JP7482498B2 - Expansion valve and refrigeration cycle device - Google Patents

Expansion valve and refrigeration cycle device Download PDF

Info

Publication number
JP7482498B2
JP7482498B2 JP2020004054A JP2020004054A JP7482498B2 JP 7482498 B2 JP7482498 B2 JP 7482498B2 JP 2020004054 A JP2020004054 A JP 2020004054A JP 2020004054 A JP2020004054 A JP 2020004054A JP 7482498 B2 JP7482498 B2 JP 7482498B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
inlet
expansion
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004054A
Other languages
Japanese (ja)
Other versions
JP2021110518A (en
Inventor
耕平 久保田
悠太 渡辺
敏道 呉羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020004054A priority Critical patent/JP7482498B2/en
Publication of JP2021110518A publication Critical patent/JP2021110518A/en
Application granted granted Critical
Publication of JP7482498B2 publication Critical patent/JP7482498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

本発明は、膨張弁および冷凍サイクル装置に係り、特にエアコンなどの冷凍サイクルに備えられる膨張弁の弁振動を抑制し、異音が発生することを防ぐ技術に関する。 The present invention relates to an expansion valve and a refrigeration cycle device, and in particular to a technology for suppressing valve vibration of an expansion valve provided in a refrigeration cycle of an air conditioner or the like, and preventing the generation of abnormal noise.

カーエアコンのような冷凍サイクル装置では、エバポレータ(蒸発器)の能力を十分に引き出すために膨張弁が備えられる。この膨張弁は、エバポレータの出口側配管の冷媒温度に感応してエバポレータに供給される冷媒の流れを絞り、最適流量に制御する。 Refrigeration cycle devices such as car air conditioners are equipped with an expansion valve to fully utilize the capacity of the evaporator. This expansion valve responds to the refrigerant temperature in the evaporator's outlet piping and throttles the flow of refrigerant supplied to the evaporator to control the flow rate to an optimal level.

一方、かかる膨張弁では、弁内を流れる冷媒によって異音が発生することがあり、このような異音を低減させる様々な提案が従来からなされている(例えば下記特許文献1参照)。 However, such expansion valves can generate abnormal noise due to the refrigerant flowing through the valve, and various proposals have been made to reduce such abnormal noise (see, for example, Patent Document 1 below).

特開2019-11885号公報JP 2019-11885 A

ところで、上記特許文献1に記載の発明は、弁開度が小さいときほど弁支持部や作動棒を押さえる力が強くなる構造を採用することで弁開度に応じた効果的な制振が可能となる一方で、制振用の防振ばねを新たに備える必要があり、部品点数の増加から製造コストが嵩む面がある。また部品点数が増える分、組立工程数も増えることとなる。 The invention described in the above-mentioned Patent Document 1 employs a structure in which the force pressing down on the valve support and actuating rod increases as the valve opening becomes smaller, enabling effective vibration control according to the valve opening. However, it requires the provision of a new vibration control spring, which increases the number of parts and therefore increases manufacturing costs. Furthermore, the increased number of parts also increases the number of assembly steps.

他方、弁振動は弁の開度だけでなく、弁内を通過する冷媒の圧力にも影響され、冷媒の圧力が高くなるほど弁振動は起こりやすくなる。しかしながら、上記特許文献1記載の発明は弁開度の観点から効果的な制振を図ったものであり、冷媒圧力に対応した効果的な振動抑制を行うことは必ずしも出来ない。 On the other hand, valve vibration is affected not only by the valve opening but also by the pressure of the refrigerant passing through the valve, and the higher the refrigerant pressure, the more likely the valve vibration will occur. However, the invention described in Patent Document 1 above aims to effectively suppress vibration from the perspective of the valve opening, and is not necessarily able to effectively suppress vibration in response to the refrigerant pressure.

したがって、本発明の目的は、部品点数や製造工程数を増加させることなく弁振動を抑制することにあり、さらに、冷媒の圧力が高くなるほど振動の抑制力を高めることを可能とする点にある。 The object of the present invention is therefore to suppress valve vibration without increasing the number of parts or manufacturing processes, and further to make it possible to increase the vibration suppression effect as the refrigerant pressure increases.

前記課題を解決し目的を達成するため、本発明に係る膨張弁は、冷媒を導入する流入路と当該冷媒を排出する流出路とに連通する弁室を有する弁本体と、弁座に着座した閉弁状態と弁座から離間した開弁状態との間で弁座に対して進退動することにより冷媒の流量を変更する弁部、および、当該弁部を弁座に対して進退動可能に弁室内に支持する弁支持部を有する弁体と、弁部を弁座に向けて付勢する付勢部材と、弁部に接触して付勢部材による付勢力に抗し弁部を開弁方向へ移動させる作動棒と、作動棒を駆動する駆動部とを備えている。 In order to solve the above problems and achieve the object, the expansion valve according to the present invention comprises a valve body having a valve chamber communicating with an inlet passage for introducing a refrigerant and an outlet passage for discharging the refrigerant, a valve part that changes the flow rate of the refrigerant by moving toward and away from the valve seat between a closed state in which the valve part is seated on the valve seat and an open state in which the valve part is spaced from the valve seat, and a valve body having a valve support part that supports the valve part within the valve chamber so that the valve part can move toward and away from the valve seat, a biasing member that biases the valve part toward the valve seat, an operating rod that contacts the valve part and moves the valve part in the valve opening direction against the biasing force of the biasing member, and a drive part that drives the operating rod.

また、開弁状態から閉弁状態への作動棒の移動方向を上方向、閉弁状態から開弁状態への作動棒の移動方向を下方向とそれぞれしたときに、弁支持部は、外周面の少なくとも一部が弁室の内壁面に上下方向へ摺動可能に当接し且つ弁部を上下方向に移動可能に支持する。また弁座は、流入路の弁室側の開口部である流入口を有し、当該流入口はその縁が斜め下方を向くように弁室に対して開口している。さらに弁部は、当該弁部が弁座に着座したときに流入口の縁に当接して当該流入口を塞ぐことが出来るように斜め上方を向いた傾斜面を備える。そして、開弁状態にあるときに流入口から弁室に流入する冷媒の押圧力を弁体が受けることにより弁支持部が弁室の内壁面に押し付けられるように弁体を弁室内に配置する。なお、上記本発明に係る膨張弁では、弁支持部の外周面の少なくとも一部が、弁室の内壁面に、閉弁状態と最大開弁状態との間、上下方向へ摺動可能に当接することがある。また、上記弁室は円筒状の中間部を有し、上記弁支持部は、弁部の下縁から下方へ延びる円筒状の形状を有し且つ弁室の円筒状の中間部に上下動可能に嵌合していることがある。 When the movement direction of the working rod from the open state to the closed state is the upward direction, and when the movement direction of the working rod from the closed state to the open state is the downward direction, at least a part of the outer circumferential surface of the valve support part is in contact with the inner wall surface of the valve chamber so as to be slidable in the vertical direction, and supports the valve part so as to be movable in the vertical direction. The valve seat has an inlet which is an opening of the inflow passage on the valve chamber side, and the inlet opens into the valve chamber so that its edge faces diagonally downward. The valve part has an inclined surface facing diagonally upward so that the valve part can abut against the edge of the inlet to close the inlet when the valve part is seated on the valve seat. The valve body is disposed in the valve chamber so that the valve support part is pressed against the inner wall surface of the valve chamber by receiving a pressing force of the refrigerant flowing into the valve chamber from the inlet when the valve is in the open state. In the expansion valve according to the present invention, at least a part of the outer circumferential surface of the valve support part may be in contact with the inner wall surface of the valve chamber so as to be slidable in the vertical direction between the closed state and the maximum open state. In addition, the valve chamber may have a cylindrical middle portion, and the valve support portion may have a cylindrical shape extending downward from the lower edge of the valve portion and be fitted into the cylindrical middle portion of the valve chamber so as to be movable up and down.

