JP2021103069A - Expansion valve, refrigerant introduction pipe and refrigeration cycle device - Google Patents

Expansion valve, refrigerant introduction pipe and refrigeration cycle device Download PDF

Info

Publication number
JP2021103069A
JP2021103069A JP2019235361A JP2019235361A JP2021103069A JP 2021103069 A JP2021103069 A JP 2021103069A JP 2019235361 A JP2019235361 A JP 2019235361A JP 2019235361 A JP2019235361 A JP 2019235361A JP 2021103069 A JP2021103069 A JP 2021103069A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
expansion valve
pipe
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019235361A
Other languages
Japanese (ja)
Inventor
裕太郎 青木
Yutaro Aoki
裕太郎 青木
潤哉 早川
Junya Hayakawa
潤哉 早川
祐亮 ▲高▼橋
祐亮 ▲高▼橋
Yusuke Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2019235361A priority Critical patent/JP2021103069A/en
Publication of JP2021103069A publication Critical patent/JP2021103069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

To reduce bursting sounds of bubbles included in a refrigerant and suppress abnormal noise generated from an expansion valve.SOLUTION: An expansion valve 11 includes: a valve body 12 having a valve chamber 13 communicated with an inflow passage 21 for introducing a refrigerant and an outflow passage 23 for discharging the refrigerant; a valve element 15 disposed in the valve chamber and changing a refrigerant flow rate by advancing/retracting relative to a valve seat 14 between a valve closing state seated with the valve seat and a valve opening state separated from the valve seat; a valve element support part 16 supporting the valve element; an energizing member 17 energizing the valve element toward the valve seat via the valve element support part; an operation rod 19 coming into contact with the valve element and resisting to energizing force of the energizing member to move the valve element to the valve opening direction; and a drive part 24 driving the operation rod. A venturi tube 31 is provided in the inflow passage, and the refrigerant is caused to flow into the valve chamber through the venturi tube. Bubbles included in the refrigerant are caused to pass through the venturi tube and thus are collapsed and made finer, so as to reduce bubble bursting sounds.SELECTED DRAWING: Figure 1

Description

本発明は、膨張弁、冷媒導入管および冷凍サイクル装置に係り、特にエアコンなどの冷凍サイクルに備えられる膨張弁の冷媒通過音を抑制し、異音が発生することを防ぐ技術に関する。 The present invention relates to an expansion valve, a refrigerant introduction pipe, and a refrigeration cycle device, and particularly relates to a technique for suppressing a refrigerant passing noise of an expansion valve provided in a refrigeration cycle such as an air conditioner to prevent abnormal noise from being generated.

カーエアコンのような冷凍サイクル装置では、エバポレータ(蒸発器)の能力を十分に引き出すために膨張弁が備えられる。この膨張弁は、エバポレータの出口側配管の冷媒温度に感応してエバポレータに供給される冷媒の流れを絞り、最適流量に制御する。 Refrigeration cycle devices such as car air conditioners are equipped with expansion valves to maximize the capacity of the evaporator. This expansion valve throttles the flow of the refrigerant supplied to the evaporator in response to the temperature of the refrigerant in the outlet side piping of the evaporator, and controls the flow rate to the optimum flow rate.

一方、かかる膨張弁では、弁内を流れる冷媒によって異音が発生することがあり、このような異音を低減させる様々な提案が従来からなされている。 On the other hand, in such an expansion valve, abnormal noise may be generated by the refrigerant flowing in the valve, and various proposals for reducing such abnormal noise have been conventionally made.

例えば、下記特許文献1に記載の発明は、弁体支持部や作動棒を押さえる制振用のばね部材を備えることで弁振動を抑制し、異音の発生を防ぐ。特にこの文献記載の発明では、弁の開度が小さいときに弁振動が生じやすいことに着目し、弁開度が小さいときほど弁体支持部や作動棒を押さえる力が強くなる構造を採用することで弁開度に対応した効果的な制振を可能とする。 For example, the invention described in Patent Document 1 below suppresses valve vibration by providing a vibration damping spring member that presses the valve body support portion and the operating rod, and prevents the generation of abnormal noise. In particular, in the invention described in this document, attention is paid to the fact that valve vibration is likely to occur when the valve opening is small, and a structure is adopted in which the force for pressing the valve body support portion and the operating rod becomes stronger as the valve opening is smaller. This enables effective vibration control corresponding to the valve opening.

特開2019−11885号公報Japanese Unexamined Patent Publication No. 2019-11885

ところで、膨張弁から生じる異音は、弁体や弁体支持部、作動棒などが振動する振動音だけでなく、冷媒中に含まれる気泡が弁内で破裂することも異音発生の原因となる。冷媒中の気泡が弁室内の各部、例えば弁体や弁体支持部、弁体を付勢する付勢部材、弁室の内壁面等に衝突して破裂し、音を発生させるのである。 By the way, the abnormal noise generated from the expansion valve is not only the vibration noise of the valve body, the valve body support, the operating rod, etc., but also the bursting of air bubbles contained in the refrigerant inside the valve. Become. Bubbles in the refrigerant collide with each part in the valve chamber, for example, the valve body, the valve body support part, the urging member for urging the valve body, the inner wall surface of the valve chamber, and the like, and burst to generate sound.

