置であって、
前記膨張弁が、前記請求項1から4のいずれか一項に記載の膨張弁であることを特徴とする冷凍サイクル装置。
A compressor that compresses a refrigerant;
a condenser that cools and liquefies the refrigerant compressed by the compressor;
an expansion valve for reducing the pressure and expanding the refrigerant liquefied in the condenser;
an evaporator that evaporates the refrigerant that has been decompressed and expanded by the expansion valve,
A refrigeration cycle device, wherein the expansion valve is the expansion valve according to any one of claims 1 to 4.
JP2020086390A 2020-05-18 2020-05-18 Expansion valve and refrigeration cycle device Active JP7462932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086390A JP7462932B2 (en) 2020-05-18 2020-05-18 Expansion valve and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086390A JP7462932B2 (en) 2020-05-18 2020-05-18 Expansion valve and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2021181838A JP2021181838A (en) 2021-11-25
JP7462932B2 true JP7462932B2 (en) 2024-04-08

Family

ID=78606415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086390A Active JP7462932B2 (en) 2020-05-18 2020-05-18 Expansion valve and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP7462932B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044861A (en) 2014-08-21 2016-04-04 株式会社テージーケー Expansion valve
JP2017172702A (en) 2016-03-24 2017-09-28 株式会社不二工機 Expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044861A (en) 2014-08-21 2016-04-04 株式会社テージーケー Expansion valve
JP2017172702A (en) 2016-03-24 2017-09-28 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP2021181838A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP3209868B2 (en) Expansion valve
JP2011133139A (en) Expansion valve
JP5620833B2 (en) 3-way solenoid valve
JP7462932B2 (en) Expansion valve and refrigeration cycle device
JP2006316852A (en) Pilot operated solenoid valve and heat exchange system using the same
KR100572763B1 (en) Expansion valve
JP6063651B2 (en) Expansion valve
KR100652256B1 (en) Expansion valve
JP7482498B2 (en) Expansion valve and refrigeration cycle device
JP5543481B2 (en) Expansion valve with diaphragm and at least two outlet openings
CN111133240B (en) Expansion valve
JP2011133157A (en) Expansion valve
JP7417998B2 (en) Expansion valve and refrigeration cycle equipment
JP7384386B2 (en) Expansion valve and refrigeration cycle equipment
JP7074322B2 (en) Expansion valve
JP7385288B2 (en) expansion valve
JP2021127845A (en) Expansion valve and refrigeration cycle device
JP2021081173A (en) Expansion valve and refrigeration cycle device
KR100551820B1 (en) Expansion-valve structure for preventing noise in airconditioner system
JP5463209B2 (en) Expansion valve
JP2012508364A (en) Expansion valve with biasing means
KR20110085457A (en) Thermal expansion valve of air conditioner for vehicle
JP7082798B2 (en) Expansion valve
JP3963672B2 (en) Expansion valve
JP7074321B2 (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7462932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150