本発明の膨張弁では、流入口から弁室内に流れ込む冷媒の流れを受け、当該冷媒の流れに押されるように弁室内に弁体を配置してあり、この冷媒による押圧力によって弁支持部が弁室の内壁面に押し付けられる。したがって、冷媒の押圧力により弁支持部やこれによって支持される弁部の振動が抑えられ、前述した防振ばねのような制振用の部材を別に備えなくても弁振動を抑制することができ、弁振動の抑制にあたって部品点数や製造工程数の増加を招くことを回避することが出来る。 In the expansion valve of the present invention, the valve body is disposed within the valve chamber so that it receives the flow of refrigerant flowing into the valve chamber from the inlet and is pushed by the flow of the refrigerant, and the valve support part is pressed against the inner wall surface of the valve chamber by the pressing force of the refrigerant. Therefore, the vibration of the valve support part and the valve part supported by it is suppressed by the pressing force of the refrigerant, and valve vibration can be suppressed without the need for a separate vibration-damping member such as the vibration-proof spring mentioned above, and it is possible to avoid an increase in the number of parts and manufacturing steps required to suppress valve vibration.

また、冷媒の流れ(押圧力)を利用して制振を行う本発明によれば、冷媒の圧力が高くなるほど強い押圧力が弁支持部に加わることとなるから、冷媒の圧力が高いときほど生じやすくなる弁振動に効果的に対処することが可能となる。 In addition, according to the present invention, which uses the flow of refrigerant (pressure) to suppress vibration, the higher the refrigerant pressure, the stronger the pressure applied to the valve support section, making it possible to effectively deal with valve vibration, which is more likely to occur when the refrigerant pressure is high.

なお、本発明において冷媒の押圧力を直接受けるのは典型的には後の実施形態のように弁部であり、弁部が受けた冷媒の押圧力が弁支持部に伝達されて弁支持部が弁室内壁面に押し付けられるが、当該冷媒の押圧力は弁支持部が受けても良いし、弁部と弁支持部の双方が当該押圧力を受ける構造であっても良い。 In the present invention, it is typically the valve portion that receives the pressing force of the refrigerant directly, as in the following embodiment, and the pressing force of the refrigerant received by the valve portion is transmitted to the valve support portion, which presses the valve support portion against the wall surface inside the valve chamber. However, the pressing force of the refrigerant may be received by the valve support portion, or the structure may be such that both the valve portion and the valve support portion receive the pressing force.

また本発明の一態様では、前記弁部が錐台状(例えば角錐台状または円錐台状)の形状あるいは錐体状(例えば角錐状または円錐状)の形状を有し、前記傾斜面が錐体面(錐台または錐体の周面)の一部である。さらに当該態様では、弁部が四角錐台状の形状を有し、当該弁部の上底面に作動棒の下端を接触させることにより弁部を下方へ移動させることを可能とする場合がある。 In one aspect of the present invention, the valve portion has a frustum shape (e.g., a truncated pyramid shape or a truncated cone shape) or a pyramidal shape (e.g., a pyramidal shape or a truncated cone shape), and the inclined surface is part of the pyramidal surface (the peripheral surface of the frustum or pyramid). In this aspect, the valve portion may have a truncated pyramid shape, and the valve portion may be moved downward by contacting the lower end of the actuating rod with the upper bottom surface of the valve portion.

また上記態様では、弁部が3面以上の錐体面を有する角錐台状の形状を有し、当該3面以上の錐体面が、第一の傾斜角を有する第一錐体面と、当該第一の傾斜角とは異なる第二の傾斜角を有する第二錐体面とを含むことがある。 In the above embodiment, the valve portion may have a truncated pyramid shape having three or more pyramidal surfaces, and the three or more pyramidal surfaces may include a first pyramidal surface having a first inclination angle and a second pyramidal surface having a second inclination angle different from the first inclination angle.

このような態様によれば、斜め下方を向いた流入口の製造公差内における傾斜角度のばらつきに柔軟に対応することが出来る。すなわち本発明の膨張弁では、弁部の傾斜面が弁座の傾斜した流入口に当接することにより弁が閉じられるから、弁部の傾斜面の傾斜角を、流入口の傾斜角にちょうど一致させておく必要がある。しかしながら、流入口の傾斜角は製造公差内のばらつき(誤差)を有することがある。そこで、弁部の複数ある錐体面の各々の傾斜角を変えておき、当該弁部が複数の異なる傾斜面を備えるものとしておけば、組立時に流入口の実際の傾斜角にちょうど合う錐体面(傾斜面)を選択して弁体を弁本体に組み込むことが可能となる。つまり、弁体の向きを適宜変えて流入口の実際の傾斜角にちょうど合う錐体面(傾斜面)が流入口に対向するように弁体を組み込めば、閉弁精度の高い(弁座漏れのない)膨張弁を製造することが出来る。 According to this embodiment, it is possible to flexibly respond to variations in the inclination angle of the inlet facing diagonally downward within the manufacturing tolerance. That is, in the expansion valve of the present invention, the valve is closed by the inclined surface of the valve part abutting against the inclined inlet of the valve seat, so it is necessary to make the inclination angle of the inlet exactly match the inclination angle of the inlet. However, the inclination angle of the inlet may have variations (errors) within the manufacturing tolerance. Therefore, if the inclination angle of each of the multiple conical surfaces of the valve part is changed and the valve part is provided with multiple different inclined surfaces, it is possible to select the conical surface (inclined surface) that exactly matches the actual inclination angle of the inlet during assembly and incorporate the valve body into the valve body. In other words, if the orientation of the valve body is appropriately changed and the valve body is incorporated so that the conical surface (inclined surface) that exactly matches the actual inclination angle of the inlet faces the inlet, an expansion valve with high valve closing accuracy (no valve seat leakage) can be manufactured.

また本発明の別の一態様では、流入路より小さな流路径を有し且つ流入口を形成する縮径管部材を流入路の弁室側の端部に備えることがある。 In another aspect of the present invention, a reduced diameter pipe member having a flow passage diameter smaller than that of the inlet passage and forming an inlet port may be provided at the end of the inlet passage on the valve chamber side.

このような態様によれば、流路断面積(流路径)が異なる様々な縮径管部材を用意しておくことにより、膨張弁に流入する(膨張弁を通過する)冷媒の流量を変えることが出来る。したがって当該態様によれば、弁本体を共通化し、縮径管部材だけを変更するだけで様々な容量の膨張弁を構成することができ、各種容量の膨張弁を製造する場合のコストを低減することが出来る。 According to this aspect, by preparing various diameter-reducing pipe members with different flow path cross-sectional areas (flow path diameters), the flow rate of the refrigerant flowing into (passing through) the expansion valve can be changed. Therefore, according to this aspect, the valve body can be standardized and expansion valves of various capacities can be constructed by simply changing the diameter-reducing pipe members, thereby reducing the cost of manufacturing expansion valves of various capacities.

さらに本発明の別の一態様では、上下方向(上方向および下方向)に直交する左右方向に略水平に延びるように流入路と流出路とを弁本体に形成するとともに、流入口と、流出路の弁室側の開口部である流出口とを上下方向に関し略同一の高さ位置に配置する。 In yet another aspect of the present invention, the inflow and outflow passages are formed in the valve body so as to extend substantially horizontally in the left-right direction perpendicular to the vertical direction (upward and downward), and the inflow opening and the outflow opening, which is the opening on the valve chamber side of the outflow passage, are positioned at substantially the same height in the vertical direction.

このような態様によれば、膨張弁の高さ寸法が従来(後述の図13参照)より小さい低背な膨張弁を構成することが可能となる。 This aspect makes it possible to construct a low-profile expansion valve whose height dimension is smaller than that of the conventional expansion valve (see Figure 13 below).