ところが、上記特許文献1に記載の発明は、弁体や弁体支持部、作動棒の自励振動を抑えるものであり、このような気泡の破裂音に対処できるものではない。 However, the invention described in Patent Document 1 suppresses the self-excited vibration of the valve body, the valve body support portion, and the operating rod, and cannot cope with such a bursting sound of bubbles.

したがって、本発明の目的は、膨張弁から生じる異音を低減することにあり、特に冷媒中に含まれる気泡の破裂音を抑制する点にある。 Therefore, an object of the present invention is to reduce the abnormal noise generated from the expansion valve, and particularly to suppress the bursting noise of bubbles contained in the refrigerant.

前記課題を解決し目的を達成するため、本発明に係る膨張弁は、冷媒を導入する流入路と冷媒を排出する流出路とに連通する弁室を有する弁本体と、弁室の内部に配置され、弁座に着座した閉弁状態と弁座から離間した開弁状態との間で弁座に対して進退動することにより冷媒の流量を変更する弁体と、弁体を支持する弁体支持部と、弁体支持部を介して弁体を弁座に向けて付勢する付勢部材と、弁体に接触して付勢部材による付勢力に抗し弁体を開弁方向へ移動させる作動棒と、作動棒を駆動する駆動部とを備えた膨張弁であって、前記流入路にベンチュリ管を備え、当該ベンチュリ管を通って冷媒が弁室内に流入するようにした。なお、本明細書において「ベンチュリ管」は、いわゆる管構造を有するベンチュリ管のほか、ベンチュリ効果を奏する流体経路を有する部位ないし構造体を含むものとする。 In order to solve the above problems and achieve the object, the expansion valve according to the present invention is arranged inside a valve chamber and a valve body having a valve chamber that communicates with an inflow passage for introducing a refrigerant and an outflow passage for discharging a refrigerant. A valve body that changes the flow rate of the refrigerant by advancing and retreating with respect to the valve seat between a valve closed state that is seated on the valve seat and a valve open state that is separated from the valve seat, and a valve body that supports the valve body. The support portion, the urging member that urges the valve body toward the valve seat via the valve body support portion, and the valve body that comes into contact with the valve body and moves in the valve opening direction against the urging force of the urging member. It is an expansion valve provided with an operating rod to be operated and a driving unit for driving the operating rod, and a venturi pipe is provided in the inflow path so that the refrigerant flows into the valve chamber through the venturi pipe. In the present specification, the "Venturi tube" includes not only a Venturi tube having a so-called tubular structure, but also a site or a structure having a fluid path that exerts a Venturi effect.

膨張弁から発生する異音の一つである気泡の破裂音は、前述したように弁室内の各部(弁体や弁体支持部、付勢部材、弁室内壁面等)に気泡が衝突することにより生じるが、この破裂音は気泡が大きいほど大きくなる。そこで、本発明の膨張弁では、冷媒の流入路にベンチュリ管を備え、弁室内に流入する冷媒がベンチュリ管を通過するようにする。 As described above, the plosive sound of air bubbles, which is one of the abnormal noises generated from the expansion valve, is that the air bubbles collide with each part of the valve chamber (valve body, valve body support, urging member, valve chamber wall surface, etc.). However, this plosive sound becomes louder as the bubbles become larger. Therefore, in the expansion valve of the present invention, a Venturi pipe is provided in the inflow path of the refrigerant so that the refrigerant flowing into the valve chamber passes through the Venturi pipe.

ベンチュリ管は、流路径が次第に小さくなる縮径部と流路径が次第に大きくなる拡径部とを備えており、冷媒はこれら縮径部と拡径部を順に通って流れていくが、この間、冷媒の流速は加速し、圧力の低下とその後の急激な圧力上昇を受け、冷媒中に含まれる気泡は崩壊して微細な泡となる。そしてこのように微細になった気泡は、弁室内の各部に衝突して破裂しても従来のような大きな気泡と比べれば生じる音が小さくなる。したがって本発明によれば、気泡の破裂に起因する異音を低減することが出来る。 The Venturi tube is provided with a reduced diameter portion in which the flow path diameter gradually decreases and a diameter enlarged portion in which the flow path diameter gradually increases, and the refrigerant flows through the reduced diameter portion and the enlarged diameter portion in order. The flow velocity of the refrigerant accelerates, and the pressure drops and then the pressure rises sharply, causing the bubbles contained in the refrigerant to collapse into fine bubbles. Even if the bubbles become finer in this way collide with each part in the valve chamber and burst, the sound generated is smaller than that of the conventional large bubbles. Therefore, according to the present invention, it is possible to reduce abnormal noise caused by the bursting of bubbles.

また好ましい態様として、上記流入路が、膨張弁に冷媒を導入する冷媒導入管を接続可能な配管接続孔と、当該配管接続孔を通じて流入した冷媒を弁室に導く流路となる小径部とを含み、当該小径部に上記ベンチュリ管を配置する。 Further, as a preferred embodiment, the inflow path has a pipe connection hole to which a refrigerant introduction pipe for introducing a refrigerant into the expansion valve can be connected, and a small diameter portion serving as a flow path for guiding the refrigerant flowing in through the pipe connection hole to the valve chamber. Including, the above-mentioned Venturi pipe is arranged in the small diameter portion.

弁室により近い位置で気泡を細分化し、ベンチュリ管を通すことで微細になった気泡同士が合わさって再び気泡が大きくなることを防ぐためである。これにより気泡破裂音を効果的に抑制することが出来る。 This is to prevent the bubbles from becoming larger again by subdividing the bubbles closer to the valve chamber and passing them through the Venturi tube to combine the finer bubbles. As a result, the bubble bursting sound can be effectively suppressed.

また本発明に係る冷媒導入管は、膨張弁の弁室内に冷媒を導き入れる流入路に接続可能な冷媒導入管であって、その内部にベンチュリ管を備え、当該ベンチュリ管を通って冷媒が膨張弁の弁室内に導入されるようにすることが出来るものである。 Further, the refrigerant introduction pipe according to the present invention is a refrigerant introduction pipe that can be connected to an inflow path for introducing the refrigerant into the valve chamber of the expansion valve, has a Venturi pipe inside, and the refrigerant expands through the Venturi pipe. It can be introduced into the valve chamber of the valve.

このような冷媒導入管によれば、既存の弁構造(流入路の構造)を変更することなく本発明を適用することが可能となる。すなわち、既存の膨張弁は、前述した本発明の好ましい態様に係る膨張弁のように流入路に配管接続孔と小径部を有するが小径部が短く、小径部にベンチュリ管を配置できない場合がある。これに対し、上記本発明に係る冷媒導入管によれば、膨張弁自体(弁本体)ではなく配管(冷媒導入管)にベンチュリ管を配置するから、弁本体(流入路)の構造によらず、また弁本体の設計変更を必要とせずに既存の膨張弁において本発明を実現することが出来る。 According to such a refrigerant introduction pipe, the present invention can be applied without changing the existing valve structure (structure of the inflow path). That is, the existing expansion valve has a pipe connection hole and a small diameter portion in the inflow path like the expansion valve according to the preferred embodiment of the present invention described above, but the small diameter portion is short and the Venturi pipe may not be arranged in the small diameter portion. .. On the other hand, according to the refrigerant introduction pipe according to the present invention, since the Venturi pipe is arranged not in the expansion valve itself (valve body) but in the pipe (refrigerant introduction pipe), the structure of the valve body (inflow path) does not matter. Moreover, the present invention can be realized in an existing expansion valve without requiring a design change of the valve body.

さらにこの冷媒導入管では、前記流入路への接続端部にベンチュリ管を配置することが好ましい。前述した本発明の好ましい態様に係る膨張弁と同様に弁室により近い位置で気泡を細分化するためである。 Further, in this refrigerant introduction pipe, it is preferable to arrange a Venturi pipe at the end of the connection to the inflow path. This is because the bubbles are subdivided at a position closer to the valve chamber as in the expansion valve according to the preferred embodiment of the present invention described above.

また、本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却して液化する凝縮器と、凝縮器で液化された冷媒を減圧膨張させる膨張弁と、膨張弁で減圧膨張された冷媒を蒸発気化する蒸発器とを備えた冷凍サイクル装置であり、膨張弁として前述した本発明ないし態様に係るいずれかの膨張弁を使用する。 Further, the refrigeration cycle apparatus according to the present invention includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant compressed by the compressor, and an expansion valve that depressurizes and expands the refrigerant liquefied by the condenser. A refrigeration cycle device including an evaporator that evaporates and vaporizes the refrigerant expanded under reduced pressure by the expansion valve, and any expansion valve according to the present invention or the above-described embodiment is used as the expansion valve.

また、本発明に係る別の冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却して液化する凝縮器と、凝縮器で液化された冷媒を減圧膨張させる膨張弁と、膨張弁で減圧膨張された冷媒を蒸発気化する蒸発器とを備えた冷凍サイクル装置であり、凝縮器から膨張弁に冷媒を導入する冷媒導入管として前述した本発明ないし態様に係るいずれかの冷媒導入管を用いる。 Further, another refrigeration cycle apparatus according to the present invention includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant compressed by the compressor, and an expansion that decompresses and expands the refrigerant liquefied by the condenser. A refrigeration cycle device including a valve and an evaporator that evaporates and vaporizes the refrigerant expanded under reduced pressure by the expansion valve, and any of the above-described refrigerant introduction pipes for introducing the refrigerant from the condenser to the expansion valve. Use the refrigerant introduction pipe.

本発明によれば、冷媒中に含まれる気泡の破裂音を低減させ、膨張弁から生じる異音を抑制することが出来る。 According to the present invention, it is possible to reduce the bursting noise of bubbles contained in the refrigerant and suppress the abnormal noise generated from the expansion valve.

本発明の他の目的、特徴および利点は、図面に基いて述べる以下の本発明の実施の形態の説明により明らかにする。なお、各図中、同一の符号は、同一又は相当部分を示す。 Other objects, features and advantages of the present invention will be clarified by the following description of embodiments of the present invention described with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.

図1は、本発明の第1の実施形態に係る膨張弁を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing an expansion valve according to a first embodiment of the present invention. 図2は、前記第1実施形態に係る膨張弁の流入路および弁室部を拡大して示す縦断面図である。FIG. 2 is an enlarged vertical sectional view showing an inflow path and a valve chamber portion of the expansion valve according to the first embodiment. 図3は、本発明の第2の実施形態に係る冷媒導入管を適用した膨張弁の流入路および弁室部を図2と同様に拡大して示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing an inflow path and a valve chamber portion of an expansion valve to which a refrigerant introduction pipe according to a second embodiment of the present invention is applied, in the same manner as in FIG. 図4は、本発明の第3の実施形態に係る冷凍サイクル装置を示す概念図である。FIG. 4 is a conceptual diagram showing a refrigeration cycle apparatus according to a third embodiment of the present invention.