また本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却して液化する凝縮器と、凝縮器で液化された冷媒を減圧膨張させる膨張弁と、膨張弁で減圧膨張された冷媒を蒸発気化する蒸発器とを備えた冷凍サイクル装置であり、膨張弁として上述した本発明ないし態様に係るいずれかの膨張弁を使用する。 The refrigeration cycle device according to the present invention is a refrigeration cycle device that includes a compressor that compresses a refrigerant, a condenser that cools and liquefies the refrigerant compressed by the compressor, an expansion valve that reduces the pressure and expands the refrigerant liquefied by the condenser, and an evaporator that evaporates the refrigerant that has been reduced in pressure and expanded by the expansion valve, and uses any of the expansion valves according to the present invention or aspects described above as the expansion valve.

本発明によれば、部品点数や製造工程数を増加させることなく弁振動を抑制することができ、さらに、冷媒の圧力が高くなるほど制振力を高めることが可能となる。 The present invention makes it possible to suppress valve vibration without increasing the number of parts or manufacturing steps, and furthermore, the higher the refrigerant pressure, the greater the vibration damping force becomes.

本発明の他の目的、特徴および利点は、図面に基づいて述べる以下の本発明の実施の形態の説明により明らかにする。なお、各図中、同一の符号は、同一又は相当部分を示す。 Other objects, features, and advantages of the present invention will become apparent from the following description of the embodiments of the present invention, which are given with reference to the drawings. Note that the same reference numerals in each drawing indicate the same or corresponding parts.

図1は、本発明の第1の実施形態に係る膨張弁(開弁状態)を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing an expansion valve (open state) according to a first embodiment of the present invention. 図2は、前記第1実施形態に係る膨張弁(開弁状態)の要部(弁部、流入口および流出路)を拡大して示す横断面図(図1のA-A矢視断面)である。FIG. 2 is an enlarged cross-sectional view (a cross-section taken along the line AA in FIG. 1) showing the main parts (the valve portion, the inlet port, and the outlet channel) of the expansion valve (in an open state) according to the first embodiment. 図3は、前記第1実施形態に係る膨張弁の弁体を示す斜視図である。FIG. 3 is a perspective view showing a valve body of the expansion valve according to the first embodiment. 図4は、前記第1実施形態に係る膨張弁の縮径管部材を示す斜視図である。FIG. 4 is a perspective view showing a diameter-reducing pipe member of the expansion valve according to the first embodiment. 図5は、前記第1実施形態に係る膨張弁(閉弁状態)の下部を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing a lower part of the expansion valve (in a closed state) according to the first embodiment. 図6は、前記第1実施形態に係る膨張弁(閉弁状態)の要部(弁部、流入口および流出路)を拡大して前記図2と同様に示す横断面図(図5のA1-A1矢視断面)である。FIG. 6 is a cross-sectional view (cross-section taken along the A1-A1 arrows in FIG. 5) similar to FIG. 2, showing an enlarged view of the main parts (valve portion, inlet port, and outlet path) of the expansion valve (closed state) according to the first embodiment. 図7は、本発明の第2の実施形態に係る膨張弁(開弁状態)の要部(弁部、流入口および流出路)を拡大して前記図2と同様に示す横断面図(図1のA-A矢視断面に相当する)である。FIG. 7 is a cross-sectional view (corresponding to the cross section taken along the line A-A in FIG. 1) showing an enlarged view of the main parts (valve portion, inlet and outlet passage) of an expansion valve (open state) according to a second embodiment of the present invention, similar to FIG. 2. 図8は、前記第2実施形態に係る膨張弁の弁体を示す斜視図である。FIG. 8 is a perspective view showing a valve body of the expansion valve according to the second embodiment. 図9は、前記第2実施形態に係る膨張弁の縮径管部材を示す斜視図である。FIG. 9 is a perspective view showing a diameter-reducing pipe member of the expansion valve according to the second embodiment. 図10は、本発明の第3の実施形態に係る膨張弁(開弁状態)を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing an expansion valve (open state) according to a third embodiment of the present invention. 図11は、前記第3実施形態に係る膨張弁(開弁状態)の要部(弁部、流入口および流出路)を拡大して前記図2および図7と同様に示す横断面図(図10のB-B矢視断面)である。Figure 11 is a cross-sectional view (cross-section taken along the line B-B in Figure 10) showing an enlarged view of the main parts (valve portion, inlet and outlet path) of the expansion valve (open state) of the third embodiment, similar to Figures 2 and 7. 図12は、本発明の第4の実施形態に係る冷凍サイクル装置を示す概念図である。FIG. 12 is a conceptual diagram showing a refrigeration cycle device according to a fourth embodiment of the present invention. 図13は、従来の膨張弁の一例を示す縦断面図である。FIG. 13 is a vertical cross-sectional view showing an example of a conventional expansion valve.

〔第1実施形態〕
図1から図6を参照して本発明の第1の実施形態について説明する。なお、各図には上下左右または前後左右の各方向を表す二次元直交座標、あるいは上下前後左右の各方向を表す三次元直交座標を示し、以下の説明はこれらの方向に基いて行う。
First Embodiment
A first embodiment of the present invention will be described with reference to Figures 1 to 6. Each figure shows two-dimensional orthogonal coordinates representing each of the up, down, left, right, or front, back, left, and right directions, or three-dimensional orthogonal coordinates representing each of the up, down, front, back, left, and right directions, and the following description will be based on these directions.

図1から図6に示すように、本発明の第1の実施形態に係る膨張弁11は、弁室13を内部に備えた弁本体12と、弁室13に冷媒を導入する流入路21と、弁室13から冷媒を排出する流出路22と、弁本体12の上部を左右に貫通するように冷媒を流通させる戻り流路23と、弁室13内で上下動することにより弁室13内に流入する冷媒の量を変更する弁体15と、弁体15が当接することにより閉弁を可能とする(弁室13への冷媒の流入を遮断する)弁座14と、弁本体12の下面部に装着し弁室13を密閉するばね受け部材17と、弁体15を上方へ付勢するためにばね受け部材17と弁体15との間に配置したコイルばね(付勢部材)16と、コイルばね16の付勢力に抗して弁体15を下方へ移動させる作動棒18と、作動棒18を上下動させるため弁本体12の上面部に備えたダイアフラム装置(駆動部)24とを有する。なお、戻り流路23とダイアフラム装置24の動作については、本実施形態の膨張弁11を使用する後述の第4実施形態において詳しく述べる。 As shown in Figs. 1 to 6, the expansion valve 11 according to the first embodiment of the present invention comprises a valve body 12 having a valve chamber 13 therein, an inflow passage 21 for introducing a refrigerant into the valve chamber 13, an outflow passage 22 for discharging the refrigerant from the valve chamber 13, a return passage 23 for circulating the refrigerant so as to pass through the upper part of the valve body 12 from left to right, a valve element 15 for changing the amount of refrigerant flowing into the valve chamber 13 by moving up and down within the valve chamber 13, and a valve element 15 for closing the valve by abutting against the valve element 15. It has a valve seat 14 (which blocks the inflow of refrigerant into the valve chamber 13), a spring receiving member 17 attached to the underside of the valve body 12 to seal the valve chamber 13, a coil spring (biasing member) 16 arranged between the spring receiving member 17 and the valve body 15 to bias the valve body 15 upward, an operating rod 18 that moves the valve body 15 downward against the biasing force of the coil spring 16, and a diaphragm device (drive unit) 24 provided on the upper surface of the valve body 12 to move the operating rod 18 up and down. The operation of the return flow path 23 and the diaphragm device 24 will be described in detail in the fourth embodiment described later, in which the expansion valve 11 of this embodiment is used.