〔第1実施形態〕
図1から図2を参照して本発明の第1の実施形態について説明する。なお、この実施形態は、前述した本発明に係る膨張弁を具体化したものである。また、図1に上下左右の各方向を表す二次元直交座標を示したが、以下の説明はこれらの方向に基いて行う。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 2. It should be noted that this embodiment embodies the expansion valve according to the present invention described above. Further, although FIG. 1 shows two-dimensional Cartesian coordinates representing each direction of up, down, left, and right, the following description will be given based on these directions.

図1から図2に示すように本発明の第1の実施形態に係る膨張弁11は、弁室13を内部に備えた弁本体12と、弁室内上部に形成された弁座14と、弁座14に対向し且つ弁座14に対して進退動(上下動)可能に設置された弁体15と、弁体15を下方から支持する弁体支持部16と、弁本体12の下面部に装着されることにより弁室13を密閉するばね受け部材18と、ばね受け部材18と弁体支持部16との間に配置されて弁体支持部16を介し弁体15を弁座14に向け上方へ付勢するコイルばね(付勢部材)17と、弁体15をコイルばね17の付勢力に抗して弁座14から後退させる(下方へ移動させる)作動棒19と、弁本体12の上面部に備えられて作動棒19を上下動させるダイアフラム装置(駆動部)24とを有する。 As shown in FIGS. 1 to 2, the expansion valve 11 according to the first embodiment of the present invention includes a valve body 12 having a valve chamber 13 inside, a valve seat 14 formed in the upper part of the valve chamber, and a valve. The valve body 15 is installed so as to face the seat 14 and can move forward and backward (up and down) with respect to the valve seat 14, the valve body support portion 16 that supports the valve body 15 from below, and the lower surface portion of the valve body 12. A spring receiving member 18 that seals the valve chamber 13 by being mounted, and a valve body 15 that is arranged between the spring receiving member 18 and the valve body supporting portion 16 and directs the valve body 15 toward the valve seat 14 via the valve body supporting portion 16. A coil spring (urging member) 17 that urges upward, an operating rod 19 that retracts (moves downward) the valve body 15 from the valve seat 14 against the urging force of the coil spring 17, and a valve body 12 It has a diaphragm device (driving unit) 24 provided on the upper surface portion to move the operating rod 19 up and down.

また弁本体12は、弁室13に冷媒を導入する流入路21と、弁室13から外部へ冷媒を排出する流出路22と、弁本体12の上部を左右に貫通するように冷媒を流通させる戻り流路23を備えている。さらに、弁の開閉を行う作動棒19は、弁本体12の内部において上下方向に延び、上端をダイアフラム装置24に接続し、下端を弁体15に接触させてある。なお、ダイアフラム装置24と戻り流路23の詳細については、本実施形態の膨張弁11を使用する後述の第3実施形態において説明する。 Further, the valve body 12 circulates the refrigerant so as to pass through the inflow path 21 for introducing the refrigerant into the valve chamber 13, the outflow path 22 for discharging the refrigerant from the valve chamber 13 to the outside, and the upper portion of the valve body 12 to the left and right. A return flow path 23 is provided. Further, the operating rod 19 for opening and closing the valve extends in the vertical direction inside the valve body 12, the upper end thereof is connected to the diaphragm device 24, and the lower end is brought into contact with the valve body 15. The details of the diaphragm device 24 and the return flow path 23 will be described in the third embodiment described later in which the expansion valve 11 of the present embodiment is used.

流入路21と流出路22とは、弁室13を介して互いに連通するが、コイルばね17の上方への付勢力によって弁体15が弁座14に当接し着座した閉弁状態(図1および図2に示す状態)では流入路21と流出路22とは連通せずに遮断状態となる。一方、作動棒19の下方への押圧力により弁体15が下方へ移動し弁座14から離れると、流入路21と流出路22とが連通し、流入路21を通って弁室13の内部に流入した冷媒は、流出路22を通って膨張弁11の外へ排出されエバポレータ64(後述の図4参照)に導入される。そして、弁体15と弁座14との距離が変更されることにより当該冷媒の流量が調整される。 The inflow passage 21 and the outflow passage 22 communicate with each other via the valve chamber 13, but the valve body 15 is in contact with the valve seat 14 due to the upward urging force of the coil spring 17, and is seated in a closed state (FIGS. 1 and 1). In the state shown in FIG. 2), the inflow path 21 and the outflow path 22 do not communicate with each other and are cut off. On the other hand, when the valve body 15 moves downward and separates from the valve seat 14 due to the downward pressing force of the operating rod 19, the inflow path 21 and the outflow path 22 communicate with each other and pass through the inflow path 21 to the inside of the valve chamber 13. The refrigerant flowing into is discharged to the outside of the expansion valve 11 through the outflow passage 22 and introduced into the evaporator 64 (see FIG. 4 described later). Then, the flow rate of the refrigerant is adjusted by changing the distance between the valve body 15 and the valve seat 14.

また流入路21は、膨張弁11に冷媒を導入する冷媒導入管(図示せず)を接続可能な配管接続孔21aと、配管接続孔21aより小さい内径を有し配管接続孔21aと弁室13とを接続する小径部21bとからなり、小径部21bにベンチュリ管31を配置した。ベンチュリ管31は、次第に内径を小さくすることにより流路を狭める縮径部31aと、逆に次第に内径を大きくすることにより流路を広げる拡径部31bとを有しており、配管接続孔21a(冷媒導入管)を通じて膨張弁11内に導入された冷媒は、ベンチュリ管31、すなわちこれら縮径部31aと拡径部31bとを順に通って弁室13の中に流入する(図2の矢印R参照)。 Further, the inflow path 21 has a pipe connection hole 21a to which a refrigerant introduction pipe (not shown) for introducing a refrigerant into the expansion valve 11 can be connected, and a pipe connection hole 21a and a valve chamber 13 having an inner diameter smaller than that of the pipe connection hole 21a. The venturi pipe 31 is arranged in the small diameter portion 21b, which is composed of the small diameter portion 21b connecting the two. The venturi pipe 31 has a diameter-reduced portion 31a that narrows the flow path by gradually reducing the inner diameter, and a diameter-expanded portion 31b that widens the flow path by gradually increasing the inner diameter, and has a pipe connection hole 21a. The refrigerant introduced into the expansion valve 11 through the (refrigerant introduction pipe) flows into the valve chamber 13 through the venturi pipe 31, that is, the diameter reduction portion 31a and the diameter expansion portion 31b in order (arrow in FIG. 2). See R).

そして、ベンチュリ管31を通過するとき冷媒は圧力が低下し流速が増大するとともにその後急激な圧力上昇を受け、これにより冷媒中に含まれる気泡は崩壊し細分化される。したがって、弁室13内に侵入する気泡は微細になって弁室13内でたとえ破裂することがあってもその破裂音は小さくなり、膨張弁11から生じる異音を低減することが出来る。 Then, when the refrigerant passes through the Venturi pipe 31, the pressure of the refrigerant decreases, the flow velocity increases, and then the pressure suddenly increases, so that the bubbles contained in the refrigerant collapse and are subdivided. Therefore, even if the air bubbles entering the valve chamber 13 become fine and burst in the valve chamber 13, the bursting sound becomes small, and the abnormal noise generated from the expansion valve 11 can be reduced.

〔第2実施形態〕
図3を参照して本発明の第2の実施形態について説明する。なお、この実施形態は、前述した本発明に係る冷媒導入管を具体化してこれを膨張弁に適用したもので、第1実施形態と同様の構成については同一の符号を付して重複した説明を省略し、相違点を中心に説明を行う。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, the refrigerant introduction pipe according to the present invention described above is embodied and applied to an expansion valve, and the same configurations as those in the first embodiment are designated by the same reference numerals and duplicated. Is omitted, and the explanation will focus on the differences.

図3に示すように本実施形態に係る膨張弁は、流入路21の配管接続孔21aに接続された冷媒導入管32の中、より詳しくは、冷媒導入管32の先端部、つまり膨張弁(配管接続孔21a)への接続端部の内部にベンチュリ管31を配置したものである。 As shown in FIG. 3, the expansion valve according to the present embodiment is the expansion valve (more specifically, the tip of the refrigerant introduction pipe 32, that is, the expansion valve (in the refrigerant introduction pipe 32) connected to the pipe connection hole 21a of the inflow passage 21. The Venturi pipe 31 is arranged inside the connection end portion to the pipe connection hole 21a).

本実施形態によれば、例えば小径部21bが短くて第1実施形態のように小径部21bにベンチュリ管31を備えることが出来ない膨張弁に対しても本発明を適用することが出来る。特に、既存の膨張弁は小径部21bが比較的短く、現状の弁構造ではベンチュリ管31を備えることが難しいことも少なくない。しかしながら本実施形態によれば、現行の弁本体構造を変更することなく本発明を実現することが出来る。 According to the present embodiment, for example, the present invention can be applied to an expansion valve in which the small diameter portion 21b is short and the venturi pipe 31 cannot be provided in the small diameter portion 21b as in the first embodiment. In particular, the existing expansion valve has a relatively short small diameter portion 21b, and it is often difficult to provide the Venturi pipe 31 with the current valve structure. However, according to the present embodiment, the present invention can be realized without changing the current valve body structure.

また本実施形態では、小径部21bが短く且つ配管接続孔21aに挿入される冷媒導入管32の先端部にベンチュリ管31を配置するから、弁室13に比較的近い位置で気泡を細分化することができ、第1実施形態と同様に気泡の破裂音を効果的に低減させることが出来る。 Further, in the present embodiment, since the venturi pipe 31 is arranged at the tip of the refrigerant introduction pipe 32 which has a short small diameter portion 21b and is inserted into the pipe connection hole 21a, the bubbles are subdivided at a position relatively close to the valve chamber 13. It is possible to effectively reduce the bursting sound of bubbles as in the first embodiment.

〔第3実施形態〕
本発明の第3の実施形態として前記第1実施形態の膨張弁11を用いた冷凍サイクル装置について説明する。
[Third Embodiment]
As a third embodiment of the present invention, a refrigeration cycle device using the expansion valve 11 of the first embodiment will be described.