弁座14は、流入路21の弁室側の端部に設置した縮径管部材20により形成する。具体的には、縮径管部材20は、流入路21の流路断面を狭める管状部材で、流入路21の基端部(右側部分)の径より小さな径の水平に(左右方向に)延びる流路を備えている。また、縮径管部材20の先端面(左端面)を斜めに切り欠くことにより弁座14を形成してある。この弁座14は、左斜め下方を向いた(言い換えれば先端に向かって上り勾配となる)傾斜平面で、縮径管部材20の上記流路をこの弁座14に開口させることにより本発明に言う流入口21aを形成した。したがって、弁座14と同様に流入口21aもその縁が左斜め下方を向いた開口となっており、後述する弁部15aの傾斜面31aが弁座14に当接することにより流入口21aが塞がれ、閉弁する。 The valve seat 14 is formed by a reduced diameter pipe member 20 installed at the end of the inflow passage 21 on the valve chest side. Specifically, the reduced diameter pipe member 20 is a tubular member that narrows the flow passage cross section of the inflow passage 21, and has a flow passage that extends horizontally (in the left-right direction) with a diameter smaller than the diameter of the base end (right side part) of the inflow passage 21. The valve seat 14 is formed by cutting out the tip surface (left end surface) of the reduced diameter pipe member 20 at an angle. This valve seat 14 is an inclined plane that faces diagonally downward to the left (in other words, has an upward slope toward the tip), and the above-mentioned flow passage of the reduced diameter pipe member 20 is opened to this valve seat 14 to form the inflow port 21a referred to in the present invention. Therefore, like the valve seat 14, the inflow port 21a also has an opening with its edge facing diagonally downward to the left, and the inclined surface 31a of the valve portion 15a described later abuts against the valve seat 14, blocking the inflow port 21a and closing the valve.

なお、流路の径が異なる複数種類の縮径管部材20を用意しておけば、弁本体12に組み込む縮径管部材20を変えることで、弁本体12を共通化しつつ容量の異なる各種の膨張弁11を製造することが可能となる。 If multiple types of reduced diameter pipe members 20 with different flow path diameters are prepared, it is possible to manufacture various expansion valves 11 with different capacities while using a common valve body 12 by changing the reduced diameter pipe member 20 to be incorporated into the valve body 12.

弁体15は、弁座14に当接(着座)して流入口21aを塞ぐことにより閉弁を行う弁部15aと、弁部15aの下部に備えられて弁部15aを上下動可能に支持する弁支持部15bとからなる。弁部15aは、四角錐台状の形状を有し、斜め上方(右斜め上方、前斜め上方、左斜め上方および後斜め上方)を向いた4つの錐体面31a,31b,31c,31dを有する。これらの錐体面31a~31dのうち、右斜め上方を向いた錐体面31aを本発明に言う傾斜面として使用する。すなわち、当該錐体面(傾斜面)31aは、前記弁座14と同一の傾斜角を有し、弁体15が上方へ移動すると当該傾斜面31aが弁座14に当接(着座)し、流入口21aが塞がれる。 The valve body 15 is composed of a valve portion 15a that abuts (seats) on the valve seat 14 to close the inlet 21a, and a valve support portion 15b that is provided at the bottom of the valve portion 15a and supports the valve portion 15a so that it can move up and down. The valve portion 15a has a quadrangular pyramid shape and has four pyramid faces 31a, 31b, 31c, and 31d that face diagonally upward (diagonally upward to the right, diagonally upward to the front, diagonally upward to the left, and diagonally upward to the rear). Of these pyramid faces 31a to 31d, the pyramid face 31a that faces diagonally upward to the right is used as the inclined face referred to in the present invention. In other words, the pyramid face (inclined face) 31a has the same inclination angle as the valve seat 14, and when the valve body 15 moves upward, the inclined face 31a abuts (seats) on the valve seat 14, and the inlet 21a is blocked.

なお、弁部15aの4つの錐体面31a~31dは各錐体面の傾斜角が異なるようにしておいても良い。製造時に加工された弁座14の実際の傾斜角により一致する錐体面31a~31dを傾斜面として利用することを可能とするためである。すなわち、弁座14(縮径管部材20の先端面)の傾斜角は製造公差内の誤差が生じることがある。このような誤差が生じた場合に、弁体15を弁本体12に組み込むときに4つの錐体面31a~31dの中から弁座14の実際の傾斜角に最も合う(一致する)傾斜角を有する錐体面を選択して当該錐体面が弁座14に向き合うように弁体15を弁本体12に設置すれば、より閉弁精度の高い(弁座漏れのない)膨張弁11を製造することが可能となる。 The four cone surfaces 31a-31d of the valve portion 15a may have different inclination angles. This is to make it possible to use the cone surfaces 31a-31d that match the actual inclination angle of the valve seat 14 machined during manufacturing as the inclined surfaces. In other words, the inclination angle of the valve seat 14 (the tip surface of the reduced diameter tube member 20) may have an error within the manufacturing tolerance. If such an error occurs, when assembling the valve element 15 into the valve body 12, a cone surface having an inclination angle that is most similar (matches) the actual inclination angle of the valve seat 14 from among the four cone surfaces 31a-31d is selected, and the valve element 15 is installed in the valve body 12 so that the cone surface faces the valve seat 14. This makes it possible to manufacture an expansion valve 11 with higher valve closing accuracy (no valve seat leakage).

弁支持部15bは、弁部15aの下縁から下方へ延びる円筒状の形状を有し、円筒状の弁室中間部に上下動可能に嵌合している。言い換えれば、弁支持部15bはその外周面が弁室13の内壁面13aに摺動可能に接しており、シリンダ内で上下動するピストンのように弁室13内で弁体15は上下動可能に備えられている。また弁支持部15bには、下面からコイルばね16の上端部が差し込まれ、当該コイルばね16により弁体15が上方へ付勢されている。 The valve support portion 15b has a cylindrical shape that extends downward from the lower edge of the valve portion 15a, and is fitted into the middle part of the cylindrical valve chamber so as to be movable up and down. In other words, the outer circumferential surface of the valve support portion 15b is in sliding contact with the inner wall surface 13a of the valve chamber 13, and the valve body 15 is provided so as to be able to move up and down within the valve chamber 13 like a piston that moves up and down within a cylinder. In addition, the upper end of the coil spring 16 is inserted from the bottom of the valve support portion 15b, and the valve body 15 is urged upward by the coil spring 16.

膨張弁11の開閉を行う作動棒18は、弁本体12の内部において上下方向に延び、上端をダイアフラム装置24に接続するとともに下端を弁部15aの上面(上底面)32に接触させてある。 The actuating rod 18 that opens and closes the expansion valve 11 extends vertically inside the valve body 12, with its upper end connected to the diaphragm device 24 and its lower end in contact with the upper surface (upper bottom surface) 32 of the valve section 15a.

流入路21と流出路22とは、弁室13を介して互いに連通するが、コイルばね17の上方への付勢力によって弁体15(弁部15a)が弁座14に当接し着座した閉弁状態(図5および図6に示す状態)では流入路21と流出路22とは連通せずに遮断状態となる。 The inflow passage 21 and outflow passage 22 communicate with each other via the valve chamber 13, but in the closed valve state (as shown in Figures 5 and 6) in which the valve body 15 (valve portion 15a) is seated against the valve seat 14 by the upward biasing force of the coil spring 17, the inflow passage 21 and outflow passage 22 are not connected to each other and are in a blocked state.

一方、作動棒18に押されて弁体15が下方へ移動し弁部15aが弁座14から離れると(図1および図2に示す状態)、流入口21aが開いて流入路21と流出路22とが連通し、流入路21を通って流入口21aから弁室13の内部に流入した冷媒は、流出路22の弁室側の端部である流出口22aから流出路22を通って膨張弁11の外へ排出される。なお、排出された冷媒は、エバポレータ64(後述の図12参照)に導入される。また、弁体15の上下方向の位置が変更され、弁体15(弁部15aの傾斜面31a)と弁座14(流入口21a)との距離が変更されることにより冷媒の流量が調整される。 On the other hand, when the valve body 15 is pushed downward by the actuation rod 18 and the valve portion 15a separates from the valve seat 14 (as shown in Figures 1 and 2), the inlet 21a opens, the inlet passage 21 and the outlet passage 22 communicate with each other, and the refrigerant that flows into the inside of the valve chamber 13 from the inlet 21a through the inlet passage 21 is discharged from the outlet passage 22 through the outlet passage 22 from the outlet 22, which is the end of the outlet passage 22 on the valve chamber side. The discharged refrigerant is introduced into the evaporator 64 (see Figure 12 described later). The flow rate of the refrigerant is adjusted by changing the vertical position of the valve body 15 and changing the distance between the valve body 15 (the inclined surface 31a of the valve portion 15a) and the valve seat 14 (the inlet 21a).

また本実施形態(後述の第2~第4実施形態についても同様/以下同様)では、開弁状態において流入口21aから弁室13内に流入する冷媒が弁部15aに衝突し、この冷媒の流れによって弁体15が側方(左方)へ押され、弁支持部15bが弁室13の流出口側の内壁面13aに押し付けられる。したがって、この冷媒の押圧力により弁体15の振動が抑制される。さらに、弁体15に加わる当該押圧力は冷媒の圧力が高くなるほど強くなるから、冷媒の圧力が高いときほど生じやすくなる弁振動に効果的に対処することが出来る。 In addition, in this embodiment (similar to the second to fourth embodiments described below/similar below), in the open valve state, the refrigerant flowing into the valve chamber 13 from the inlet 21a collides with the valve portion 15a, and the flow of the refrigerant pushes the valve body 15 to the side (left), and the valve support portion 15b is pressed against the inner wall surface 13a on the outlet side of the valve chamber 13. Therefore, the pressing force of the refrigerant suppresses the vibration of the valve body 15. Furthermore, since the pressing force applied to the valve body 15 becomes stronger as the refrigerant pressure increases, it is possible to effectively deal with valve vibration, which is more likely to occur as the refrigerant pressure increases.

また本実施形態によれば、弁室13を挟んで流入路21と流出路22が水平に延び且つ略同一の高さ位置に配置することが出来るから、高さ寸法を低く抑えた低背な膨張弁11を構成することが出来る。この点につきさらに述べれば、図13に示すように従来の膨張弁61では、流入口21a側ではなく流出口22a側に弁座14が形成されるとともに弁座14と弁体15aは上下方向に垂直に対向するように配置され、弁座14から垂直上方に延びるのど部60を介して弁室13と流出路22とが連通する。したがって、流入路21と流出路22を同じ高さ位置に配置することは出来ず、少なくとも両流路21,22の高さ位置の差分(のど部60の長さ)hだけ膨張弁61の高さ寸法が大きくならざるを得ない。これに対し、流入口21側に備えた傾斜した弁座14に弁部15aの傾斜面31aが斜めに着座する本発明ないし実施形態によれば、のど部60は不要となり、弁室13を挟んで流入路21(流入口21a)と流出路22(流出口22a)を同じ高さ位置に備えることが出来るから、背の低い膨張弁11を構成することが可能となる。 In addition, according to this embodiment, the inflow passage 21 and the outflow passage 22 can be arranged horizontally and at approximately the same height position across the valve chamber 13, so that a low-profile expansion valve 11 with a low height can be constructed. To go further with this point, as shown in FIG. 13, in a conventional expansion valve 61, the valve seat 14 is formed on the outflow port 22a side rather than the inflow port 21a side, and the valve seat 14 and the valve body 15a are arranged to face each other vertically in the up-down direction, and the valve chamber 13 and the outflow passage 22 communicate with each other through the throat portion 60 extending vertically upward from the valve seat 14. Therefore, the inflow passage 21 and the outflow passage 22 cannot be arranged at the same height position, and the height dimension of the expansion valve 61 must be increased by at least the difference in height between the two passages 21 and 22 (the length of the throat portion 60) h. In contrast, according to the present invention or embodiment, in which the inclined surface 31a of the valve portion 15a sits obliquely on the inclined valve seat 14 on the inlet 21 side, the throat portion 60 is unnecessary, and the inflow passage 21 (inlet 21a) and the outflow passage 22 (outlet 22a) can be located at the same height across the valve chamber 13, making it possible to construct a low-profile expansion valve 11.

さらに、従来の膨張弁61では、冷媒はのど部60を垂直に上昇し、流出口22aから水平な流出路22に侵入して流出口上方の流出路22の天井面に冷媒が垂直に衝突することとなるから、冷媒中に含まれる気泡が破裂し易く異音(破裂音)が生じ易い面があった。これに対し、本発明ないし実施形態の膨張弁11によれば、冷媒は水平に並んだ流入路21、弁室13および流出路22をスムーズに通り抜けるから、冷媒中に含まれることがある気泡が従来の膨張弁61と比べて破裂し難く、気泡の破裂音を低減させることも出来る。なお、本発明ないし実施形態の膨張弁11において冷媒は弁部15aに衝突することとなるが、従来の膨張弁61のように流出路22の天井面に垂直に衝突する場合と比べれば弁部15aの傾斜面に斜めに衝突する分、衝撃は小さく気泡は破裂し難い。 Furthermore, in the conventional expansion valve 61, the refrigerant rises vertically through the throat 60, enters the horizontal outflow passage 22 from the outlet 22a, and collides vertically with the ceiling surface of the outflow passage 22 above the outlet, which makes it easy for the bubbles contained in the refrigerant to burst and generate abnormal noises (explosive sounds). In contrast, according to the expansion valve 11 of the present invention or embodiment, the refrigerant passes smoothly through the inflow passage 21, valve chamber 13, and outflow passage 22, which are arranged horizontally, so that the bubbles that may be contained in the refrigerant are less likely to burst than in the conventional expansion valve 61, and the bursting sounds of the bubbles can also be reduced. In addition, in the expansion valve 11 of the present invention or embodiment, the refrigerant collides with the valve portion 15a, but compared to the case where the refrigerant collides vertically with the ceiling surface of the outflow passage 22 as in the conventional expansion valve 61, the impact is smaller because the refrigerant collides obliquely with the inclined surface of the valve portion 15a, and the bubbles are less likely to burst.

〔第2実施形態〕
図7~図9を参照して本発明の第2の実施形態に係る膨張弁を説明する。なお、第1実施形態と同様の構成については同一の符号を付して重複した説明を省略し、相違点を中心に説明を行う。また本実施形態の膨張弁の縦断面図は、前記第1実施形態(図1)と同一に表れるから図1も適宜参照する。
Second Embodiment
An expansion valve according to a second embodiment of the present invention will be described with reference to Figures 7 to 9. Note that the same components as those in the first embodiment are given the same reference numerals, and duplicated descriptions will be omitted, and the following description will focus on the differences. In addition, since the longitudinal cross-sectional view of the expansion valve of this embodiment is the same as that of the first embodiment (Figure 1), reference will also be made to Figure 1 as appropriate.

本発明の第2の実施形態に係る膨張弁11は、図1および図7~図9に示すように前記第1実施形態と同様に、弁座14を形成する縮径管部材20を流入路21の先端部(弁室13側の端部)に備え、弁部15aと弁支持部15bとからなる弁体15を備えるものであるが、弁部15aが円錐台状の形状を有する。したがって、流入口21aを塞ぐ傾斜面31aは錐体面の一部として湾曲した凸曲面となっており、これに対応して弁座14は湾曲した凹曲面となっている。 As shown in Figures 1 and 7 to 9, the expansion valve 11 according to the second embodiment of the present invention is similar to the first embodiment in that it has a reduced diameter pipe member 20 forming the valve seat 14 at the tip end (the end on the valve chamber 13 side) of the inflow passage 21, and has a valve body 15 consisting of a valve portion 15a and a valve support portion 15b, but the valve portion 15a has a truncated cone shape. Therefore, the inclined surface 31a that blocks the inflow port 21a is a curved convex surface as part of the cone surface, and the valve seat 14 is a curved concave surface corresponding to this.