図4に示すようにこの冷凍サイクル装置41は、冷媒を圧縮するコンプレッサ(圧縮機)42と、コンプレッサ42で圧縮された冷媒を冷却して液化するコンデンサ(凝縮器)43と、コンデンサ43で液化された冷媒を減圧膨張させる膨張弁11と、膨張弁11で減圧膨張された冷媒を蒸発気化するエバポレータ(蒸発器)44とを備え、膨張弁として第1実施形態に係る膨張弁11を使用する。 As shown in FIG. 4, the refrigeration cycle device 41 is liquefied by a compressor (compressor) 42 that compresses the refrigerant, a condenser (condenser) 43 that cools and liquefies the refrigerant compressed by the compressor 42, and a condenser 43. An expansion valve 11 for decompressing and expanding the generated refrigerant and an evaporator (evaporator) 44 for evaporating and vaporizing the refrigerant decompressed and expanded by the expansion valve 11 are provided, and the expansion valve 11 according to the first embodiment is used as the expansion valve. ..

かかる冷凍サイクル装置41では、コンプレッサ42で加圧された冷媒は、コンデンサ43で液化されて膨張弁11に送られる。また、膨張弁11で断熱膨張された冷媒はエバポレータ44に送り出され、エバポレータ44で、エバポレータ44の周囲を流れる空気と熱交換される。エバポレータ44から戻る冷媒は、膨張弁11の戻り流路23を通ってコンプレッサ42へ戻される。 In such a refrigeration cycle device 41, the refrigerant pressurized by the compressor 42 is liquefied by the condenser 43 and sent to the expansion valve 11. Further, the refrigerant adiabatically expanded by the expansion valve 11 is sent to the evaporator 44, and the evaporator 44 exchanges heat with the air flowing around the evaporator 44. The refrigerant returning from the evaporator 44 is returned to the compressor 42 through the return flow path 23 of the expansion valve 11.

膨張弁11には、コンデンサ43から高圧の冷媒が供給される。より具体的には、コンデンサ43から送られた高圧冷媒は、流入路21を通って弁室13に流れ込む。コイルばね17によって弁体15が弁座14に押し付けられて着座した閉弁状態にあれば、弁室13と流出路22とが連通していないから、弁室13内の冷媒は膨張弁11から排出されない。 A high-pressure refrigerant is supplied to the expansion valve 11 from the condenser 43. More specifically, the high-pressure refrigerant sent from the condenser 43 flows into the valve chamber 13 through the inflow path 21. If the valve body 15 is pressed against the valve seat 14 by the coil spring 17 and is seated in the valve closed state, the valve chamber 13 and the outflow passage 22 are not in communication with each other, so that the refrigerant in the valve chamber 13 comes from the expansion valve 11. Not discharged.

一方、コイルばね17の付勢力に抗して作動棒19が下方へ移動し、弁体15を弁座14から下方へ後退させると、弁室13と流出路22とが連通状態(開弁状態)となり、弁室13内の冷媒が流出路22から排出されてエバポレータ44へ送り出される。かかる作動棒19の動作は、弁本体12の上面部に備えられたダイアフラム装置24により行われる。 On the other hand, when the operating rod 19 moves downward against the urging force of the coil spring 17 and the valve body 15 is retracted downward from the valve seat 14, the valve chamber 13 and the outflow passage 22 are in a communicating state (valve open state). ), And the refrigerant in the valve chamber 13 is discharged from the outflow passage 22 and sent out to the evaporator 44. The operation of the operating rod 19 is performed by the diaphragm device 24 provided on the upper surface of the valve body 12.

ダイアフラム装置24は、上蓋部材25と、中央部に開口を有する受け部材26と、上蓋部材25と受け部材26との間に配置されたダイアフラム(図示せず)とを備える。そして、上蓋部材25とダイアフラムとによって囲まれる第1空間には、作動ガスを充填してある。また、ダイアフラムには作動棒19の上端が接続されており、第1空間内の作動ガスが液化されると、作動棒19はダイアフラムによって上方へ引き上げられ、液化された作動ガスが気化されると、作動棒19はダイアフラムによって下方へ押し下げられる。このようにして、膨張弁11の開弁状態と閉弁状態との間の切り換えが行われる。 The diaphragm device 24 includes an upper lid member 25, a receiving member 26 having an opening at the center, and a diaphragm (not shown) arranged between the upper lid member 25 and the receiving member 26. The first space surrounded by the upper lid member 25 and the diaphragm is filled with a working gas. Further, the upper end of the working rod 19 is connected to the diaphragm, and when the working gas in the first space is liquefied, the working rod 19 is pulled upward by the diaphragm and the liquefied working gas is vaporized. , The actuating rod 19 is pushed down by the diaphragm. In this way, the expansion valve 11 is switched between the valve open state and the valve closed state.

また、ダイアフラムと受け部材26との間の第2空間は、前記受け部材中央の開口を通じて戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度と圧力に応じて、第1空間内の作動ガスの相(気相か液相か)が変化し、この変化に応じて作動棒19が駆動される。このようにして膨張弁11では、エバポレータ44から膨張弁11に戻る冷媒の温度と圧力に応じて、膨張弁11からエバポレータ44に向けて供給される冷媒の量が自動的に調整される。 Further, the second space between the diaphragm and the receiving member 26 communicates with the return flow path 23 through the opening in the center of the receiving member. Therefore, the phase (gas phase or liquid phase) of the working gas in the first space changes according to the temperature and pressure of the refrigerant flowing through the return flow path 23, and the working rod 19 is driven according to this change. To. In this way, the expansion valve 11 automatically adjusts the amount of the refrigerant supplied from the expansion valve 11 toward the evaporator 44 according to the temperature and pressure of the refrigerant returning from the evaporator 44 to the expansion valve 11.