弁体15は、前記第1実施形態と同様に弁室13内に上下動可能に設置され、コイルばね16の付勢力に抗して作動棒18によって下方へ押し下げられると流入口21aが開かれ、開弁状態(図1および図7の状態)となる。このとき、流入口21aから弁室13に流入する冷媒の押圧力により弁支持部15bが弁室13の流出口22a側の内壁面13aに押し付けられ、弁振動が抑制される。また、弁体15の上下方向の位置が変更され、弁体15(弁部15aの傾斜面31a)と弁座14(流入口21a)との距離が変更されることにより冷媒の流量が調整される。 The valve body 15 is installed in the valve chamber 13 so as to be movable up and down, and when it is pushed downward by the actuating rod 18 against the biasing force of the coil spring 16, the inlet 21a opens, and the valve is in an open state (the state shown in Figs. 1 and 7). At this time, the valve support part 15b is pressed against the inner wall surface 13a on the outlet 22a side of the valve chamber 13 by the pressing force of the refrigerant flowing into the valve chamber 13 from the inlet 21a, suppressing valve vibration. In addition, the vertical position of the valve body 15 is changed, and the flow rate of the refrigerant is adjusted by changing the distance between the valve body 15 (inclined surface 31a of the valve part 15a) and the valve seat 14 (inlet 21a).

一方、作動棒18が上昇し、コイルばね16の付勢力により弁体15が上方へ押し上げられると、弁部15aの傾斜面31aが弁座14に当接(着座)し、流入口22aが塞がれて閉弁状態となる。 On the other hand, when the actuating rod 18 rises and the valve body 15 is pushed upward by the force of the coil spring 16, the inclined surface 31a of the valve portion 15a abuts (seats) against the valve seat 14, blocking the inlet 22a and closing the valve.

〔第3実施形態〕
図10~図11を参照して本発明の第3の実施形態に係る膨張弁を説明する。この実施形態は、前記第2実施形態(図8)と同じ形状および構造を有する弁体15を備えているが、弁座14の形成に縮径管部材20を用いることなく、弁本体12(弁室13の内壁面)を加工して弁座14を形成したものである。
Third Embodiment
An expansion valve according to a third embodiment of the present invention will be described with reference to Figures 10 and 11. This embodiment includes a valve body 15 having the same shape and structure as the second embodiment (Figure 8), but the valve seat 14 is formed by processing the valve body 12 (the inner wall surface of the valve chamber 13) without using a diameter-reducing tube member 20 to form the valve seat 14.

具体的には、弁室13の流入路21a側の上部に円錐状の傾斜した(斜め下方を向いた)湾曲面を形成し、この湾曲面を弁座14とした。弁座14には、流入路21の弁室13への開口である流入口21aを形成する。なお、流入路21の弁室13側の端部は、流路径を狭める小径部21bを設けてあり、当該小径部21bの先端が流入口21aとなっている。前記各実施形態と同様に弁部15aが弁座14に着座すると、弁部15aの傾斜面31aによって流入口21aが塞がれ、膨張弁41が閉弁状態となる。また、開弁状態(図10~図11に示す状態)では、流入口21aから弁室13に流入する冷媒の押圧力により弁支持部15bが弁室13の流出口22a側の内壁面13aに押し付けられ、弁振動が抑制される。 Specifically, a cone-shaped inclined (facing diagonally downward) curved surface is formed on the upper part of the inflow passage 21a side of the valve chamber 13, and this curved surface is the valve seat 14. The valve seat 14 is formed with an inflow port 21a, which is the opening of the inflow passage 21 to the valve chamber 13. The end of the inflow passage 21 on the valve chamber 13 side is provided with a small diameter section 21b that narrows the flow path diameter, and the tip of the small diameter section 21b is the inflow port 21a. As in each of the above embodiments, when the valve part 15a is seated on the valve seat 14, the inflow port 21a is blocked by the inclined surface 31a of the valve part 15a, and the expansion valve 41 is in a closed state. In addition, in the open state (the state shown in Figures 10 to 11), the valve support part 15b is pressed against the inner wall surface 13a on the outlet port 22a side of the valve chamber 13 by the pressing force of the refrigerant flowing into the valve chamber 13 from the inflow port 21a, and valve vibration is suppressed.

〔第4実施形態〕
本発明の第4の実施形態として前記第1実施形態の膨張弁11を用いた冷凍サイクル装置について説明する。
Fourth Embodiment
A refrigeration cycle apparatus using the expansion valve 11 of the first embodiment will be described as a fourth embodiment of the present invention.

図12に示すようにこの冷凍サイクル装置51は、冷媒を圧縮するコンプレッサ(圧縮機)52と、コンプレッサ52で圧縮された冷媒を冷却して液化するコンデンサ(凝縮器)53と、コンデンサ53で液化された冷媒を減圧膨張させる膨張弁11と、膨張弁11で減圧膨張された冷媒を蒸発気化するエバポレータ(蒸発器)54を備え、膨張弁として第1実施形態に係る膨張弁11を使用する。 As shown in FIG. 12, this refrigeration cycle device 51 includes a compressor 52 that compresses the refrigerant, a condenser 53 that cools and liquefies the refrigerant compressed by the compressor 52, an expansion valve 11 that reduces the pressure and expands the refrigerant liquefied by the condenser 53, and an evaporator 54 that evaporates the refrigerant reduced in pressure and expanded by the expansion valve 11, and uses the expansion valve 11 according to the first embodiment as the expansion valve.

かかる冷凍サイクル装置51では、コンプレッサ52で加圧された冷媒は、コンデンサ53で液化されて膨張弁11に送られる。また、膨張弁11で断熱膨張された冷媒はエバポレータ54に送り出され、エバポレータ54で、エバポレータ54の周囲を流れる空気と熱交換される。エバポレータ54から戻る冷媒は、膨張弁11の戻り流路23を通ってコンプレッサ52へ戻される。 In this refrigeration cycle device 51, the refrigerant pressurized by the compressor 52 is liquefied by the condenser 53 and sent to the expansion valve 11. The refrigerant adiabatically expanded by the expansion valve 11 is sent to the evaporator 54, where it is heat exchanged with the air flowing around the evaporator 54. The refrigerant returning from the evaporator 54 is returned to the compressor 52 through the return flow path 23 of the expansion valve 11.

膨張弁11には、コンデンサ53から高圧の冷媒が供給される。より具体的には、コンデンサ53から送られた高圧冷媒は、流入路21および縮径管部材20を通って流入口21aから弁室13に流れ込む。コイルばね16によって弁体15(弁部15a)が弁座14に押し付けられて着座した閉弁状態にあれば、流入口21aが閉塞されて流入路21と弁室13とが連通していないから、弁室13内の冷媒は膨張弁11から排出されない。 The expansion valve 11 is supplied with high-pressure refrigerant from the condenser 53. More specifically, the high-pressure refrigerant sent from the condenser 53 flows through the inlet 21a through the inflow passage 21 and the reduced diameter pipe member 20 into the valve chamber 13. When the valve body 15 (valve portion 15a) is pressed against the valve seat 14 by the coil spring 16 and is seated in a closed valve state, the inlet 21a is blocked and the inlet passage 21 and the valve chamber 13 are not in communication, so the refrigerant in the valve chamber 13 is not discharged from the expansion valve 11.

一方、コイルばね16の付勢力に抗して作動棒18が下方へ移動することにより弁体15を下方へ移動させ、弁座14から弁部15a(傾斜面31a)が後退すると、弁室13と流入路21とが連通状態(開弁状態)となり、弁室13内の冷媒が流出路22を通って排出されエバポレータ54へ送り出される。かかる作動棒18の動作は、弁本体12の上面部に備えたダイアフラム装置24により行われる。 Meanwhile, when the actuating rod 18 moves downward against the biasing force of the coil spring 16, moving the valve body 15 downward and the valve portion 15a (inclined surface 31a) retreating from the valve seat 14, the valve chamber 13 and the inlet passage 21 are in communication (valve open state), and the refrigerant in the valve chamber 13 is discharged through the outlet passage 22 and sent to the evaporator 54. Such movement of the actuating rod 18 is performed by the diaphragm device 24 provided on the upper surface of the valve body 12.

ダイアフラム装置24は、中央部に開口を有し弁本体12の上面に固定した皿状部材25と、皿状部材25の上面を覆う上蓋部材26と、皿状部材25と上蓋部材26との間に配置したダイアフラム27とを有する。上蓋部材26とダイアフラム27とによって囲まれる第1空間29には、作動ガスを充填してある。また、ダイアフラム27の下面には作動棒受け部材28を固定し、この作動棒受け部材28を介して作動棒18の上端がダイアフラム27に接続されている。そして、第1空間29内の作動ガスが液化されると、作動棒18はダイアフラム27によって上方へ引き上げられ、液化された作動ガスが気化されると、作動棒18はダイアフラム27によって下方へ押し下げられる。このようにして、膨張弁11の開弁状態と閉弁状態との間の切り換えが行われる。 The diaphragm device 24 has a dish-shaped member 25 with an opening in the center, fixed to the upper surface of the valve body 12, an upper cover member 26 that covers the upper surface of the dish-shaped member 25, and a diaphragm 27 arranged between the dish-shaped member 25 and the upper cover member 26. A first space 29 surrounded by the upper cover member 26 and the diaphragm 27 is filled with working gas. A working rod receiving member 28 is fixed to the lower surface of the diaphragm 27, and the upper end of the working rod 18 is connected to the diaphragm 27 via the working rod receiving member 28. When the working gas in the first space 29 is liquefied, the working rod 18 is pulled upward by the diaphragm 27, and when the liquefied working gas is vaporized, the working rod 18 is pushed downward by the diaphragm 27. In this way, the expansion valve 11 is switched between the open state and the closed state.

ダイアフラム27と皿状部材25との間の第2空間30は、上述した皿状部材25の中央の開口を通じて戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度と圧力に応じて、第1空間29内の作動ガスの相(気相か液相か)が変化し、この変化に応じて作動棒18が駆動される。このようにして膨張弁11では、エバポレータ54から膨張弁11に戻る冷媒の温度と圧力に対応して、膨張弁11からエバポレータ54に向けて供給される冷媒の量が自動的に調整される。 The second space 30 between the diaphragm 27 and the dish-shaped member 25 is connected to the return flow path 23 through the central opening of the dish-shaped member 25 described above. Therefore, the phase of the working gas in the first space 29 (gas phase or liquid phase) changes depending on the temperature and pressure of the refrigerant flowing through the return flow path 23, and the actuating rod 18 is driven in response to this change. In this way, the expansion valve 11 automatically adjusts the amount of refrigerant supplied from the expansion valve 11 to the evaporator 54 in response to the temperature and pressure of the refrigerant returning from the evaporator 54 to the expansion valve 11.

また、本実施形態の冷凍サイクル装置51では、前記第1実施形態の膨張弁11を使用しているから、防振ばねのような制振部材を別に備えることなく弁振動を抑制することができ、膨張弁11からの異音の発生を防ぐことが出来る。また、冷媒の圧力が高いときほど生じやすくなる弁振動に効果的に対処することが出来る。 In addition, the refrigeration cycle device 51 of this embodiment uses the expansion valve 11 of the first embodiment, so valve vibration can be suppressed without a separate vibration-damping member such as a vibration-proof spring, and abnormal noise can be prevented from being generated from the expansion valve 11. In addition, it is possible to effectively deal with valve vibration, which is more likely to occur when the refrigerant pressure is higher.

以上、本発明の実施の形態について説明したが、本発明はこれらに限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。 The above describes the embodiments of the present invention, but the present invention is not limited to these, and it will be clear to those skilled in the art that various modifications can be made within the scope of the claims.

例えば、前記第4実施形態に係る冷凍サイクル装置では第1実施形態の膨張弁11を使用したが、これに代えて第2実施形態または第3実施形態の膨張弁を使用しても勿論良く、さらにこれら実施形態の膨張弁以外にも本発明に基いて構成可能な他の膨張弁を用いることも可能である。また、本発明はカーエアコンに好ましく適用して車両室内の静粛性の向上に寄与することが出来るものであるが、用途や適用対象はカーエアコンに限られず、ルームエアコンや冷凍機など他の様々な冷凍サイクル装置に適用することが可能である。 For example, in the refrigeration cycle device according to the fourth embodiment, the expansion valve 11 of the first embodiment is used, but it is of course possible to use the expansion valve of the second or third embodiment instead, and it is also possible to use other expansion valves that can be constructed based on the present invention in addition to the expansion valves of these embodiments. In addition, the present invention is preferably applied to car air conditioners and can contribute to improving the quietness inside the vehicle cabin, but the uses and applications are not limited to car air conditioners, and it can be applied to various other refrigeration cycle devices such as room air conditioners and freezers.

11,41,51,61 膨張弁
12 弁本体
13 弁室
13a 弁室の内壁面
14 弁座
15 弁体
15a 弁部
15b 弁支持部
16 コイルばね(付勢部材)
17 ばね受け部材
18 作動棒
20 縮径管部材
21 流入路
21a 流入口
21b 小径部
22 流出路
22a 流出口
23 戻り流路
24 ダイアフラム装置
25 皿状部材
26 上蓋部材
27 ダイアフラム
28 作動棒受け部材
29 第1空間
30 第2空間
31a 錐体面(傾斜面)
31b,31c,31d 錐体面
32 弁部の上面(上底面)
51 冷凍サイクル装置
52 コンプレッサ(圧縮機)
53 コンデンサ(凝縮器)
54 エバポレータ(蒸発器)
60 のど部
REFERENCE SIGNS LIST 11, 41, 51, 61 Expansion valve 12 Valve body 13 Valve chamber 13a Inner wall surface of valve chamber 14 Valve seat 15 Valve body 15a Valve portion 15b Valve support portion 16 Coil spring (biasing member)
17 Spring receiving member 18 Actuating rod 20 Reduced diameter tube member 21 Inflow path 21a Inflow port 21b Small diameter section 22 Outflow path 22a Outflow port 23 Return flow path 24 Diaphragm device 25 Dish-shaped member 26 Upper cover member 27 Diaphragm 28 Actuating rod receiving member 29 First space 30 Second space 31a Cone surface (inclined surface)
31b, 31c, 31d Cone surface 32 Upper surface (upper bottom surface) of valve portion
51 Refrigeration cycle device 52 Compressor
53 Condenser
54 Evaporator
60 Throat

Claims (9)