また、本実施形態の冷凍サイクル装置41では、前記第1実施形態の膨張弁11を使用しており、コンデンサ43から弁室13内に導入される冷媒はベンチュリ管31を通過することとなる。したがって、冷媒中に含まれる気泡は細分化され微細になり、気泡が破裂することにより生じる異音を低減することが出来る。 Further, in the refrigeration cycle device 41 of the present embodiment, the expansion valve 11 of the first embodiment is used, and the refrigerant introduced into the valve chamber 13 from the condenser 43 passes through the Venturi pipe 31. Therefore, the bubbles contained in the refrigerant are subdivided into fine particles, and the abnormal noise generated by the bursting of the bubbles can be reduced.

以上、本発明の実施の形態について説明したが、本発明はこれらに限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。 Although the embodiments of the present invention have been described above, it is clear to those skilled in the art that the present invention is not limited thereto and various modifications can be made within the scope of the claims. ..

例えば、前記第3実施形態に係る冷凍サイクル装置では第1実施形態の膨張弁11を使用したが、これに代えて既存の膨張弁と第2実施形態の冷媒導入管を使用しても勿論良く、さらにこれら実施形態の膨張弁乃至冷媒導入管以外にも本発明に基いて構成可能な他の膨張弁や冷媒導入管を用いることも可能である。また前記第1および第2実施形態では弁体15と弁体支持部16を別部材として構成したが、これらは一体に成形された1つの部材であっても良い。 For example, in the refrigeration cycle apparatus according to the third embodiment, the expansion valve 11 of the first embodiment is used, but of course, the existing expansion valve and the refrigerant introduction pipe of the second embodiment may be used instead. Further, in addition to the expansion valve or the refrigerant introduction pipe of these embodiments, it is also possible to use another expansion valve or the refrigerant introduction pipe that can be configured based on the present invention. Further, in the first and second embodiments, the valve body 15 and the valve body support portion 16 are configured as separate members, but these may be one member integrally molded.

さらに、本発明はカーエアコンに好ましく適用して車両室内の静粛性の向上に寄与することが出来るものであるが、用途や適用対象はカーエアコンに限られず、ルームエアコンや冷凍機など他の様々な冷凍サイクル装置に適用することが可能である。 Further, the present invention can be preferably applied to a car air conditioner and contribute to the improvement of quietness in the vehicle interior, but the application and application target are not limited to the car air conditioner, and various other applications such as a room air conditioner and a refrigerator. It can be applied to various refrigeration cycle devices.

11 膨張弁
12 弁本体
13 弁室
14 弁座
15 弁体
16 弁体支持部
17 コイルばね(付勢部材)
18 ばね受け部材
19 作動棒
21 流入路
21a 配管接続孔
21b 小径部
22 流出路
23 戻り流路
24 ダイアフラム装置
25 上蓋部材
26 受け部材
31 ベンチュリ管
31a 縮径部
31b 拡径部
32 冷媒導入管
41 冷凍サイクル装置
42 コンプレッサ(圧縮機)
43 コンデンサ(凝縮器)
44 エバポレータ(蒸発器)
R 冷媒の流れ
11 Expansion valve 12 Valve body 13 Valve chamber 14 Valve seat 15 Valve body 16 Valve body support 17 Coil spring (urging member)
18 Spring receiving member 19 Operating rod 21 Inflow path 21a Piping connection hole 21b Small diameter part 22 Outflow path 23 Return flow path 24 Diaphragm device 25 Top lid member 26 Receiving member 31 Venturi pipe 31a Reduced diameter part 31b Diameter expansion part 32 Refrigerant introduction pipe 41 Refrigerant Cycle device 42 Compressor
43 Capacitor (condenser)
44 Evaporator (evaporator)
R Refrigerant flow

Claims (6)