冷媒を導入する流入路と当該冷媒を排出する流出路とに連通する弁室を有する弁本体と、
弁座に着座した閉弁状態と前記弁座から離間した開弁状態との間で前記弁座に対して進退動することにより前記冷媒の流量を変更する弁部、および、当該弁部を前記弁座に対して進退動可能に前記弁室内に支持する弁支持部を有する弁体と、
前記弁部を前記弁座に向けて付勢する付勢部材と、
前記弁部に接触して前記付勢部材による付勢力に抗し前記弁部を開弁方向へ移動させる作動棒と、
前記作動棒を駆動する駆動部と
を備えた膨張弁であって、
開弁状態から閉弁状態への前記作動棒の移動方向を上方向とし、閉弁状態から開弁状態への前記作動棒の移動方向を下方向としたときに、
前記弁支持部は、外周面の少なくとも一部が前記弁室の内壁面に上下方向へ摺動可能に当接し且つ前記弁部を上下方向に移動可能に支持し、
前記弁座は、前記流入路の弁室側の開口部である流入口を有し、
当該流入口はその縁が斜め下方を向くように前記弁室に対して開口し、
前記弁部は、当該弁部が前記弁座に着座したときに前記流入口の縁に当接して当該流入口を塞ぐことが出来るように斜め上方を向いた傾斜面を備え、
開弁状態にあるときに前記流入口から前記弁室に流入する前記冷媒の押圧力を前記弁体が受けることにより前記弁支持部が前記弁室の内壁面に押し付けられるように前記弁体を前記弁室内に配置した
ことを特徴とする膨張弁。
a valve body having a valve chamber communicating with an inlet passage for introducing a refrigerant and an outlet passage for discharging the refrigerant;
a valve portion that changes a flow rate of the refrigerant by moving toward and away from the valve seat between a closed state in which the valve portion is seated on the valve seat and an open state in which the valve portion is spaced from the valve seat, and a valve body having a valve support portion that supports the valve portion in the valve chamber so that the valve portion can move toward and away from the valve seat;
a biasing member that biases the valve portion toward the valve seat;
an actuation rod that comes into contact with the valve portion and moves the valve portion in a valve opening direction against the biasing force of the biasing member;
A drive unit that drives the operating rod,
When the movement direction of the working rod from the open state to the closed state is the upward direction and the movement direction of the working rod from the closed state to the open state is the downward direction,
the valve support portion has at least a portion of an outer circumferential surface that is in vertical slidable contact with an inner wall surface of the valve chamber and supports the valve portion so as to be vertically movable;
the valve seat has an inlet which is an opening of the inlet passage on the valve chest side,
the inlet opens into the valve chamber with its edge facing obliquely downward;
the valve portion has an inclined surface facing obliquely upward so as to come into contact with an edge of the inlet and close the inlet when the valve portion is seated on the valve seat,
an expansion valve including a valve support portion and a valve disc disposed in the valve chamber such that, when the valve is in an open state, the valve disc receives a pressing force of the refrigerant flowing into the valve chamber from the inlet, thereby pressing the valve support portion against an inner wall surface of the valve chamber.
前記弁支持部の前記外周面の前記少なくとも一部は、前記弁室の前記内壁面に、前記閉弁状態と最大開弁状態との間、上下方向へ摺動可能に当接する
請求項1に記載の膨張弁。
The expansion valve according to claim 1 , wherein the at least a portion of the outer circumferential surface of the valve support portion abuts against the inner wall surface of the valve chamber so as to be slidable in the up-down direction between the valve closed state and the maximum valve open state.
前記弁室は、円筒状の中間部を有し、
前記弁支持部は、
前記弁部の下縁から下方へ延びる円筒状の形状を有し、
前記弁室の円筒状の中間部に上下動可能に嵌合している
請求項1または2に記載の膨張弁。
The valve chamber has a cylindrical intermediate portion,
The valve support portion is
A cylindrical shape extending downward from a lower edge of the valve portion,
The expansion valve according to claim 1 or 2, wherein the valve chamber is fitted in a cylindrical middle portion of the valve chamber so as to be movable up and down.
前記弁部は、錐台状または錐体状の形状を有し、
前記傾斜面は、錐体面の一部である
請求項1から3のいずれか一項に記載の膨張弁。
The valve portion has a frustum or cone shape,
The expansion valve according to claim 1 , wherein the inclined surface is a part of a cone surface.
前記弁部は、四角錐台状の形状を有し、
当該弁部の上底面に前記作動棒の下端を接触させることにより当該弁部を下方へ移動させることを可能とした
請求項4に記載の膨張弁。
The valve portion has a quadrangular pyramid shape,
The expansion valve according to claim 4, wherein the valve portion can be moved downward by contacting a lower end of the actuating rod with an upper bottom surface of the valve portion.
前記弁部は、3面以上の錐体面を有する角錐台状の形状を有し、
前記3面以上の錐体面は、
第一の傾斜角を有する第一錐体面と、
前記第一の傾斜角とは異なる第二の傾斜角を有する第二錐体面と
を含む
請求項4または5に記載の膨張弁。
The valve portion has a truncated pyramid shape having three or more pyramidal faces,
The three or more conical surfaces are
a first pyramidal surface having a first tilt angle;
The expansion valve according to claim 4 or 5, further comprising: a second conical surface having a second inclination angle different from the first inclination angle.
前記流入路より小さな流路径を有し且つ前記流入口を形成する縮径管部材を前記流入路の弁室側の端部に備えた
請求項1から6のいずれか一項に記載の膨張弁。
The expansion valve according to claim 1 , further comprising a reduced diameter pipe member having a flow passage diameter smaller than that of the inlet passage and forming the inlet port, the reduced diameter pipe member being provided at an end of the inlet passage on a valve chamber side.
前記上方向および下方向に直交する左右方向に略水平に延びるように前記流入路と前記流出路とを前記弁本体に形成するとともに、
前記流入口と、前記流出路の弁室側の開口部である流出口とを上下方向に関し略同一の高さ位置に配置した
請求項1から7のいずれか一項に記載の膨張弁。
The inflow passage and the outflow passage are formed in the valve body so as to extend substantially horizontally in a left-right direction perpendicular to the upward and downward directions,
The expansion valve according to claim 1 , wherein the inlet and an outlet which is an opening of the outlet passage on the valve chest side are disposed at substantially the same height position in the up-down direction.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却して液化する凝縮器と、
前記凝縮器で液化された前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁で減圧膨張された前記冷媒を蒸発気化する蒸発器と
を備えた冷凍サイクル装置であって、
前記膨張弁が、前記請求項1から8のいずれか一項に記載の膨張弁であることを特徴とする冷凍サイクル装置。
A compressor that compresses a refrigerant;
a condenser that cools and liquefies the refrigerant compressed by the compressor;
an expansion valve for reducing the pressure and expanding the refrigerant liquefied in the condenser;
an evaporator that evaporates the refrigerant that has been decompressed and expanded by the expansion valve,
A refrigeration cycle device, wherein the expansion valve is the expansion valve according to any one of claims 1 to 8.
JP2020004054A 2020-01-15 2020-01-15 Expansion valve and refrigeration cycle device Active JP7482498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004054A JP7482498B2 (en) 2020-01-15 2020-01-15 Expansion valve and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004054A JP7482498B2 (en) 2020-01-15 2020-01-15 Expansion valve and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2021110518A JP2021110518A (en) 2021-08-02
JP7482498B2 true JP7482498B2 (en) 2024-05-14

Family

ID=77059571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004054A Active JP7482498B2 (en) 2020-01-15 2020-01-15 Expansion valve and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP7482498B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327672A (en) 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve
JP2017219230A (en) 2016-06-06 2017-12-14 株式会社デンソー Decompressor
JP2019011885A (en) 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978062A (en) * 1990-02-28 1990-12-18 Sporlan Valve Company Thermostatic expansion valve with bi-directional flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327672A (en) 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve
JP2017219230A (en) 2016-06-06 2017-12-14 株式会社デンソー Decompressor
JP2019011885A (en) 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP2021110518A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP2006189240A (en) Expansion device
JP6327401B2 (en) Pressure reducing valve
JP6929806B2 (en) Flow control valve and refrigeration cycle system
JP5991802B2 (en) Valve device
JP5933210B2 (en) Valve device
JP2011133139A (en) Expansion valve
CN107238238B (en) Throttling device and air conditioning system
JP7482498B2 (en) Expansion valve and refrigeration cycle device
JP6007369B2 (en) Control valve
JP7462932B2 (en) Expansion valve and refrigeration cycle device
JP7478410B2 (en) Expansion valve and refrigeration cycle device
JP3921870B2 (en) Refrigeration cycle equipment
JP7417998B2 (en) Expansion valve and refrigeration cycle equipment
JP7384386B2 (en) Expansion valve and refrigeration cycle equipment
JP6899584B2 (en) Expansion valve
US20220146160A1 (en) Expansion valve
JP7074322B2 (en) Expansion valve
JP7385288B2 (en) expansion valve
JP7300705B2 (en) expansion valve
JP7153912B2 (en) expansion valve
JP2021081173A (en) Expansion valve and refrigeration cycle device
JP2021103069A (en) Expansion valve, refrigerant introduction pipe and refrigeration cycle device
JP3963672B2 (en) Expansion valve
US10900530B2 (en) Expansion valve
JP7153911B2 (en) expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7482498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150