冷媒を導入する流入路と当該冷媒を排出する流出路とに連通する弁室を有する弁本体と、
前記弁室の内部に配置され、弁座に着座した閉弁状態と前記弁座から離間した開弁状態との間で前記弁座に対して進退動することにより前記冷媒の流量を変更する弁体と、
前記弁体を支持する弁体支持部と、
前記弁体支持部を介して前記弁体を前記弁座に向けて付勢する付勢部材と、
前記弁体に接触して前記付勢部材による付勢力に抗し前記弁体を開弁方向へ移動させる作動棒と、
前記作動棒を駆動する駆動部と
を備えた膨張弁であって、
前記流入路にベンチュリ管を備え、
当該ベンチュリ管を通って前記冷媒が前記弁室内に流入するようにした
ことを特徴とする膨張弁。
A valve body having a valve chamber that communicates with an inflow path for introducing a refrigerant and an outflow path for discharging the refrigerant.
A valve that is arranged inside the valve chamber and changes the flow rate of the refrigerant by advancing and retreating with respect to the valve seat between a valve closed state seated on the valve seat and a valve opened state separated from the valve seat. With the body
A valve body support portion that supports the valve body and
An urging member that urges the valve body toward the valve seat via the valve body support portion, and
An actuating rod that comes into contact with the valve body and moves the valve body in the valve opening direction against the urging force of the urging member.
An expansion valve provided with a drive unit for driving the operating rod.
A Venturi pipe is provided in the inflow path,
An expansion valve characterized in that the refrigerant flows into the valve chamber through the Venturi pipe.
前記流入路は、
前記膨張弁に前記冷媒を導入する冷媒導入管を接続可能な配管接続孔と、
当該配管接続孔を通じて流入した前記冷媒を前記弁室に導く流路となる小径部と
を含み、
前記ベンチュリ管を前記小径部に配置した
請求項1に記載の膨張弁。
The inflow path is
A pipe connection hole to which a refrigerant introduction pipe for introducing the refrigerant is connected to the expansion valve,
Includes a small diameter portion that serves as a flow path for guiding the refrigerant that has flowed in through the pipe connection hole to the valve chamber.
The expansion valve according to claim 1, wherein the Venturi pipe is arranged in the small diameter portion.
膨張弁の弁室内に冷媒を導き入れる流入路に接続可能な冷媒導入管であって、
当該冷媒導入管の内部にベンチュリ管を備え、
前記冷媒が当該ベンチュリ管を通って前記弁室内に導入されるようにした
ことを特徴とする冷媒導入管。
A refrigerant introduction pipe that can be connected to the inflow path that guides the refrigerant into the valve chamber of the expansion valve.
A Venturi pipe is provided inside the refrigerant introduction pipe,
A refrigerant introduction pipe, characterized in that the refrigerant is introduced into the valve chamber through the Venturi pipe.
前記流入路への接続端部に前記ベンチュリ管を配置した
請求項3に記載の冷媒導入管。
The refrigerant introduction pipe according to claim 3, wherein the Venturi pipe is arranged at the end of the connection to the inflow path.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却して液化する凝縮器と、
前記凝縮器で液化された前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁で減圧膨張された前記冷媒を蒸発気化する蒸発器と
を備えた冷凍サイクル装置であって、
前記膨張弁が、前記請求項1または2に記載の膨張弁であることを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant and
A condenser that cools and liquefies the refrigerant compressed by the compressor, and
An expansion valve that decompresses and expands the refrigerant liquefied by the condenser,
A refrigeration cycle apparatus including an evaporator that evaporates and vaporizes the refrigerant that has been decompressed and expanded by the expansion valve.
A refrigeration cycle apparatus according to claim 1 or 2, wherein the expansion valve is the expansion valve.
冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却して液化する凝縮器と、
前記凝縮器で液化された前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁で減圧膨張された前記冷媒を蒸発気化する蒸発器と
を備えた冷凍サイクル装置であって、
前記凝縮器から前記膨張弁に前記冷媒を導入する冷媒導入管として、前記請求項3または4に記載の冷媒導入管を用いたことを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant and
A condenser that cools and liquefies the refrigerant compressed by the compressor, and
An expansion valve that decompresses and expands the refrigerant liquefied by the condenser,
A refrigeration cycle apparatus including an evaporator that evaporates and vaporizes the refrigerant that has been decompressed and expanded by the expansion valve.
The refrigerating cycle apparatus according to claim 3 or 4, wherein the refrigerant introduction pipe for introducing the refrigerant from the condenser to the expansion valve is used.
JP2019235361A 2019-12-26 2019-12-26 Expansion valve, refrigerant introduction pipe and refrigeration cycle device Pending JP2021103069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019235361A JP2021103069A (en) 2019-12-26 2019-12-26 Expansion valve, refrigerant introduction pipe and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019235361A JP2021103069A (en) 2019-12-26 2019-12-26 Expansion valve, refrigerant introduction pipe and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2021103069A true JP2021103069A (en) 2021-07-15

Family

ID=76755015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235361A Pending JP2021103069A (en) 2019-12-26 2019-12-26 Expansion valve, refrigerant introduction pipe and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2021103069A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366375A (en) * 1991-06-12 1992-12-18 Hitachi Ltd Air conditioner
JP2015001318A (en) * 2013-06-13 2015-01-05 株式会社テージーケー Expansion valve
JP2019011885A (en) * 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366375A (en) * 1991-06-12 1992-12-18 Hitachi Ltd Air conditioner
JP2015001318A (en) * 2013-06-13 2015-01-05 株式会社テージーケー Expansion valve
JP2019011885A (en) * 2017-06-29 2019-01-24 株式会社不二工機 Expansion valve

Similar Documents

Publication Publication Date Title
JP5999050B2 (en) Ejector refrigeration cycle and ejector
JP6119489B2 (en) Ejector
JP2006189240A (en) Expansion device
US20170211850A1 (en) Ejector and ejector refrigeration cycle
JP6090104B2 (en) Ejector
JP5083106B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP2014015886A (en) Ejector
JP2021103069A (en) Expansion valve, refrigerant introduction pipe and refrigeration cycle device
WO2016143292A1 (en) Ejector-type refrigeration cycle
JP6511873B2 (en) Ejector and ejector-type refrigeration cycle
JP2021127845A (en) Expansion valve and refrigeration cycle device
CN111133240B (en) Expansion valve
JP7482498B2 (en) Expansion valve and refrigeration cycle device
JP2000283606A (en) Refrigeration cycled apparatus
JP2021081173A (en) Expansion valve and refrigeration cycle device
JP7462932B2 (en) Expansion valve and refrigeration cycle device
WO2018159323A1 (en) Ejector module and evaporator unit
JP7153912B2 (en) expansion valve
JP7382057B2 (en) Expansion valve and refrigeration cycle equipment
JP6380122B2 (en) Ejector
JP3963672B2 (en) Expansion valve
JP2021076190A (en) Expansion valve and refrigeration cycle device
JP7153911B2 (en) expansion valve
JP2016211827A (en) Refrigeration cycle device
JP2022166355A (en) expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312